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Exchange corrections in a low-temperature plasma
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We have studied the exchange corrections to linear electrostatic wave propagation in a plasma using a
quantum kinetic formalism. Specifically, we have considered the zero-temperature limit. In order to simplify
the calculations we have focused on the long-wavelength limit, i.e., wavelengths much longer than the de Broglie
wavelength. For the case of ion-acoustic waves we have calculated the exchange correction both to the damping
rate and the real part of the frequency. For Langmuir waves the frequency shift due to exchange effects is found.
Our results are compared with the frequency shifts deduced from commonly used exchange potentials which are
computed from density-functional theory.
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I. INTRODUCTION

Recently much work has been devoted to quantum plasmas,
see, e.g., the books and review articles [1–4]. The research
is motivated by an interest in, e.g., quantum wells [5],
spintronics [6], plasmonics [7], laser plasma interaction [8],
astrophysical applications [9], or general theory development
[10]. The theoretical descriptions range from hydrodynamical
equations (e.g., Refs. [1,4,11]) to quantum kinetic models (e.g.,
Refs. [3,10,12,13]) and field-theoretical approaches (e.g.,
Ref. [14]). Most models include the physical effects of
particle dispersion and Fermi pressure and, in some cases, the
magnetic dipole force and magnetization due to the electron
spin [10,12,15,16]. An important effect that is sometimes
accounted for (e.g., Refs. [11,17–23]) but often overlooked
is the exchange effects resulting from the total antisymmetry
of the electron wave function. A popular approach to in-
clude the effects of exchange interaction has been to apply
density-dependent potentials deduced from density-functional
theory (DFT) [11,19–22]. An advantage with this is that the
resulting fluid models becomes comparatively simple once
the exchange potentials are established. As a consequence,
problems involving both high-frequency dynamics [11,19] as
well as low-frequency (ion-acoustic) dynamics [19,20] can
be addressed in a straightforward way also for nonlinear
problems [19]. A drawback is that the calculation of DFT
potentials typically involve approximations [e.g., the local
density approximation (LDA)] whose accuracy can be hard to
estimate beforehand. Thus there is a general need to validate
results derived from DFT by independent methods.

In the present paper we calculate the exchange contribution
to the ion-acoustic dispersion relation using quantum kinetic
theory derived from first principles. Previous works along this
line [17,18] have assumed the ordering T � TF (where T

is the temperature and TF is the Fermi temperature), which
has prevented a direct comparison with results based on
DFT potentials that have considered the opposite ordering.
In this paper we focus on the low-temperature limit T � TF

and evaluate the exchange contribution to the ion-acoustic
dispersion relation in the Hartree-Fock approximation to first
order in perturbation theory. We deduce that the effects of
the exchange term is to increase the phase-velocity of the

ion-acoustic mode and to increase the linear damping rate
(which is due to wave-particle interaction). Moreover, as
a confirmation of the correctness of the quantum kinetic
formalism, we compare results from our quantum kinetic
formalism with previous results for the exchange contribution
of high-frequency Langmuir waves. In this latter case we
recover the results of Refs. [24–26] exactly within the outlined
approximation scheme.

Finally, we compare our findings with results based on
commonly used DFT potentials [11,19,20,22]. As the DFT
potentials are incorporated in a fluid formalism, no comparison
can be made for the damping due to wave-particle interaction.
In general, we find a qualitative agreement. In particular, the
frequency shift in the different formalisms has the same scaling
with the parameters (density and wave number) for both ion-
acoustic and Langmuir waves. However, there is a discrepancy
concerning a numerical factor. This is discussed in more detail
in the final section of the manuscript.

II. THE EXCHANGE CORRECTION AT T = 0 K

In a previous paper, Ref. [17], the exchange contribution
to the evolution equation of the Wigner function was derived
(see Eq. (7) of Ref. [17]). The correction was obtained by
writing down the first equation in the Bogoliubov-Born-Green-
Kirkwood-Yvon hierarchy and writing the two-particle density
matrix as an antisymmetric product of one-particle density ma-
trices. The treatment was here limited to electrostatic fields. For
a generalization allowing for electromagnetic fields, see Ref.
[18]. Equation (7) of Ref. [17] was further simplified by con-
sidering a plasma without spin polarization and summing over
all spin states, and also by taking the long scale limit (where
the macroscopic scale length is assumed to be much longer
than the de Broglie wavelength). The long scale assumption
implies that the Wigner function reduces to the Vlasov limit,
in which case the Wigner function becomes similar to a
classical distribution function. This means that the evolution
equation reduces to the Vlasov equation with a correction
term due to the exchange effects. The resulting expression
(Eq. (12) of Ref. [17]) with the exchange correction written
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in the right-hand side reads
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Here f denotes the electron distribution function; E is the electrical field; −e and me are the electron charge and mass,
respectively, and h = 2π� is Planck’s constant and we use x and r for position vectors and p and q for momentum vectors.
Furthermore, ∂i

x ≡ ∂/∂xi and analogously for ∂i
p and ∂i

r . An arrow above an operator indicates in which direction it acts. We
have also used the summation convention so a sum over indices occurring twice in a term is understood. Finally, V (r) =
e2/4πε0|r| is the Coulomb potential. Here we will use Eq. (1) to consider linear wave propagation treating the exchange
term on the right-hand side perturbatively. Thus we linearize Eq. (1) and make a plane-wave ansatz Ez = E exp(−iωt + ikz),
f (x,p,t) = f0(p) + f1 exp(−iωt + ikz).

To first order in a long-wavelength expansion, the linearized version of Eq. (1) then reduces to

−i
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Previously the correction to the dispersion relations for ion acoustic waves (see Ref. [17]) and for Langmuir waves (see Ref. [18])
has been found considering a Maxwellian background by making the approximation f1 ≈ f̃1 in the exchange term. The symbol
f̃1 = qE/[i(ω − kpz/me)]∂f0/∂pz denotes the solution when exchange effects are neglected.

Here we will study the same problems but for the case when T = 0 K. As we will demonstrate the problem is analytically
tractable due to the simple form of the background distribution function f0 which is now given by

f0(p) =
{

2/(2π�)3, |p| � pF

0, |p| > pF ,
(3)

where pF = �(3π2n0)1/3 is the Fermi momentum (we will also use the notation vF = pF /me for the electron Fermi velocity
below) and n0 is the equilibrium electron number density. In particular, taking f1 = f̃1 in the exchange term, combining Eqs. (2)
and (3) with Poisson’s equation, and computing the ion charge density classically we obtain

1 = χ0 + χ1, (4)

where

χ0 = ω2
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is the combined ion and electron susceptibility in the absence of exchange effects. Here we have neglected a contribution from
a small but finite ion Fermi velocity (i.e., we have used that vFi � ω/k). In the expression above ωe and ωi denote the electron
and ion plasma frequency, respectively. The exchange correction is given by

χ1 = − q4k

8π6ε2
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By changing integration variables to u1 = p + q, u2 = p − q, with the Jacobian equal to 1/8, we can use the properties
of the Dirac δ functions to reduce the problem to an integral over two spheres. Introducing spherical coordinates
ui = ui(cos ϕi sin θi, sin ϕi sin θi, cos θi), we explicitly get χ1 = m2

eq
4I ′/8π6ε2

0k
2
�

4 with I ′ given by
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where ψ is the angle between u1 and u2 and α = ω/(kvF) is the dimensionless phase velocity. By the spherical law of
cosines cos ψ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2). By changing variables to ϕ1,ϕ̃ = ϕ1 − ϕ2, the ϕ1 integral is trivial.
The ϕ̃ integral then can be performed, giving a factor π/(a2 − b2)1/2, where a = 1 − cos θ1 cos θ2 and b = sin θ1 sin θ2. Since
a2 − b2 = (cos θ1 − cos θ2)2, we have that I ′ = −2−1π2I , where I is the double integral

I =
∫ 1

−1
dx
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. (9)
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At this point, no approximations have been made beyond those
leading to the evolution equation (2), taking f1 = f̃1, and
T = 0 K. For these approximations the exchange correction is
therefore proportional to (9) for all frequency regimes. Thus
Poisson’s equation, with exchange corrections, is

1 = χ0 − 9ω4
e�

2

16k2m2
ev

6
F

I. (10)

where χ0 is given by Eq. (5). From now on we must treat
the low-frequency ion-acoustic case separately from the high-
frequency Langmuir case in order to simplify the expression
for I .

A. Ion-acoustic waves

The integral I can be evaluated analytically in terms
of α with computer algebra software. We will consider
the quasineutral limit (ω � ωi) where the left-hand side of
Eq. (10) is negligible. For ion-acoustic waves we can then
make the approximation that α = √

me/(3mi) when solving
the integral (9). It is also possible to plug in the value of α and
evaluate the integral numerically. The dispersion relation for
ion-acoustic waves with exchange corrections is then

ω2 = α2k2v2
F

[
1 − �

2ω2
e
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ev

4
F

(14.9 + 7.11i)

]
. (11)

To the best of our knowledge this result has not been derived
before.

B. Langmuir waves

In the high-frequency regime ω/k � vF , an expansion of
I in powers of vF k/ω can be made. With the lowest order
nonvanishing correction, the dispersion relation in this regime
is

ω2 = ω2
e + 3

5
v2

F k2 − 3�
2ω2

ek
2

20m2
ev

2
F

. (12)

This is in exact agreement with previous calculations using
several different methods, see Refs. [24–26].

III. DFT COMPARISON

Equation (9) together with the specific results (11) and (12)
are the main results of the present paper. The exact agreement
of (12) with previous results also confirms the validity of
(9). A strength of the quantum kinetic formalism is that it
follows from first principles and that it can address wave
particle interaction, such as the enhanced Landau damping
rate found in Eq. (11). However, a drawback is that the
formalism is difficult to use for more complicated problems.
Thus there is a need to develop theories that are easier to apply
in a more general context. One such possibility is offered
by DFT. A commonly used exchange potential (see, e.g.,
Refs. [11,19,20,22]) computed from DFT is

Vx = 0.985(3π2)2/3

4π

�
2ω2

e

mev
2
F

(
n

n0

)1/3

, (13)

which has been used for low-frequency ion-acoustic phenom-
ena (e.g., Refs. [19,20]) as well as high-frequency Langmuir

waves (e.g., Refs. [11,19]). Including the contribution from
Eq. (13) in the electron momentum equation (see, e.g.,
Ref. [11]) and treating the term as a small perturbation
when calculating the ion-acoustic dispersion relation, we
get a qualitative agreement with Eq. (11). In particular the
ion-acoustic frequency is decreased and this change scale as
�

2ω2
e/m2

ev
4
F , in accordance with (11). The numerical value

of the frequency shift deviates rather significantly from our
result, however. We note that if we make the adjustment
0.985 → 6.52 of the numerical prefactor in (13) we would
get agreement with the real part of the frequency in Eq. (11).
Here we stress that the wave damping cannot be compared
with the DFT formalism, as this requires a quantum kinetic
framework.

The same comparison can be made in the high-frequency
regime. Thus we again include the contribution from (13) in
the electron momentum equation, calculating the frequency
shift of the Langmuir dispersion relation. Also here we
have qualitative agreement, i.e., the Langmuir frequency
increases proportionally to k2, and the scaling with density
is in accordance with the factor �

2ω2
e/m2

ev
4
F . This time the

numerical accuracy is better, although not perfect, and we
need to make a less significant substitution of the numerical
factor in Eq. (13), 0.985 → 1.23 in order to get agreement
with our result (12). Thus we conclude that the DFT exchange
potential Eq. (13) is in qualitative agreement with the results
obtained here, but that the numerical accuracy is better for
Langmuir waves than for ion-acoustic waves.

IV. SUMMARY AND CONCLUSION

In the present paper we have computed the exchange
contribution to the ion-acoustic dispersion relation in a plasma
using a quantum kinetic formalism. The validity of our
approach was confirmed by comparison with similar results
for high-frequency Langmuir waves [24,25], in which case we
get exact agreement for the exchange correction. This is to be
expected, as our formalism as well as that of Refs. [24,25] is
based on first principles. While the quantum kinetic formalism
is of fundamental importance, it has the drawback of producing
complicated formulas [cf. Eq. (1)] that can be solved only
perturbatively. In fact, even a perturbative treatment is far
from straightforward. Thus there is a need for a formalism that
can be used in more complex situations. Such a possibility is
offered by DFT, where the resulting exchange potentials can be
used in fluid theories and straightforwardly applied to a number
of linear and nonlinear problems [11,19,20,22]. However,
as the computation of DFT potentials typically involves
approximations [e.g., the local density approximation (LDA)]
whose accuracy is unknown, there is a need to evaluate DFT
potentials against independent methods. A key motivation in
the present paper has been to evaluate the DFT potentials
used in Refs. [11,19,20,22] against the quantum kinetic
results computed in our formalism. This comparison reveals
that there is a reasonable qualitative agreement. In both
cases the relative magnitude of the exchange term scales as
�

2ω2
e/m2

ev
4
F , and both the Langmuir and ion-acoustic wave

frequencies decrease due to the exchange interaction, in
agreement with Eqs. (11) and (12). The numerical value of
this frequency shift differ somewhat, however. To some extent
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this can be fixed by replacing the numerical prefactor in the
exchange potential. If this approach is chosen, we note that
different substitutions must be used for low-frequency and
high-frequency phenomena (i.e., 0.985 → 6.52 in the former
case and 0.985 → 1.23 in the latter case). It is an open question
to what extent this result is robust (i.e., whether the same
numerical coefficient is a good approximation for different
problems at a given frequency scale) or if more advanced
expressions for the exchange potentials are needed to cover a
broad spectrum of problems.

The fact that there is not a perfect agreement between
the DFT exchange potential and the quantum kinetic theory
should not be overly surprising. The DFT potentials used
in Refs. [11,19,20,22] have not necessarily been optimized
for the situation we have been studying. In our case the
fields dynamically vary (such that time-dependent density-
functional theory applies), and the system is weakly collisional
such that the collision-free Vlasov equation holds to leading

order. The systems of relevance for the present study generally
include plasmas with a high density and a modest temperature
T � TF . In a laboratory context this applies to, e.g., solid-state
plasmas and inertial confinement fusion plasmas before the
heating stage, and in an astrophysical context this include,
e.g., white dwarf stars. In that case the perturbed distribution
function will be comparatively far from thermodynamic
equilibrium, and approaches which do not include the full
quantum kinetic details run the risk of losing information.
Nevertheless, an approach based on density-functional theory
is a valuable option, in particular for problems where the
approach used here becomes too complicated.
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