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Capillary flow enhancement in rectangular polymer microchannels with a deformable wall
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We report the capillary flow enhancement in rectangular polymer microchannels, when one of the channel walls
is a deformable polymer membrane. We provide detailed insight into the physics of elastocapillary interaction
between the capillary flow and elastic membrane, which leads to significant improvements in capillary flow
performance. As liquid flows by capillary action in such channels, the deformable wall deflects inwards due to
the Young-Laplace pressure drop across the liquid meniscus. This, in turn, decreases the radius of curvature of
the meniscus and increases the driving capillary pressure. A theoretical model is proposed to predict the resultant
increase in filling speed and rise height, respectively, in deformable horizontal and vertical microchannels having
large aspect ratios. A non-dimensional parameter J , which represents the ratio of the capillary force to the
mechanical restoring force, is identified to quantify the elastocapillary effects in terms of the improvement
in filling speed (for J > 0.238) and the condition for channel collapse (J > 1). The theoretical predictions
show good agreement with experimental data obtained using deformable rectangular poly(dimethylsiloxane)
microchannels. Both model predictions and experimental data show that over 15% improvement in the Washburn
coefficient in horizontal channels, and over 30% improvement in capillary rise height in vertical channels, are
possible prior to channel collapse. The proposed technique of using deformable membranes as channel walls is
a viable method for capillary flow enhancement in microfluidic devices.
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I. INTRODUCTION

Surface tension forces can have significant influence on
liquid flow at micrometer length scales typically encountered
in microfluidic devices. The ingress of liquid into fine tubes and
porous solids, and the rise of liquids in vertical capillary tubes,
are common examples of flows driven by surface tension. The
capillary action of liquids can be used as a passive method
of driving fluid flow in microfluidic devices, without external
pumps or actuators [1], and the dynamics of capillary flow in
rigid horizontal channels and vertical tubes is well investigated
in literature [2–4]. Surface tension and capillary pressure dif-
ference across menisci can also be sufficiently strong to deform
elastic microstructures; such elastocapillary mechanisms are
responsible for the coalescence of wet hair [5], tarsal adhesion
that helps beetles cling strongly to surfaces [6], the stiction,
collapse, and sometimes failure of flexible micromachined
structures after wet-etching process [7], and the collapse of
liquid-filled carbon nanotubes [8] and deformable microchan-
nels [9]. The elastocapillary rise of liquids between parallel
walls, one or both of which are flexible, has been reported
and studied in literature [10]. Elastocapillary interactions can
also cause buckling and collapse in flexible tubes dipped
vertically into a wetting liquid [11]. Elastocapillary filling
of silicon nanochannels was studied using a simple model
and experiments [9]. However, the model provided limited
theoretical insight into the fundamental physical mechanisms
that underly the elastocapillary interaction; it does not predict
the conditions for improvement in filling speed or channel
collapse, which are critical in fully contemplating the process.

Here we attempt to derive, from first principles, a detailed
theoretical model for the capillary filling of deformable
horizontal microchannels, and extend the theory to predict
capillary rise height in deformable vertical microchannels. The
liquid advancing in a rectangular microchannel by capillary
action is below ambient pressure due to the capillary pressure

drop across the curved liquid meniscus. If one of the channel
walls is deformable, it deflects inwards due to the difference in
pressure between the liquid within the channel and the ambient
air outside. This decreases the radius of curvature of the
meniscus and, in accordance to the Young-Laplace equation,
increases the driving capillary pressure; consequently, capil-
lary flow in a deformable channel is improved in comparison
to a rigid channel. We show that the effect of wall compliance
on capillary flow is fully quantified by a non-dimensional
parameter J that represents the ratio of surface tension to
wall rigidity. The theoretical results are then validated using
experimental data obtained from microchannels fabricated in
polydimethylsiloxane (PDMS) polymer.

II. THEORETICAL MODEL

A. Deflection of the compliant wall

We consider a thin, rectangular polymer membrane of
width w, length L, and thickness t , forming one wall of a
rectangular microchannel as shown in Fig. 1(a). Let E and ν

denote, respectively, its Young’s modulus and Poisson’s ratio.
The edges y = ±w/2 are considered built in. The liquid (gage)
pressure −p(x) acts transversely on the membrane, causing
a deflection ω(x,y). Assuming the pure bending theory for
thin plates gives a reasonable approximation to the actual
deflection, we write

∂4ω

∂x4
+ 2

∂4ω

∂x2∂y2
+ ∂4ω

∂y4
= −p(x)

D
, (1)

where D = Et3/12(1 − ν2) is the flexural rigidity of the mem-
brane [12]. To non-dimensionalize the equation, we set x ′ =
x/L, y ′ = y/w, ω′ = ω/δ̂ and p′(x ′) = p(x)w4/δ̂D, δ̂ being
the maximum membrane deflection. The non-dimensional
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FIG. 1. Capillary flow in a deformable channel and the coordinate
system used for theoretical analysis. (a) Top view of deformable
membrane wall; (b) Side view of liquid advancing in a deformable
channel, and deflection profile of the membrane wall; and (c) Cross
sectional view of deformed channel.

form (with primes dropped for clarity) reads

ε4 ∂4ω

∂x4
+ 2ε2 ∂4ω

∂x2∂y2
+ ∂4ω

∂y4
= −p(x). (2)

In the above equation, ε = w/L is the ratio of membrane width
to channel length, and is usually much less than 1. We may
therefore neglect the terms involving ε4 and ε2, provided the
deflection varies gradually with x and y. Integration of this
simplified equation, with appropriate boundary conditions at
the built-in edges, yields the deflection profile

ω(x,y) = δ(x)

[
4
( y

w

)2
− 1

]2

, (3)

where

δ(x) = ω(x,0) = −αp(x)w4

D
(4)

is the maximum deflection at a given x, which occurs at the
centerline y = 0. The constant α determines the magnitude of
deflection and has the value 1/384.

The pressure −p(x) acting on the membrane is maximum
just behind the meniscus, and decreases in magnitude further
upstream along the channel. Downstream of the meniscus, the
channel is yet to be filled by the liquid and is occupied by air
at ambient pressure. Across the meniscus, therefore, the net
load impressed on the membrane drops to zero. The maximum
deflection δ̂ occurs at a location x = x̂, a short distance behind
the meniscus at x = x∗, as shown in Fig. 1(b). Beyond x̂,
the membrane quickly relaxes back to zero deflection and
Eq. (4) is not valid for x > x̂. The deflection at the meniscus
δ∗ is consequently less than the maximum deflection δ̂; our

numerical simulations of membrane deflection showed that
δ∗ = δ̂/2 to a very good approximation, in agreement with the
assumption in [9]. Further, the change in liquid pressure over
the short distance from x̂ to x∗ is neglected, so that p(x∗) =
p(x̂) = −p0.

B. Capillary pressure in a deformed channel

The deflection of the membrane wall reduces the radius
of curvature of the liquid meniscus and increases the Young-
Laplace pressure drop across the liquid-air interface. Let w

and h denote the width and height of the undeformed channel
cross section. Due to membrane deflection, the height at the
center of the channel at the meniscus is reduced from h to
h − δ∗. We approximate the increased pressure drop across
the meniscus by

p0 = 2σ cos θ

(
1

w
+ 1

h − δ∗

)
, (5)

where σ and θ are, respectively, the surface tension of the
wetting liquid and its contact angle with the channel walls. Let
a = w/h be the aspect ratio of the channel, and ξ ∗ = δ∗/h

be the non-dimensional deflection at the meniscus. For large
aspect ratio channels, (1/a) << 1 and hence

p0 = 2σ cos θ

h

(
1

a
+ 1

1 − ξ ∗

)
≈ 2σ cos θ

h(1 − ξ ∗)
. (6)

From Eq. (4),

p0 = −p(x̂) = δ̂D

αw4
= 2δ∗D

αw4
= 2ξ ∗Dh

αw4
(7)

since δ̂ = 2δ∗. Equating the two expressions for p0 gives

ξ̂ = 2ξ ∗ = 1 − √
1 − J , (8)

where ξ̂ = δ̂/h, and the parameter J is defined as

J = 4αw4σ cos θ

Dh2
, (9)

The non-dimensional parameter J represents the ratio of the
capillary force 2aσ cos θ dx to the mechanical restoring force
at 50% membrane deflection (D/2αaw2) dx. For J > 1, there
is no real solution for ξ ∗; the membrane in this case is too
compliant and collapses under capillary pressure. If we define
the elastocapillary length λ as

√
D/σ cos θ [13], then J can

be expressed in terms of the ratio h/λ and the aspect ratio a as
J = 4αa4(h/λ)2. Henceforth, we find that the effects of wall
compliance appear in theoretical expressions solely in terms
of the parameter J .

C. Flow resistance of the deformed channel

The inward deflection of the membrane increases the
viscous pressure loss in the deformed channel. Consider the
cross section at an arbitrary point x, as shown in Fig. 1(c); we
assume the velocity profile v = u(y,z)ex to be fully developed
and the pressure p(x) to be constant at this section, and use
the Poiseuille equation,

μ

(
∂2u

∂y2
+ ∂2u

∂z2

)
= ∂p

∂x
, (10)
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where μ is the dynamic viscosity of the (Newtonian) liquid
[14]. If Q is the total volumetric flow rate, U0 = Q/wh gives
a suitable velocity scale for the problem. We change variables
to Y = y/w, Z = z/h and U = u/U0, and get

1

a2

∂2U

∂Y 2
+ ∂2U

∂Z2
= wh3

μQ

∂p

∂x
= P (constant). (11)

We restrict ourselves to large aspect ratio channels, and drop
the term involving 1/a2. From Eq. (3), we see that the height
of the channel varies along the width as H (Y ) = 1 − ξ (4Y 2 −
1)2, where H (Y ) = h(y)/h and ξ = δ(x)/h. Along with no-
slip boundary conditions at the bottom (Z = 0) and top [Z =
H (Y )] walls, Eq. (11) yields the velocity profile

U (Y,Z) = 1
2PZ[Z − H (Y )]. (12)

The form of non-dimensionalization requires that∫∫
dY dZ U (Y,Z) = 1, (13)

from which we obtain the hydraulic resistance per unit length
of the deformed cross section to be

R|| = 1

Q

(
−∂p

∂x

)
= 12μ

wh3

1

s(ξ )
, (14)

where

s(ξ ) = 1 − 8ξ

5
+ 128ξ 2

105
− 1024ξ 3

3003
. (15)

The velocity in Eq. (12) is non-zero at the side walls
Y = ±1/2; Eq. (14) therefore underpredicts the hydraulic
resistance. To correct for this inaccuracy, we include the factor
β = 1 − (0.630/a), as is done in the case of a rectangular
channel approximated as two parallel plates [14]:

R = R||
β

= 12μ

βwh3

1

s(ξ )
. (16)

The cross-sectional area of the channel at the meniscus is also
reduced; the new area of cross section at the meniscus location
is given by A∗ = wh
, where


 =
∫∫

1 dY dZ

∣∣∣∣
x=x∗

= 1 − 8ξ ∗

15
= 1 − 4ξ̂

15
. (17)

D. Capillary filling of a horizontal channel

Consider a horizontal microchannel with a deformable
membrane wall and both ends open to the atmosphere, as
shown in Fig. 1(b). If a small quantity of liquid is introduced at
one end, the liquid front advances into the channel by capillary
action, and continues downstream as long as channel length
is available for wetting. For simplicity, we assume the flow
to be quasi-steady and fully developed at all instants of time.
Neglecting entrance losses, p(x = 0) = 0, where x = 0 at the
channel inlet. Differentiating Eq. (4) gives

−dp

dx
= Dh

αw4

dξ

dx
, (18)

for 0 � x � x̂. From Eq. (16), we also have

−dp

dx
= RQ(t) = 12μ

βwh3

Q(t)

s(ξ )
, (19)

Q(t) being the instantaneous flow rate. We equate the two and
integrate [15] from x = 0 to x̂ and get

12αμw3

βDh4
Q(t) x̂(t) = S, (20)

where

S = ξ̂

(
1 − 4ξ̂

5
+ 128ξ̂ 2

315
− 256ξ̂ 3

3003

)
. (21)

We now write

Q(t) = A∗ d

dt
x∗(t) ≈ A∗ d

dt
x̂(t) (22)

and use this in Eq. (20) to get

x̂
dx̂

dt
= W 2

d

2
, (23)

where the “modified” Washburn coefficient Wd for a de-
formable channel is given by

Wd =
√

βSDh3

6α
μw4
. (24)

Let x̂ = 0 at t = t0. Equation (23) on integration gives

x∗(t) = Wd

√
t − t0, (25)

where we have taken x∗ ≈ x̂. We thus recover the Lucas-
Washburn behavior [2,16] as in the case of a rigid channel, but
with a different value of the Washburn coefficient. For a rigid
rectangular channel, the Washburn coefficient can be shown
to be given by

Wr =
√

hβσ cos θ

3μ
, (26)

as derived in sources such as [14,16]. Therefore, we get

Wd

Wr

=
√

2S

J

. (27)

FIG. 2. Theoretical curves for Wd/Wr as a function of a and
different values of h/λ, computed from Eq. (27); the collapse line
corresponds to J = 1 at which Wd/Wr attains a maximum value of
1.192.
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FIG. 3. Relative improvement in rise height r as a function of a

and different values of h/λ, as predicted by Eq. (30).

The capillary filling speed is improved due to the presence
of the compliant membrane wall if Wd/Wr > 1; using Eq. (8),
this translates to the condition J > 0.238. We also observe
that Wd/Wr attains a maximum of 1.192 at J = 1, which
corresponds to a 19.2% increase in the Washburn coefficient
over that of a rigid channel. The value of Wd/Wr , as predicted
by Eq. (27), is plotted Fig. 2 as a function of the aspect ratio a

for four different values of h/λ.

E. Capillary rise in a vertical channel

Now consider a microchannel held vertically with its lower
end dipped in a sump of wetting liquid, and its upper end open
to ambient air. The liquid will rise in the channel by capillary
action until hydrostatic equilibrium is attained at a finite height
above the liquid level in the reservoir. In a deformable channel,
the capillary pressure, and hence the rise height, increases due
to the deflection of the membrane wall. Let x∗

r and x∗ be,
respectively, the rise height (measured from the free liquid
surface) of the same liquid in rigid and deformable channels
of identical dimensions. Then from Eq. (5), we can write

r = x∗ − x∗
r

x∗
r

=
(

1

h − δ∗ − 1

h

)/(
1

w
+ 1

h

)
(28)

since the rise height is proportional to the capillary pressure
drop across the meniscus. Simplifying, we get

r = a

1 + a

ξ ∗

1 − ξ ∗ . (29)

Using Eq. (8) gives

r = a

1 + a

(
1 − √

1 − J

1 + √
1 − J

)
. (30)

The relative improvement r in rise height, as given by the
above equation, is plotted in Fig. 3 as a function of the aspect
ratio a, for four different values of the ratio h/λ.

III. EXPERIMENTAL RESULTS

For experimental studies, straight rectangular microchan-
nels were fabricated in PDMS polymer (Sylgard 184, Dow
Corning) by conventional soft lithography process [17]. Thin
membranes were made by spin coating the prepolymer on a
plexiglass backing plate and baking in an oven; these were
later bonded to the channels after oxygen-plasma exposure
to form the compliant wall. The channels so obtained had a
uniform rectangular cross section of height 0.1 mm, width in
the range of 0.6 mm to 1.3 mm, and a deformable membrane
wall 30–40 μm thick, as seen in Fig. 4(a). They were used at
least 6 to 8 h after the plasma bonding process, to allow time
for the wall surface properties to stabilize.

To measure the filling speed of liquids in horizontal
channels, the device was mounted horizontally on the stage
of an inverted light microscope (Axio Vert. A1, Zeiss) and
a drop of the wetting liquid, about 0.1 mL, was placed on
the inlet port using a micropipette. As the liquid filled the
channel, the motion of the meniscus was recorded using
an attached high-speed camera (Photron Fastcam SA3). The
meniscus location x∗ as a function of time t was obtained
by post-processing the recorded video; the error in position
and time measurements were, respectively, ±0.250 mm and
±0.004 s. The Washburn coefficient Wf was subsequently
computed by fitting Eq. (25) to the data using least-squares
method. For measuring the rise height in vertical channels,
the devices were kept vertically with the lower end dipped
into a petri dish containing the wetting liquid. The meniscus
position and the free liquid surface in the reservoir were then
photographed against the scale engraved beside the channel,

FIG. 4. (a) Optical micrograph of the cross section of a deformable channel fabricated in PDMS, measuring 0.790 mm × 0.093 mm with a
0.031 mm membrane wall. (b) and (c) Meniscus shape in identical rigid and deformable channels. (d) Fluorescence micrograph and intensity
data showing membrane deflection.
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FIG. 5. Experimental (filled diamonds with error bars) and
theoretical (solid line) values of Wd/Wr for the filling of propan-2-ol
in horizontal deformable microchannels of height 0.1 mm, and various
aspect ratios. The theoretical curve and the experimental data agree,
with h/λ = 0.0808; membrane collapse is predicted for a > 11.01.

using a USB microscope (Dino-Lite AM4113ZT); the rise
height was found as the difference between these two liquid
levels, to within an error of ±0.500 mm. The measurements
were made about 30 min after the channel was lowered into
the liquid, to allow adequate time for the liquid meniscus to
reach its equilibrium height.

An increase in Washburn coefficient (over the theoretically
expected value in an identical rigid channel) was observed
in deformable horizontal channels, reaching (15.7 ± 1.3)%
at an aspect ratio of 11. From Fig. 5, we see that Eq. (27)
correctly predicts the increase in Wd/Wr ; in particular, the
theoretical model gives a maximum increase of 19.2% at
J = 1, which is well supported by experimental observations.
The inward deflection of the compliant wall was separately
confirmed by analyzing fluorescence micrographs of a dye
solution (Rhodamine B in propan-2-ol) filling the deformable
channels [18]. The channel height, and hence the height of
the liquid layer within, varies along the width of the channel
as a result of the wall deflection; the fluorescence intensity
varies proportionately along the channel width, as seen in
Fig. 4(d). The inward deflection of the membrane also causes
the meniscus to present a concave-convex profile when viewed
from above, with a central liquid “finger” [19]; the difference in
meniscus shape in rigid and deformable channels was clearly
visible during experiments, as seen in Figs. 4(b) and 4(c).

The capillary rise height in vertical deformable channels
also showed significant improvement in comparison to the
theoretically expected value in rigid channels of identical
dimensions, approaching (32.5 ± 1.2)% at an aspect ratio
of 10. The relative increase r in rise height agrees well
with Eq. (30), as seen in Fig. 6. The channels with a = 11
and 13 provided negative values of r; during experiments,
the membrane wall of these channels had visibly collapsed.
We believe that the negative value of r post-collapse is
because the liquid rises extremely slowly due to the very high
flow resistance of the collapsed channel; the meniscus might
not have attained equilibrium even after 30 min, when the
measurements were made.

FIG. 6. Experimental (filled diamonds with error bars) and
theoretical (solid line) relative increase in capillary rise height r of
propane-1,2-diol in vertical deformable microchannels. The theoret-
ical curve closely follows the experimental data with h/λ = 0.0856,
and membrane collapse is predicted for a > 10.7.

IV. CONCLUSION

The theoretical model presented above provides a detailed
insight into the fundamental physics of elastocapillary flow in
deformable microchannels. The liquid advancing by capillary
action is below ambient pressure due to the Young-Laplace
pressure drop across the liquid meniscus. The inward deflec-
tion of the deformable wall, caused by this pressure difference,
reduces the radius of curvature of the meniscus and increases
the driving capillary pressure, thereby improving the filling
speed and rise height in deformable microchannels. The
non-dimensional parameter J , defined in Eq. (9), appears
as a significant parameter in quantifying this elastocapillary
interaction in channels of large aspect ratios; the conditions for
wall collapse and improvement in filling speed were seen to be,
respectively, J > 1 and J > 0.238. The parameter J is itself
a function of the non-dimensional ratios h/λ and a = w/h;
consequently, the relative increase in the Washburn coefficient
and rise height in deformable channels depends solely on
these two variables. In a deformable horizontal channel, the
maximum value of the Washburn coefficient, which occurs
just prior to membrane collapse, is seen to be 1.192 times the
value in an identical, rigid channel, which represents a 19.2%
improvement in filling speed. The theoretical predictions are
in good agreement with experimental results obtained from
PDMS microchannels; improvements of over 15% and 30%,
respectively, in filling speed and rise height were predicted
in deformable channels prior to collapse, and verified using
experiments. These results clearly indicate that the technique
of using compliant membranes as channel walls is indeed a
viable method of enhancing capillary flow in passive microflu-
idic devices, including “lab on a chip” or μ-TAS devices where
faster response and reduced cycle times are desired.
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