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Electromagnetic waves in a model with Chern-Simons potential
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We investigated the appearance of Chern-Simons terms in electrodynamics at the surface or interface of
materials. The requirement of locality, gauge invariance, and renormalizability in this model is imposed. Scattering
and reflection of electromagnetic waves in three different homogeneous layers of media is determined. Snell’s law
is preserved. However, the transmission and reflection coefficient depend on the strength of the Chern-Simons
interaction (connected with Hall conductance), and parallel and perpendicular components are mixed.
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I. INTRODUCTION

Space-time homogeneity and isotropy are typical for usual
quantum field theory models of elementary particles. It is a
natural assumption in the study of various processes with
simplest excitations of quantum vacuum. However, it is
not suitable for modeling the interaction of quantum fields
with macroscopic objects, changing essentially the vacuum
properties. In this case, quantum macro-effects may appear in
dynamics of material bodies which cannot be explained in the
framework of classical physics. Theoretically, this problem
was first considered in 1948 by Casimir, who showed that
quantum vacuum fluctuations cause the attraction between
two perfectly conducting parallel plates of an uncharged
capacitor [1]. This phenomenon, called the Casimir effect
(CE), is observed experimentally [2–5], and the results
obtained empirically for materials with high conductivity are,
with a high degree of accuracy, in agreement with theoretical
ones [6,7]. At typical distances of 10–1000 nm for the CE both
quantum and classical features of the system become essential.
Their combination forms a special nanophysics. Investigations
of it are not only of general theoretical interest, they are also
important for the development of new technical devices, in
view of the increasing trend toward their miniaturization.

Although there are numerous papers devoted to the theoreti-
cal problems of the CE [6,8], they are often based on simplified
models of a free scalar field theory or free electromagnetic field
with fixed boundary conditions, applying only to investigations
of some particular aspect of the CE, and ignoring usually
specificity of quantum electrodynamics. Such models are
not suitable for a complete description of a wide range of
nanophysical phenomena occurring in the system as a result
of the interaction of quantum degrees of freedom with the
material body of a given shape (classic defect). The results
presented in our paper were obtained within the Symanzik
approach [9] for construction of quantum field theory models
when there are spatial inhomogeneities with sharp boundaries.
They are described by an additional action functional (action of
the defect) that is concentrated in the region of space where the
macroscopic object is located. In quantum electrodynamics the
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interaction of photons with the defect modeling background
field is completely determined by the requirements of the local-
ity, gauge invariance, renormalizability, and is described by the
Chern-Simons action functional with a dimensionless constant
characterizing the material properties of the surface [10]. It
affects the Casimir force, which is nonuniversal and can be
not only attractive but also repulsive for a flat capacitor [10].
It is shown also that in this model the static electric charge
interacting with the surface defect generates a magnetic field,
and the stable straight-line current creates an electric field [10].
The calculated Casimir-Polder potential for a neutral atom
near a flat surface allowed us to find the parity-violating
corrections to the previously known results [11]. Based on
the earlier proposed model [10] we studied in this paper the
electromagnetic waves in three layers of matter with magnetic
susceptibilities μ1, μ2, μ3 and permittivities ε1, ε2, ε3

separated by two parallel material planes x3 = ±l/2 whose
Chern-Simons interaction with the electromagnetic field is
characterized by coupling constants a1, a2. We can show that
the interfaces of such a kind have finite Hall conductance,
simply connected with Chern-Simons permittivity.

II. STATEMENT OF PROBLEM

For the formulation and investigation of the model it
is convenient to use the notations α̌ and a for three- and
two-component arrays, respectively. We define also the scalar
product and the ∗ composition of them: α̌β̌ = α1β1 + α2β2 +
α3β3, ab = a1b1 + a2b2, α̌ ∗ β̌ = (α1β1,α2β2,α3β3), a ∗ b =
(a1b1,a2b2).

Let us introduce the arrays:

θ̌l ≡ (θ (−l/2 − x3),θ (l/2 − |x3|),θ (x3 − l/2)),

dl ≡ (δ(x3 + l/2),δ(x3 − l/2)).

Here θ (α) and δ(α) are Heaviside step-function and Dirac δ

function. The scalar products of θ̌l with β̌ = (β1,β2,β3) and dl

with c = (c1,c2) are defined as

F(β1,β2,β3) = F(β̌) ≡ β̌θ̌l , D(c1,c2) = D(c) ≡ cdl .

Then one obtains

∂

∂x3
F(β̌) = F

(
∂

∂x3
β̌

)
+ D[s(β̌)],

F(β̌)F(γ̌ ) = F(β̌ ∗ γ̌ ), F(1,1,1) = 1.
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where s(β̌) ≡ (β2 − β1,β3 − β2). The model [10] of the
photon field Aμ interacting with the two-dimensional material
surface described by equation 	(x) = 0 can be generalized for
the considered defining the action functional as

S(A) =− 1
4GμνF

μν + Sφ(A). (1)

Here, Fμν ≡ ∂μAν − ∂νAμ, Gμν ≡ E(x3)Fμν , if μ = 0 or
ν = 0, and Gμν ≡ M−1(x3)Fμν if μ �= 0, ν �= 0 with E(x3) ≡
F(ε̌), M(x3) ≡ F(μ̌).

The functional Sφ(A) describes the interaction of the two-
dimensional material objects (defects) with the photon field.
The defects lie, in our case, at two parallel planes x3 = li
with l = (−l/2, + l/2). Using the notation 	j (x) = x3 − lj
we can write the action of the defects as Sφ(A) = S1(A) +
S2(A), where

Sj (A) = aj

2

∫
∂μ	j (x)Aν(x)F̃ μν(x)δ(	j (x))dx

= aj

2

∫
Aν(x)F̃ 3ν(x)δ(	j (x))dx, j = 1,2.

Here, F̃ μν is the dual field tensor F̃ μν = εμνλρFλρ , and ελμνρ

is the totally antisymmetric tensor, ε0123 = 1.
The Chern-Simons action SCS(V ) of the abelian gauge field

Vα (α = 0,1,2) in the three-dimensional space-time is the
integral of the invariant-3 form [12],

S
(3)
CS(V,χ ) = χ

∫
Vα∂βVγ εαβγ d3x,

where εαβγ is the Levi-Civita tensor (ε012 = 1), and χ is a
constant. Using the notations V

(j )
α = Aα|x3=lj , we can present

the action Sj (A) of the defect layers in our four-dimensional
model in the form Sj (A) = −S

(3)
CS(V (j ),aj ).

Both the Abelian and non-Abelian Chern-Simons terms
are used in many different models [13]. They can generate
the interaction potential of nonrelativistic particles moving
in the two-dimensional space [14] and enable one to construct
the gauge invariant theory of the three-dimensional massive
gauge fields [15,16]. The gauge-field models of such a kind
are relevant for the fractional quantum Hall effect [17] and
probably also for high-TC superconductivity [18].

In the four-dimensional gauge-field theory one studies
the models with the Chern-Simons-like action of the form
S

(4)
CS(A,k) = kμAνF̃

μν , including a constant vector kμ [19].
The functional S

(4)
CS(A,k) is gauge invariant, but violates the

Lorentz symmetry. It describes the effects of spontaneous
Lorentz invariance breaking in the so-called standard-model
extension [20] and is used for a modification of the Maxwell
theory [19].

Comparing the actions S
(3)
j (V,χ ), S

(4)
CS(A,k) in the above-

mentioned models with the Chern-Simons terms S	(A) in
Eq. (1), one notes that the coupling constants aj in Sj (A)
are dimensionless, but the parameter χ and the vector kμ have
the dimension of mass.

Therefore, in the (2+1)-dimensional Maxwell-Chern-
Simons theory, the photon has a “topological” mass m = χ

[16]. The Casimir force f between parallel lines in this model
is the same as in the theory of the free scalar field with mass

m. It is attractive, and

f =− 1

16πl3

∫ ∞

2ml

y2dy

ey − 1
,

where l is the distance between the lines [16]. For small
ml, f ∼ −(8πl3)−1[ζ (3) + ml − (ml)2] (ζ denotes here the
Riemann zeta function), and for the large distances (ml � 1),
one obtains f ∼ −(8πl3)−1[2(ml)2 + 2(ml) + 1]e−2ml .

Analogous results exist in the Maxwell-Proca-Chern-
Simons theory [21], and a similar nontrivial distance depen-
dence of the Casimir force between two parallel conducting
plates is obtained also in the standard-model extension [22]. On
the other hand, in the four-dimensional theory of the quantum
electromagnetic field with the Chern-Simons defect actions
Sj (A), the power function describes exactly the dependence
of the Casimir force FCas from the distance l between two
parallel planes in vacuum [10]:

FCas = − π2

240l4
C(a1,a2). (2)

Here, the function C(a1,a2) is expressed in terms of the
polylogarithm Li4(z) [10].

For identical defect planes (a1 = a2 = a), the factor f (a) =
C(a,a) is an even function of a, f (0) = f (a0) = 0, with a0 ≈
0.5892, and lim|a|→∞ f (a) = 1 in accordance with the Casimir
force for perfectly conducting plates [1]. If 0 < |a| < a0, then
f (a) < 0, and the Casimir force is repulsive. If |a| > a0, then
0 < f (a) < 1, and the Casimir force is attractive. It vanishes
for a = 0,|a| = a0.

The presented results demonstrate the difference between
the proposed model Eq. (1) and the other ones constructed with
the inclusion of Chern-Simons terms in the Lagrange density.

The Euler-Lagrange equations for the action functional
S(A) Eq. (1) are written as modified Maxwell’s equations:

δS(A)

δAν

= ∂ξG
ξν + D(a)J ν = 0. (3)

We use the notations J ν ≡ ε3νσρFσρ , a ≡ (a1,a2). We con-
struct the general solution of Eq. (3), analyze its properties,
and consider processes of plain-wave scattering.

Action Eq. (1) and the Euler-Lagrange Eq. (3) are invariant
under gauge transformation Aμ(x) → Aμ(x) + ∂μϕ(x). Thus,
the solution of Eq. (3) is defined up to a gauge transformation.
We fix it by choosing the temporal gauge A0 = 0. Then
the vector-potential Aμ = (0, 
A) yields the electric field 
E =
−∂0 
A and the magnetic induction 
B = 
∂ × 
A.

We solve Eq. (3) using the Fourier transform over coordi-
nates x0 = ct, x1, x2 for the vector-potential Aμ:

Aμ(x) = 1

(2π )
3
2

∫
eipxAμ(x3,p)dp

= 2 Re

(2π )
3
2

∫
θ (p0)[eipxAμ(x3,p)]dp.

Here and later we use the notation p for vector p = (p0,p1,p2),
px = p0x0 − p1x1 − p2x2. Re denotes the real part and ω =
cp0 the frequency.
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III. SOLUTION OF EULER-LAGRANGE EQUATIONS

With the gauge condition A0 = 0, Eq. (3) for 
A(x3,p) are
equivalent to the following ones

(∂3EP−2∂3 + E)ρ = 2 i

p0
D(a)τ, (4)

(∂3M−1∂3 + M−1P2)τ =−2 ip0D(a)ρ, (5)

A3 = P−2∂3ρ, (6)

where

ρ ≡ ip1A1 + ip2A2, τ ≡ ip2A1 − ip1A2,

P ≡ F(κ1,κ2,κ3), κi ≡
√

p2
0εiμi − p2

1 − p2
2.

By definition the real part of κj is chosen to be nonnegative,
and if it vanishes, then κj = −i|κj |.

If in the Symanzik approach one takes into account polariza-
tion effects arising from the interaction of quantum fluctuations
of the fermion fields with the defect and electromagnetic field,
then with the accuracy sufficient for our problem, the constants
εi, μi, ai will be functions of p̄ in Eqs. (4)–(6). We assume
that these effective characteristics of real materials are used in
Eqs. (4)–(6) in the further calculations.

The fields ρ,τ are found from Eqs. (4) and (5). The
components A1, A2 of the vector-potential 
A are expressed
by ρ and τ ,

A1 =−i(ρ p1 + τ p2)p−2, A2 = i(τ p1 − ρ p2)p−2, (7)

where p2 = p2
1 + p2

2. The electromagnetic field 
A(x3,p̄) in the
considered medium is characterized by the mutually orthog-
onal vectors 
p‖ = (p1,p2,0), 
p⊥ = (p2, − p1,0), 
t = (0,0,1).
The vectors 
p‖, 
t define the plane of incidence. In virtue of
Eqs. (6) and (7), the vector potential 
A = (A1, A2, A3) can be
presented in the form 
A = 
A‖ + 
A⊥, where 
A‖ is parallel to
the plane of incidence, and 
A⊥ is perpendicular to it:


A‖(x3,p̄) = (−i 
p‖p−2 − 
t P−2∂3)ρ(x3,p̄), (8)


A⊥(x3,p̄) =−i 
p⊥p−2τ (x3,p̄). (9)

Since in our gauge 
E(p̄,x3) = −ip0 
A(p̄,x3), the field ρ(x3,p̄),
(τ (x3,p̄)) describe plane waves whose electric field vectors
are parallel (perpendicular) to the plane of incidence. Equa-
tions (4) and (5) show that the Chern-Simons defects mix
parallel and transverse components of the phonon field.

Let us introduce the notations f(x3) = (ρ(x3),τ (x3)) and
define

K =
(
EP−2 0

0 M−1

)
, C =

(
0 p−1

0−p0 0

)
,

Li =
(

ei 0
0 mi

)
, ei = εi

κi

, mi = κi

μi

, i = 1,2,3.

Then we can present Eqs. (4) and (5) in a compact form:

(∂3K∂3 + KP2)f = 2iD(a)Cf. (10)

We conclude that f is continuous at x3 = lj ,

fj (lj ) = fj+1(lj ), (11)

since a discontinuity would yield a δ′ function on the left-hand
side of Eq. (10), which is absent on the right-hand side. Due to
Eq. (7), A1,2 is continuous at the defects. Thus, the derivatives
∂0,1,2A1,2 are continuous, which implies the continuity of the
components E1,2 and B3.

Introducing f(x3) = F(f̌(x3)) with f̌(x3) =
(f1(x3),f2(x3),f3(x3)), we integrate Eq. (10) from x3 = lj − η

to x3 = lj + η with infinitesimal η:

Lj+1

κj+1
∂3fj+1(lj ) − Lj

κj

∂3fj (lj ) = 2iaj Cf(lj ). (12)

Within the layers x3 �= ±lj , Eq. (10) is written as (∂2
3 +

κ2
i )fi(x) = 0 and yields

fi = f+
i + f−

i , f±
i = (ρ±

i ,τ±
i ) = c±

i e∓iκix3 . (13)

For real κi the solution with the upper (lower) sign describes
a plane wave moving in positive (negative) x3-direction.

It follows from Eqs. (13), (8), and (9) that 
A = 
A+ + 
A−
and


A±
‖ (x3) =− i 
p ±

‖ ρ±(x3)

p2
, 
A±

⊥(x3) = − i 
p⊥τ±(x3)

p2
, (14)

with


p ±
‖ ≡ 
p‖ ∓ p2P−1
t, ( 
p ±

‖ )2 = P2
0P−2p2, (15)

P0 ≡ P|p1=p2=0 = p0F(n1,n2,n3), ni = √
εiμi. (16)

Since ∂3fj = iκj f̃j , where f̃j ≡ f−
j − f+

j , the condition
Eq. (12) can be written as

Lj+1 f̃j+1(lj ) − Lj f̃j (lj ) = 2aj Cfj (lj ), j = 1,2. (17)

These equations describe the discontinuity of the components
H1,2 of the magnetic field and D3 of the dielectric displacement
due to the currents ajJ

ν in Eq. (3):

D3,j+1 − D3,j =−ajJ
0
j = −2ajB3,j , (18)

H1,j+1 − H1,j =−ajJ
2
j = 2ajE1,j , (19)

H2,j+1 − H2,j = ajJ
1
j = 2ajE2,j . (20)

In order to solve Eqs. (11) and (17) it is convenient to
introduce the following 2 × 2 matrices:

Tαβ

j = 1 + αL−1
j+1(βLj − 2aj C), j = 1,2, α,β = ±1,

and four-component vectors Uj = (u+
j ,u−

j ), Vj = (v+
j ,v−

j )
with u±

j = f±
j (lj ), v±

j = f±
j+1(lj ). Then we obtain from

Eqs. (11), (13), and (17) the relations between the V and U by
means of the transfer matrices T :

Vj = Tj Uj , U2 = TlV1, V2 = T U1, T = T2TlT1,

Tl =
(

e−ilκ2 1 0
0 eilκ2 1

)
, Tj = 1

2

(
T++

j T+−
j

T−+
j T−−

j

)
.

One has for nonactive media (real ε, μ, and a)

Gj = T
†
j Gj+1Tj , T

†
l GjTl = Gj, T †G3T = G1,

U∗
1G1U1 = V∗

1G2V1 = U∗
2G2U2 = V∗

2G3V2. (21)
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Here †, ∗ denote the hermitian conjugation of the matrix and
the complex conjugation of the vector components,

Gj ≡
⎛
⎝

Reκj

|κj | gj
Imκj

|κj | gj

− Imκj

|κj | gj −Reκj

|κj | gj

⎞
⎠, gj ≡

(
p0ej 0

0 mj/p0

)
,

Reκj (Imκj ) is the real (imaginary) part of κj .
For a complete analysis of the propagation of waves in the

considered medium it is enough to assume that in the region
x3 > l/2 there are no waves moving in the negative direction
of x3 axis. This restriction obeys f−

3 (l/2) = v−
2 = 0, since for

real κ3, f−
3 (l/2) is the amplitude of the wave moving from x3 =

+∞ to the plane x3 = l/2, and for imaginary κ3 the field must
decay exponentially for x3 → +∞. Then V2 = T U1 yields

T−+u+
1 + T−−u−

1 = 0, v+
2 = T++u+

1 + T+−u−
1 , (22)

where T±± denote the corresponding 2 × 2—submatrices of
the 4 × 4—matrix T .

For real κ1 the amplitude of the incident wave propagating
in the region x3 < −l/2 in the positive x3 direction is
cin = c+

1 = u+
1 e−iκ1l/2. The amplitude of the reflected wave is

cr = c−
1 = u−

1 eiκ1l/2 and that of the transmitted wave is given
by ct = c+

3 = v+
2 eiκ3l/2 for real κ3. The amplitudes cr , ct are

obtained from Eq. (22):

cr =−eiκ1l(T−−)−1T−+cin, (23)

ct = ei(κ3+κ1)l/2[T++ − T+−(T−−)−1T−+]cin. (24)

If κ3 is imaginary, then cr yields again the amplitude of
the reflected wave (total reflection), whereas ct describes the
amplitude of the decaying wave.

If both κ1 and κ3 are imaginary, then the waves are totally
reflected at both x3 = ±l/2. The waves obey v−

2 = u+
1 = 0.

Then Eq. (22) can have a nonzero solution only if κ3 is
imaginary (since by Eq. (21), V∗

2G3V2 = U∗
1G1U1 = 0), and

det T−− = 0 with

T−− = 1
4 (T−+

2 e−iκ2lT+−
1 + T−−

2 e+iκ2lT−−
1 )

= 1
4 [T−−

2 (e2iκ2l1 − R2R1)e−iκ2lT−−
1 ], (25)

R2 =−(T−−
2 )−1T−+

2 , R1 = T+−
1 (T−−

1 )−1.

The matrices Rj describe the total reflection of the waves
coming from the center to lj , v+

1 = R1v−
1 , u−

2 = R2u+
2 . These

matrices differ by a similarity transformation from unitary
matrices Oj = g1/2

2 Rj g−1/2
2 . Thus, one obtains electromag-

netic waves propagating in layer 2 as soon as one of the two
eigenvalues eiφ of the unitary matrix O2O1 agrees with e2iκ2l .

If κj is real, then the functions f ±
j (x3)eip̄x̄ describe plane

waves propagating in the medium with constants εj , μj

in directions of vectors 
p ±
j = (p1,p2, ± κj ) with velocity

vj = cp0/| 
p ±
j | = c/nj . For the angle ϑj between 
pj and the

x3 axis, sin ϑj = p/| 
pj | = p/(p0nj ), and this equality yields
Snell’s law sin ϑj/ sin ϑk = nk/nj . The component v3±

j of

the wave front velocity vj is equal to v3±
j = ±vjκj/| 
p±

j | =
±cκj/(p0n

2
j ).

The electric field vector of the wave propagating in the
j th layer in the positive (negative) direction of the x3 axis

is 
E+
j = −ip0 
A+

j ( 
E−
j = −ip0 
A−

j ), and the corresponding

energy density is εj | 
E+
j |2 (εj | 
E−

j |2). The energy current
density propagating in the positive x3 direction is Ij = I+

j −
I−
j , I±

j = v3+
j εj | 
E±

j |2. In virtue of Eqs. (14)–(16),

I±
j = I±

ρj + I±
τj , I±

ρj = p3
0ej |ρ±

j |2
p2

, I±
τj = p0mj |τ±

j |2
p2

.

If we denote U3 ≡ V2, then Ij = p2U ∗
j GjUj/p

2
0. The energy

is conserved in the nonactive medium, therefore the quantity Ij

is independent of x3 and Ij = Ik (in agreement with Eq. (21)).
It follows from Eq. (21) that the energy current Ij vanishes
in case of total reflection, since V ∗

2 G3V2 = 0 by imaginary κ3

and v−
2 = 0.

If κj is imaginary, then, similarly as in a wave-guide, the
waves propagate in the j th layer parallel to the plane x3 = 0 in
direction of vector 
p‖. Due to the boundary conditions given
by the matrices Oi , the relation between ω and 
p‖ will be
changed.

IV. CONCLUSION

The Chern-Simons interaction at x3 = li does not change
Snell’s law. However, the reflection and transmission co-
efficients depend on the strengths ai of these interactions.
They lead to a mixing between the parallel and perpendicular
components of the electromagnetic waves and they change the
relation between frequency and wave vector for waves between
two totally reflecting media. Consequently, such interactions
will also modify the strength of the Casimir effect. A search
for surfaces and layers showing such a behavior is of particular
interest.

The electromagnetic polarization effects governed by the
defect action S	(A) are concentrated on the planes x3 = ±l/2.
Outside the planes x3 = ±l/2, Eq. (3) describe electromag-
netic waves with the usual dispersion relations, and the
polarization mixing is defined by the boundary condition
Eqs. (18)–(20).

In contrast, the Chern-Simons modification of the (3+1)-
dimensional Maxwell theory [19] generated by the translation
invariant action S(4)(A,p) yields circularly polarized plane
waves. There, the Chern-Simons term coupling is given by the
four-vector pμ. The plane waves with four-vector kμ obey the
dispersion relation (pμpμ)2 + (pμpμ)(kμkμ) − (kμpμ)2 = 0.
The velocity of the wave propagation depends on its polariza-
tion.

The presented results may be verified experimentally. In this
way, it is possible to determine the Chern-Simons permittivity
a(p̄). It has a simple physical meaning. Comparing Eq. (3)
with the usual inhomogeneous Maxwell equations in media,
we see that ji,k = −aiJ

k
i with i,k = 1,2 in Eqs. (19) and (20)

can be interpreted as components of currents 
ji = (ji,1,ji,2,0)
generated by the electric field 
Ei = (Ei,1,Ei,2,0) in the planes
x3 = li . It follows from Eqs. (19) and (20), ji,k = σi,k 1Ei,1 +
σi,k 2Ei,2 with σi,k l = −σi,lk , k,l = 1,2, and σi,12 = −2ai .

Thus, 
ji is the Hall current in the plane x3 = li
and the strength of the Chern-Simons interaction ai(p̄) =
σi,21/2 defines the Hall conductivity σi,kl . In SI units
σi,12 = −aie

2/(hα) with the fine structure constant α and
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h/e2 = RK = 25812,8...�. Note also that Eqs. (19) and (20)
can be considered as standard boundary conditions connecting
the magnetic field with the Hall current on the surfaces between
layers. It follows from Eq. (18) that the magnetic induction B3

in the considered processes generates a jump in the dielectric
displacement D3 on the boundaries of the layers. It can be
considered as a manifestation of the magnetoelectric effect.

In the framework of this approach, we have shown that our
two-dimensional material body interacting with an electro-
magnetic field has nonzero Hall conductivity. Using the results
of our calculations, it can be found by optical experiments. In
this way one can predict also the Casimir force, if as in the
case εi = μi = 1, with i = 1,2,3, its theoretical dependence
from the parameters of the model is known. It follows from the
above presented results that the Casimir force [10] between two
planes in vacuum with equal Hall conductivity σ12 is attractive,
if |σ12| > 2.065 and repulsive otherwise.

If the Chern-Simons permittivity of the plane depends on
the wave vector p̄, the result Eq. (2) obtained for constant
parameters ai needs to be corrected. The formalism [10] used
for calculation of FCas presented in Eq. (2) enables one to do it.
The problem is reduced to replacing ai → ai(p̄) in the photon
propagator, which is included in the integral over p̄ yielding
the Casimir energy. Corrections to the Casimir force obtained
in this way could be considered as contributions of van der
Waals forces between the planes analogous to those arising
between material slabs [7,23].

When a is finite, the Chern-Simons potential breaks the
time and space parity. It is the case also for the interaction of
photons with (2+1)-dimensional Dirac fields modeling two-
dimensional materials [25,26].

In this paper we have considered only the case of inactive
media (Imaj = Imεj = Imμj = 0). Using complex values
of the model parameters and also taking into account the
defect contribution of the (3+1)-dimensional Dirac field [24],
one can construct within the Symanzik approach in quan-
tum electrodynamics a model for a wide class of quantum
macroscopic phenomena in systems with two-dimensional
space inhomogeneities. In such models one can investigate the
Hall effect, plasmonics, nanophotonics, topological insulators,
properties of two-dimensional materials, doping, thin films,
and sharp interfaces.

One places high emphasis on these problems, and many
important results are obtained in the study of them [26,27]. The
comprehensive model, built within the proposed approach and
based on fundamental physical principles, seems to be suitable
for this research field. We expect that it provides an opportunity
to obtain more accurate quantitative results than those that have
been achieved to date by use of other theoretical assumptions.
An investigation of such models will enable us to understand
more deeply the relationship between different nanophysical
effects.
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APPENDIX: DETAILED RESULTS AND COMMENTS

We give an obvious form of matrices used in our calcula-
tions. They are functions of ě = (e1,e2,e3), m̌ = (m1,m2,m3)
and can be written as

M(ě,m̌) =
(

f (ě,m̌) g(ě,m̌)
−p2

0g(m̌,ě) f (m̌,ě)

)
. (A1)

Thus, M is completely defined by its elements {M}11 =
f (ě,m̌) and {M}12 = g(ě,m̌).

The matrices T±±
j and their inverses are given by

{
Tαβ

j

}
11 = 1 + αβ

ej

ej+1
,

{
Tαβ

j

}
12 = −α

2aj

ej+1p0
,

{(
Tαβ

j

)−1}
11 =

1 + αβ
mj

mj+1

det
(
Tαβ

j

) ,
{(

Tαβ

j

)−1}
12 =

α
2aj

ej+1p0

det
(
Tαβ

j

) ,

det
(
Tαβ

j

) = 4a2
j + (ej+1 + αβej )(mj+1 + αβmj )

ej+1mj+1
.

The matrices T±± satisfy

T±± = cos(κ2l)Z±±
1 + i sin(κ2l)Z±±

2 ,

{
Zαβ

1

}
11 = αβe1 + e3

2e3
,

{
Zαβ

1

}
12 = −α(a1 + a2)

e3p0
,

{
Zαβ

2

}
11 = 4αa1a2e2 − (

αe2
2 + βe1e3

)
m2

2e2m2e3
,

{
Zαβ

2

}
12 = αβa2e2m1 + a1e3m2

e2m2e3p0
, α,β = ±1.

The relation Eqs. (23) and (24) for the amplitudes ct , cr can
be written as cr = −eiκ1lTrcin, ct = ei(κ3+κ1)l/2Ttcin with

Tr = (T−−)−1T−+, Tt = T++ − T+−(T−−)−1T−+.

Using the notations

ϕ(a,b) = a cos(κ2l) + i b sin(κ2l),

ψ(a,b,c) = b(a + c) cos(κ2l) + i (ac + b2) sin(κ2l),

eα
i = ϕ(αe2,ei), m

β

i = ϕ(βm2,mi), ϕ
αβ

i = eα
i m

β

i ,

eα = ψ(e1,αe2,αe3), mβ = ψ(m1,βm2,βm3),

ψαβ = eαmβ, α,β = ±1,

one can write the matrices Tt , Tr in the following form:

{Tt }11 = 2e1[e2m
+ − 4i a1a2m2 sin(κ2l)]

z
,

{Tt }12 =−4m1(a2m2e
+
1 + a1e2m

+
3 )

p0z
,

{Tr}11 = 1

z

{
8a1a2e2m2 + ψ−+

+ 4
[
a2

1ϕ
++
3 − a2

2ϕ
−+
1 − 4a2

1a
2
2 sin2(κ2l)

]}
,

{Tr}12 = 4m1
{
a2e2m2 + a1

[
ϕ++

3 − 4a2
2 sin2(κ2l)

]}
p0z

,

where

z = 4e2m2e3m3 det T−− = ψ++ + 8a1a2e2m2

+ 4
[
a2

2ϕ
++
1 + a2

1ϕ
++
3 − 4a2

1a
2
2 sin2(κ2l)

]
.
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The reflection matrices Ri defined by Eq. (25) are

R1 = T+−
1 (T−−

1 )−1, R2 = −(T−−
2 )−1T−+

2 ,

{Ri}11 = − r−+
i

r++
i

, {Ri}12 = −4aim2

r++
i

,

r
αβ

1 = 4a2
1 + (e1 + αe2)(m1 + βm2),

r
αβ

2 = 4a2
2 + (e3 + αe2)(m3 + βm2), α,β = ±1.

Multiplication and the inverse of matrices of the form of
Eq. (A1) yield matrices of the same type. Because g2 does
not belong to this class of matrices, this is also the case for the
matrices Oj = g1/2

2 Rj g−1/2
2 :

Oj = − 1

r++
j

(
r−+
j 4aj

√
e2m2

−4aj

√
e2m2 r+−

j

)
. (A2)

The r±± obey

r+−
j r−+

j + 16a2
j e2m2 = r++

j r−−
j . (A3)

If a1, a2, e2,m2 are real, and e1, e3,m1,m3 are imaginary, then
(r−+)∗ = r+−, (r++)∗ = r−−, and it follows from Eqs. (A2)
and (A3) that the matrices O1, O2,O = O2O1 are unitary,
and

O = 1

R

(
P Q

−Q∗ P ∗

)
,

where

R = r++
1 r++

2 , P = r−+
1 r−+

2 − 16a1a2e2m2,

Q = 4
√

e2m2(a1r
−+
2 + a2r

+−
1 ), PP ∗ + QQ∗ = RR∗.

The eigenvalues λ1,2 of the matrix O read

λ1,2 = −P − P ∗ ±
√

(P − P ∗)2 − 4QQ∗

2R
= ei(ζ+η1,2),

tan(ζ ) =− ImR

ReR
, tan(η1,2) = ∓

√
(ImP )2 + |Q|2

ReP
.

They coincide for ImP = 0,Q = 0. In this case, η1,2 = 0,

r−+
2 = −a2

a1
r+−

1 , P = −a2

a1
r++

1 r−−
1 = P ∗.

The boundary condition Eqs. (18)–(20) can be proved
directly from Eqs. (6) and (7). Using the relations 
D =
ε 
E, 
B = μ 
H , 
E = −∂0 
A, 
B = 
∂ × 
A, p2 + κ2 = p2

0εμ and
notations ε/κ = e, κ/μ = m, we obtain D3 = −p0eρ̃,

H1 = p1mτ̃ − p2eρ̃p2
0

p2
, H2 = p1eρ̃p2

0 + p2mτ̃

p2
.

It follows from J ν = ε3νσρFσρ that J 0 = 2τ ,

J 1 = 2
p0(p1τ − p2ρ)

p2
, J 2 = 2

p0(p1ρ + p2τ )

p2
.

Thus, in virtue of Eq. (17), the equalities Eqs. (18)–(20) are
fulfilled.
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