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Marangoni convection in a thin film on a vertically oscillating plate
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Thermocapillary (Marangoni) convection in a thin film on a plate oscillating with a frequency ranging from
ultralow to high is considered. By adjusting the vibration amplitude, the impact of the vibration is kept non-
negligible. Using the long-wave approximation framework, the amplitude equations are derived for each frequency
interval, and linear and weakly nonlinear stability analyses are performed, supplemented by computations where
necessary. In the case of a high vibration frequency, the surface tension effectively increases due to vibration, but
the film still ruptures. When the frequency is ultralow, the vibration provides gravity modulation, and the surface
deformation emerges subcritically, grows fast, and then decays, all during less than half of the vibration period.
In the intermediate regime, the vibration either results in a short-wavelength instability or it does not affect the
Marangoni convection.
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I. INTRODUCTION

The stability and dynamics of thin liquid films subject
to external forcing continues to attract research efforts [1,2].
Some of the most important factors influencing the dynamics
are vibration [3,4], heating [5,6], the surface properties of
a substrate or interface [7,8], liquid properties [9,10], or
combinations of these effects [11,12].

Use of the long-wave approximation to study thin films
is justified by the fact that ordinarily the unperturbed film
thickness H0 is much less than its lateral scale � or the surface
wavelength λ, e.g., ε = H0/� � 1 [1,2]. For vibrated films,
there are three basic approaches to the derivation of the model
nonlinear dynamics equations [4]:

(i) The dimensionless vibration frequency � is small, e.g.,
� ∼ ε [13,14]. In this case, the linear and nonlinear terms
of a single evolution equation for the film thickness h are
time-dependent.

(ii) When � is O(1), e.g., it is finite [15–17], one obtains
a single autonomous nonlinear equation that describes the
averaged dynamics of h in slow time. The key idea of
separating the dynamics into slow and fast scales and the
general discussion of the averaging methods can be found
in Refs. [11,25,30].

(iii) Using the lubrication approximation [2,4,18,19] at the
Reynolds numbers Re � 1 and retaining the inertial terms
leads to several evolution equations. Most often, two equations
emerge, i.e., for the film thickness and for the volumetric flow
velocity [4,18,19].

Let us review in more detail the case (iii) above in
application to the Faraday instability on the surface of a
horizontal film; see, for instance, Refs. [20–25]. Faraday
instability (also termed parametric instability) possesses two
important characteristics: (i) fluid viscosity is important, and
(ii) for a laterally infinite system, the critical wavelength
λF does not exceed H0. Because of the latter characteristic,
Faraday instability can be classified as short-wave.

In Refs. [18,19], the authors used the expansion in small
parameters ε and Re = ωH 2

0 /ν, where ω is the vibration
frequency and ν is the kinematic viscosity; since Re � 1,

ω � ν/H 2
0 . The linear stability analysis within this approach

gives the Mathieu equation with a dissipation term, and thus it
allows one to apply the Floquet theory to study the stability of
the time-periodic basic states and also the resonant regimes.
The authors considered perturbations of H0 that are ∼eikx ,
where x is the horizontal coordinate, thus the perturbation
wavelength λ ∼ �, which implies λ � H0 and the instability is
long-wave. However, in the numerical solutions of the Mathieu
equation and in the experiments [26] (to which the authors of
Refs. [18,19] compare their results), the critical wavelength
is much smaller than the film thickness, and Re ∼ O(1), e.g.,
ω ∼ ν/H 2

0 . In addition, these authors do not compare their
results to the numerical results of more traditional approaches,
such as that in Ref. [24].

The authors of Ref. [4] employ the long-wave approxima-
tion coupled with the Karman-Pohlhausen approximation (the
boundary integral method); the latter is routinely applied in
studies of falling films [2,27,28]. This allows one to retain the
inertial terms alongside viscous terms in the evolution equation
for h. They scale the velocity by some characteristic vertical
velocity V0, the horizontal coordinate by �, and the vertical
coordinate by H0, all along assuming ε = H0/� � 1 (the
lubrication approximation). Also, the perturbation wavelength
λ ∼ �, the amplitude of the vertical vibration b ∼ H0, and
Re = V0H0/ν is either small or finite [∼ε or ∼O(1)]. The au-
thors recognize that due to the introduction of the parameter V0,
the problem loses consistency, e.g., there are more parameters
than necessary, and to regain the latter they rely on the relation
Re� = ωH 2

0 /ν. Thus the dimensionless frequency � ∼ 1/Re
is large (when ω ∼ ν/H 2

0 ). If one uses instead viscous units
to make the problem dimensionless, as in Refs. [15,24], then
the problem is consistent, and the inertial and viscous terms
are of the same order at the vibration amplitude b ∼ �2/H0

(the frequency ω ∼ ν/H 2
0 and the vertical velocity component

V0 ∼ ν/H0), and thus the dimensionless vibration amplitude
∼1/ε2.

Summarizing the above discussion, in Refs. [4,18,19]
the simultaneous use of the long-wave and the lubrication
approximations gives rise to a contradiction: the formal long-
wave instability λ ∼ � is applied to a short-wave Faraday
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instability λF � H0. In doing this, the vibration frequency
is considered large, e.g., Re = ωH 2

0 /ν ∼ 1.
For isothermal liquid films, the typical long-wave in-

stability is Rayleigh-Taylor, which emerges in two-layer
systems [1,3,25,29]. Theoretical [25] and experimental [29]
investigations of the damping of the Rayleigh-Taylor insta-
bility by a vertical high-frequency vibration were performed.
Also linear analysis of long-wave instability at a moderate
vibration frequency and the averaged description at high
frequency are conducted in Ref. [3]. In the case of interest
for Refs. [4,15,18,19], above the film there is a vacuum
or the low-density gas layer, thus the Rayleigh-Taylor in-
stability does not emerge. However, in the nonisothermal
situation, long-wave instability can emerge easily—this is
the thermocapillary (Marangoni) instability [1,31,32]. The
averaged dynamical description of a nonisothermal case is
developed in Ref. [31], similarly to Ref. [3] for the isothermal
case. In that article, a detailed investigation of the amplitude
equation with the Marangoni effect is also presented, however
short-wave Faraday instability is absent (the only active modes
are long-wave).

The authors of Ref. [23] studied the interaction of
Marangoni convection and Faraday waves in an infinitely
deep fluid layer with a thermally insulated free surface.
They considered the case of small viscosity, high vibration
frequency, and heating on the side of the free surface. However,
they noted that when heating is from the bulk fluid side,
long-wave instability emerges, which can be stabilized by a
vertical vibration analogously to the case of Rayleigh-Taylor
instability.

In this paper, we plan to consider long-wave Marangoni
convection in a liquid film on a vertically vibrated plate. In
this system, both long-wave Marangoni instability and short-
wave Faraday instability can emerge. Our aim is to extend
our theory of averaged fluid motion in vibrated, isothermal,
ultrathin films [15,16]. In Ref. [15], a vertical vibration is
considered; the conventional small-amplitude, high-frequency
approximation of the averaged dynamics is revised due to the
number of time and length scales inherent to the ultrathin-film
system. In particular, (i) the vibration amplitude b has to be
large in comparison to the mean layer thickness H0 in order
to provide a finite effect on the film dynamics (see the above
discussion of Ref. [4]), whereas (ii) the vibration frequency ω

may be of the order of the inverse time of the momentum
equilibration across the layer, ω ∼ ν/H 2

0 . In contrast, for
the longitudinal and tilted vibration [16], the amplitude
should be comparable to H0; therefore, the longitudinal
component prevails except for the case of an almost normal
vibration.

Operating in a single unified framework, our treatment
relies on a consistent asymptotic expansion (see Refs. [15,16])
within the long-wave approximation, which clearly separates
the Marangoni and the Faraday instabilities. The interaction
of the two instabilities is briefly discussed in Appendix. The
main focus in the paper is on the Marangoni instability.

The paper is organized as follows. In Sec. II we formulate
the problem. The averaged description is stated and the film
dynamics is studied in Sec. III. Also in that section, the
reduction to the two well-known limits of Marangoni and
Faraday instability is presented. For ultralow frequencies, the
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FIG. 1. Problem geometry.

corresponding amplitude equation is derived and the dynamics
is studied in Sec. IV. The switching between these cases is
analyzed in Sec. V via the development of the intermediate
asymptotic. In Sec. VI, we present a summary of the results
and concluding remarks.

II. PROBLEM STATEMENT

We consider a three-dimensional (3D) thin liquid film
of unperturbed height H0 on top of a planar horizontal
plate heated from below (Fig. 1). The plate is at a constant
temperature � (measured from the temperature of the ambient
gas), and it is subject to the vertical harmonic vibration of the
amplitude b and the frequency ω. The film height is assumed
sufficiently small, so that the conventional averaging procedure
fails and the approach developed in Refs. [15,16] should be
applied.

We use H 2
0 /ν,H0, ν/H0, ρν2/H 2

0 , and � as the units for the
time, length, velocity, pressure, and temperature, respectively.
(Here ν is the kinematic viscosity and ρ is the density of the
liquid.) The Cartesian reference frame is chosen such that the x

and y axes are in the plane of the plate and the z axis is normal
to this plane. The dimensionless boundary-value problem takes
the form

∇ · v = 0, (1a)

vt + v · ∇v =−∇p + ∇2v (1b)

−(G0 + B�2 cos �t)ez, (1c)

P (Tt + v · ∇T ) = ∇2T , (1d)

z = 0: v = 0, T = 1, (1e)

z = h: ht + u · ∇h = w, (1f)

n · σ = −CaKn − M∇τ (T |z=h), (1g)

∇nT = −BiT . (1h)

Here, v = (u,w) is the fluid velocity (where u is the velocity
in the plane of an oscillating plate and w is the component
normal to the plate), T is the temperature, p is the pressure
in the liquid, σ = ∇v + (∇v)T − p I is the stress tensor (the
superscript T denotes transposed tensor, and I is the identity
tensor), h(x,y,t) is the dimensionless height of the film, ez is
the unit vector directed upward, n = (ez − ∇h)/

√
1 + (∇h)2

is the normal unit vector to the free surface, τ is the tangent
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vector, and K = ∇ · n is the mean curvature of the free surface.
The problem is characterized by the following dimensionless
parameters:

Ca = σ0H0

ρν2
, M = −σT �H0

ρν2
, G0 = g0H

3
0

ν2
,

B = b

H0
, � = ωH 2

0

ν
, Bi = qH0

κ
, P = ν

χ
, (2)

which are the capillary number, the Marangoni number, the
Galileo number, the amplitude and frequency of the vibration,
the Biot number, and the Prandtl number, respectively. Here σ0

is the surface tension, σT ≡ dσ0/dT , q is the heat transfer rate,
κ is the thermal conductivity, and χ is the thermal diffusivity
of a liquid.

We assume that the capillary number is large, so that
C = ε2Ca is O(1). The stretched horizontal coordinates
(X,Y ) = ε(x,y) and the time scale t2 = ε2t , which are conven-
tional for the long-wave Marangoni convection in this case, are
also introduced. In what follows, we omit the subscripts “2”
for t2 and the two-dimensional gradient operator with respect
to X and Y . We will present an analysis of a wide range of
the vibration frequency �, adjusting the amplitude B in such a
way that the vibration effect is comparable to other important
effects (the surface tension damping, thermocapillary, etc.).
Any assumptions for other parameters are not required. Three
frequency domains featuring qualitatively different dynamics
are discussed below:

(i) High vibration frequency: � = O(1), when the averag-
ing technique can be applied; see Sec. III.

(ii) Ultralow vibration frequency: � = O(ε2), when the
vibration modulates the gravity; see Sec. IV.

(iii) Low vibration frequency: ε2 � � � 1, which matches
the asymptotics (i) and (ii); see Sec. V.

III. HIGH VIBRATION FREQUENCY: � = O(1)

In this section, we consider the case of finite frequency,
� = O(1). Therefore, the vibration period is comparable to
the characteristic time of the momentum transfer across the
layer, but it is small compared to the typical time of the
film evolution. This calls for the application of the averaging
technique, even though the conventional restriction inherent
in the high-frequency approximation (� � 1) does not hold.
To guarantee that the vibration effect is finite, we assume the
vibration amplitude to be large, B = B1/ε, where B1 = O(1).

A. The amplitude equation

Derivation of the amplitude equation in the case of the
above-stated conditions is straightforward [1,15,16,33], thus
we omit the details. The equation reads

ht = ∇ ·
[
h3

3
∇� − MBi h2∇h

2(1 + Bi h)2 − B2
1�2

2
Q

]
, (3a)

� = G0h − C∇2h − B2
1�2

2
∇(frh∇h), (3b)

Q = Q1h
2(∇h)2∇h + h3[Q21∇2h∇h + Q22∇h · ∇∇h],

(3c)

where

Q1 = 3(2g1 − γg2)

γ 2(cosh γ + cos γ )2
, (4a)

Q21 = 6q1 − 2q2, Q22 = 5q1 − q2 − 1

3
, (4b)

fr = 1 − sinh γ + sin γ

γ (cosh γ + cos γ )
, (4c)

g1 ≡ sinh γ sin γ, g2 ≡ sinh γ cos γ + sin γ cosh γ, (4d)

q1 = sinh γ − sin γ

γ 3(cosh γ + cos γ )
, q2 = cosh γ − cos γ

γ 2(cosh γ + cos γ )
,

(4e)

γ =
√

2�h. (4f)

Here h is the film thickness averaged over the fast time;
it depends only on the slow time t . Equation (3a) is the
conventional Kopbosynov-Pukhnachev equation [1,33] with
the additional vibration-induced terms [15,16].

In the limiting case � � 1, the oscillatory flow is inviscid;
also, the standard averaging technique is applicable. In this
limit, Eq. (3a) reduces to Eq. (3.22) from Ref. [31]. In the
opposite limiting case, � � 1, the auxiliary functions fr , Q1,
Q21, and Q22 simplify to the powers of h, and Q, � in Eq. (3a)
take the form

Q = 2�2h6

315
[h(∇2h∇h + 9∇h ·∇∇h) − 21(∇h)2∇h], (5a)

� = G0h − C∇2h − B2
1�4

15
∇ · (h5∇h). (5b)

B. Vibration influence on the linear stability
and nonlinear dynamics of the film

The linear stability analysis within Eq. (3a) results in the
following dispersion relation:

λ =−k2

[
1

3
G0 + 1

3
k2

(
C + 1

2
B2

1�2fr (γ0)

)
− MBi

2(1 + Bi)2

]
,

(6a)

γ0 =
√

2�, (6b)

which couples the growth rate λ and the wave number k of
a perturbation. As is seen from Eq. (6a), within the linear
stability problem the vibration only effectively increases the
surface tension.

The stability boundary (λ = 0) is determined by the relation

M0 = 2(1 + Bi)2

3 Bi

[
G0 + k2

(
C + 1

2
B2

1�2fr (γ0)

)]
. (7)

Obviously, the critical perturbations are long-wave, with k = 0;
this mode is insensitive to the vibration. For a confined system
with a discrete spectrum of k, the vibration leads to layer
stabilization. The growth rate Eq. (6a) and the neutral curve
Eq. (7) at B1 = 0 are well-known for the “pure” long-wave
Marangoni convection (without the vibration effect [1,33,34]).
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At a small supercriticality, M = M0 + δ2M2, the amplitude
of the stationary solution is

a2 = −KaM2. (8)

We do not present here the cumbersome Landau coefficient
Ka . If one introduces the potential V in a similar fashion to
Ref. [35] [see Eq. (3.24) therein], then in the limit V = 0
the Landau coefficient coincides with the value in that paper.
Moreover, again similar to Ref. [35], Ka is positive in the entire
parameter domain, i.e., the subcritical bifurcation occurs even
in the presence of the vibration.

This growth of a small perturbation does not end in
saturation, and the rupture occurs along with the formation
of a fractal structure, described in Ref. [36]. The evolution of
the near-ruptured film is unaffected by the vibration. Indeed,
for small h, γ is also small and the vibration-induced terms
are given by Eqs. (5). These terms are very small (at least of
the order h6) in comparison with the contributions from the
capillarity and thermocapillarity.

To summarize this section, we note that (i) the vibration
stabilizes the film, (ii) the subcritical excitation emerges for
any B1, and (iii) the rupture is not affected by the vibration.

IV. ULTRALOW VIBRATION FREQUENCY: � = O(ε2)

In the limit of ultralow frequency, � = ε2�2 with
�2 =O(1), the typical time of the oscillations becomes
comparable to the time of the surface evolution. Therefore,
the averaging technique used in the previous section is not
applicable. In fact, the only effect of the vibration in this case
is the gravity modulation within the conventional Kopbosynov-
Pukhnachev equation [1,33]:

ht = ∇ ·
[
h3

3
∇�2 − MBi h2∇h

2(1 + Bi h)2

]
, (9a)

�2 = G(t)h − C∇2h, (9b)

where G(t) = G0 + B4�
2
2 cos �2t is the modulated gravity

and B4 = Bε4. Hence, the amplitude of the ultralow frequency
vibration has to be large, O(ε−4), in order to provide a finite
acceleration; notice that this is three orders of magnitude larger
than in the previously considered case of a high vibration
frequency.

It can be easily shown that the vibration does not change
the stability boundary within the Floquet theory (the asymp-
totic criterion). Indeed, the linearized equation (9a) can be
integrated exactly; the perturbation to the flat surface h0 = 1
is proportional to exp[ikX + φ(t)], with φ(t) given by

φ(t) = λ0t − k2 B4�2

3
sin �2t, (10)

λ0 = −k2

[
G0 + Ck2

3
− MBi

2(1 + Bi)2

]
. (11)

In the vein of the Floquet theory, the growth/decay of the
perturbations is determined only by the sign of λ0; hence, the
stability boundary is given by Eq. (7) at B1 = 0, or

M
(asy)
0 = 2(1 + Bi)2

3 Bi
(G0 + Ck2). (12)

FIG. 2. (Color online) Evolution of the maximum and minimum
film thickness h(X) within Eq. (9a); MB = MBi = 7, G0 = 10,
C = 1, k = 1.1, B4 = 7, and �2 = 2. The inset shows the film profile
at the three time moments marked by the vertical dashed lines.

The vibration results simply in the time-periodic modulation
of this decaying/growing perturbation.

However, in the case of low frequency considered here,
the Floquet theory, being the asymptotic criterion, often
overestimates the stability threshold [37–40]. In contrast,
the empirical criterion, which operates with the growth rate
obtained directly from Eq. (9a), results in the underestimated
stability threshold [assuming the minimum value, G0 − B4�

2
2,

of G(t) over the vibration period]. The stability boundary
within this criterion is given by

M
(emp)
0 = 2(1 + Bi)2

3 Bi

(
G0 − B4�

2
2 + Ck2

)
. (13)

Next we describe the computations of the film thickness.
We set C = 1, which can be achieved by the appropriate
rescaling of the horizontal length scale. The computations are
performed for a finite domain with the boundary conditions
hX = hXXX = 0 at X = 0 and X = π/k. For simplicity,
we deal with the limiting case Bi � 1, M � 1, whereas
MBi = MB is kept finite. The computations show that a high
amplitude surface deformation can emerge from the limit
cycle subcritically; the excitation first occurs at the Marangoni
number satisfying M

(emp)
0 < M < M

(asy)
0 . Typical examples

of such limit cycles are presented in Figs. 2 and 3. In both
cases, the disturbance emerges, grows fast, and then decays
during less than a half-period; although the excitation period
resembles a homoclinic cycle, the oscillation is strictly periodic
in time with the period 2π/�.

In Fig. 2, the Marangoni number is less than M
(asy)
0 , which

is suggestive of the subcritical (noise-induced) excitation. In
this example, the “wave number” of the pattern remains fixed
during the period; the film distortion always contains three
half-waves, as seen in the inset. For larger M , the pattern
changes during the excitation period: initially the disturbance
contains three half-waves [see Fig. 3(b)], but after some
rearrangement only one half-wave survives [see Fig. 3(c)].
Also it is important that M = 8 is larger than M

(asy)
0 ; in the

absence of vibration, the thin film is unstable at this value of M
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FIG. 3. (Color online) Dynamics of the film thickness within
Eq. (9a); MB = MBi = 8, G0 = 10, C = 1, k = 1.1, B4 = 7, and
�2 = 2. (a) Evolution of the maximum and minimum of h(X); (b,c)
Film profiles for the six time moments marked by the vertical dashed
lines in panel (a). Notice that min(h) ≈ 0.006 > 0 on the time interval
shown, thus the film does not rupture.

and the instability leads to the layer rupture [35,36,41,42].
Therefore, although the vibration makes the flat film unstable
at smaller values of M [see Eq. (13)], it also stabilizes the
moving film against rupture, which can be important for many
microfluidic applications.

Detailed computations not presented here indicate that the
characteristics of the stable limit cycle vary substantially as
the amplitude and frequency of the vibration change. There
are several bifurcations that result in a multistability domain
and the dependence of the final state on the initial conditions.
However, a detailed discussion of these limit cycles is beyond
the scope of this paper.

To summarize this section, we note that (i) the gravity
is modulated at ultralow frequency, (ii) the linear stability
is affected by vibration, and (iii) the limit cycle emerges
subcritically at large B4�

2
2.

V. INTERMEDIATE ASYMPTOTICS AT LOW VIBRATION
FREQUENCY: ε2 � � � 1

In this section, we trace the intermediate asymptotics
mediating (i) the averaged model, Eq. (3a), with (ii) the
excitation at ultralow frequency, Eq. (9a).

Detailed analysis shows that the intermediate asymptotics
with

B = Bi/ε
1+3β/2, � = �iε

β, (14)

where 0 < β < 2 (thus ε2 � � � 1), is special in the sense
that small B values produce a small effect on the film dynamics,
whereas larger values lead to vibration-induced instability, as
we explain below.

Within the scaling given by Eq. (14), the averaged dynamics
of the layer thickness is governed by the conventional
Kopbosynov-Pukhnachev amplitude equation; see Eq. (3a)
at B1 = 0 or Eq. (9a) in the absence of gravity modulation,
B4 = 0. Therefore, the vibration does not influence the slow
convective motion even at large Bi .

However, one can employ another scaling of the time and
space coordinates, viz.,

t̄ = εβt, ξ = εαx,

where still 0 < β < 2 and 1/2 < α = (2 + β)/4 < 1
[compare to the standard long-wave scaling t2 = ε2t, (X,Y ) =
ε(x,y) that was used to arrive at Eqs. (3a) and (9a)]. The new
scaling corresponds to short waves, as follows from ξ , and as
a result the effect of the vibration is retained. The amplitude
equation in this case reads

∂t̄hs = 1
3∂ξ

[
h3

s ∂ξ

(
Bi�

2
i cos �it̄hs − C∂2

ξ hs

)]
. (15)

Notice that Eq. (15) is the limiting case M = G0 = 0 of
Eq. (9a).

Again, the vibration does not lead to instability within the
Floquet theory (the asymptotic criterion) applied to Eq. (15),
but instability does occur within the empirical criterion. An
example of a noise-induced finite-amplitude regime is shown
in Fig. 4; it is qualitatively similar to the oscillations shown in
Fig. 3. Subcritical excitation takes place if Bi exceeds a certain
value B∗, which depends on the problem parameters, the length
of the computational domain, and, generally speaking, the
initial conditions.

To summarize, at ε2 � � � 1 the vibration either does not
have an impact on the long-wave Marangoni convection, or it
leads to a nonlinear excitation of the regime with a shorter
wavelength and faster characteristic time scale. The matching

FIG. 4. (Color online) Dynamics of the film thickness within
Eq. (15); C = 1, k = 1.1, Bi = 5, and �i = 2. (a) Evolution of the
maximum and minimum of hs(X); (b,c) the film profiles for the six
time moments marked by the vertical dashed lines in panel (a).
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of the intermediate asymptotics to the averaged description is
provided by the limit B1 → 0,� → 0 within Eq. (3a) and by
the limit β → 0 within Eq. (14). In the opposite limit, β → 2,
the difference between hs and h disappears (since ξ = X at
β = 2) and the “averaged” (Kopbosynov-Pukhnachev) and
“oscillatory” (hs) effects are simply combined in a single
equation. This leads to Eq. (9a).

VI. CONCLUSION

We studied the stability and dynamics of a thin liquid film
on top of a heated, vertically vibrating substrate. A wide
interval of the vibration frequency ω is considered, from
the high (such that the Stokes layer is thin in comparison
to the mean film thickness) to the ultralow (such that the
vibration period is comparable to the typical time τ of
the layer thickness relaxation). Three frequency regimes are
analyzed: (i) high frequency [ωτ � 1 or � = O(1)], when
the averaging technique is applied; (ii) ultralow frequency
[ωτ = O(1) or � = O(ε2)], when the vibration results only
in a gravity modulation; and (iii) the intermediate regime, in
which the asymptotics (i) and (ii) are matched. In case (i),
the conventional Kopbosynov–Pukhnachev equation [1,33]
holds with the additional vibration-generated terms. Linear
analysis reveals long-wave instability with the critical wave
number k = 0, which is insensitive to vibration. Weakly
nonlinear analysis shows the film rupture. In case (ii), both
the asymptotic and empirical expressions for the stability
boundary are derived, and the subcritical excitation of the finite
surface deformation is numerically determined. In regime (iii),
the vibration either does not have an impact on the long-wave
Marangoni convection, or it leads to a nonlinear excitation of
the regime with a shorter wavelength and a faster characteristic
time scale.

It is well known that the vertical vibration may result in the
Faraday instability of a free surface [1,2,24]. Therefore, there
are two competitive instability mechanisms: the Marangoni
convection and the Faraday instability. For clarity, we display
both stability boundaries in Fig. 5. The details on how this
sketch was obtained can be found in Appendix.

When the vibration amplitude B is increased, the vibra-
tional Marangoni instability studied in this paper will occur
prior to the Faraday instability, since the boundaries of domains
(i)–(iii) are below the line demarcating Faraday instability.
However, since the boundaries of domains (i) and (iv) are
close to the boundary of the Faraday instability, it follows that a
high-frequency vibration suppresses the Marangoni instability
and gives rise to the Faraday instability.

Finally, we emphasize that a high vibration frequency
�= ωH 2

0 /ν � 1 is considered in Refs. [4,18,19] (or equiv-
alently, Re� = ωH 2

0 /ν � 1 in terms of Ref. [4] and Re =
ωH 2

0 /ν � 1 in terms of Refs. [18,19]). Thus the results
obtained by these authors are not in doubt even when the
long-wave instability is present [see domains (i) and (iv) in
Fig. 5]. However, at a low frequency � � 1 (Re � 1), the
long-wave instability emerges first [see domains (ii) and (iii)
in Fig. 5] and thus in this case the approach of Refs. [4,18,19]
should be used with caution.

FIG. 5. (Color online) Sketch of the amplitude-frequency
variation ln B(ln �). The dashed line corresponds to the vibration
impact on the Marangoni convection: the averaged description within
Eq. (3a) is valid in domain (i); the ultralow frequency equation (9a)
applies in domain (ii); the intermediate asymptotics, Eqs. (14)
and (15), applies in domain (iii). Domain (iv) corresponds to the
high-frequency approximation within the averaged description; see
Ref. [31]. The dashed line should be thought of as a stripe, where the
corresponding amplitude equations hold. The solid line represents
the boundary of the Faraday instability; see Appendix. The film is
unstable above the line.
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APPENDIX: INTERACTION OF PARAMETRIC
INSTABILITY WITH MARANGONI CONVECTION

A complete analysis of Faraday instability in thin
films was performed by Mancebo and Vega (MV) [24],
who classified all regimes according to the parameters

CMV = ν/

√
gH 3

0 + σH0/ρ, SMV = σ/(σ + ρgH0), and

ωMV = ω

√
ρH 3

0 /(ρgH 2
0 + σ ) (Cg , S, and ω in the notation

of Ref. [24], respectively). With our scalings, CMV = ε/
√

C,
SMV = 1 − ε2G0/C, and ωMV = ε�/

√
C, thus either

case B.1.2 (the long-wave limit, finite �) or B.1.3 (the
small-frequency limit, � � 1) is operative.

According to Ref. [24], in case B.1.2 the critical wave
number is given by

k̃ = k√
1 − SMV + CMV

= kC1/4

√
ε

.

Thus the wavelength of the critical perturbations, O(ε−1/2), is
small compared to the typical convective length scale O(ε−1).
A similar situation occurs for the typical time scales: the
characteristic time scale is given by t̃ = CMV

√
Cat∗ = O(1)

(thus the rescaled frequency ω̃ coincides with �), which is
much smaller than the typical time scale of the Marangoni
convection, t = O(ε−2).
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Intuitively, it seems plausible that the processes that
operate on such different time and length scales do not
interact. Formally, this can be proved using the idea of frozen
coefficients. To prevent the excitation of the Faraday waves,
one only has to ensure that the stability conditions found by
Mancebo and Vega are valid at any moment and at any point
within the layer. Therefore, for our purposes, the parameters
introduced in Ref. [24] must be stated using the local thickness
H0h instead of the mean thickness H0.

It follows that the stability condition

ãω̃2 < Ac(ω̃), (A1)

where ã = CMVa = B1/
√

C is the rescaled vibration ampli-
tude, is restated as follows:

B1√
Ch3/2

�2h4 = B1�
2

√
C

h5/2 < Ac(�h2). (A2)

The function Ac is given in Fig. 4 of Ref. [24]; the case that we
consider corresponds to γ = (1 − SMV)/CMV ∼ ε � 1, thus
the curve for γ = 0 is needed. In case B.1.3 [24], the small-
frequency limit is ωMV � CMV, or our rescaled limit is � � 1.
Accounting for the scaling factors, we arrive at the sketch,
shown in Fig. 5, for the critical value of the amplitude.
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