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Acceleration of raindrop formation due to the tangling-clustering instability in a turbulent
stratified atmosphere
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Condensation of water vapor on active cloud condensation nuclei produces micron-size water droplets. To
form rain, they must grow rapidly into at least 50- to 100-μm droplets. Observations show that this process
takes only 15–20 min. The unexplained physical mechanism of such fast growth is crucial for understanding
and modeling of rain and known as “condensation-coalescence bottleneck in rain formation.” We show that the
recently discovered phenomenon of the tangling clustering instability of small droplets in temperature-stratified
turbulence [Phys. Fluids 25, 085104 (2013)] results in the formation of droplet clusters with drastically increased
droplet number densities. The mechanism of the tangling clustering instability is much more effective than the
previously considered by us the inertial clustering instability caused by the centrifugal effect of turbulent vortices.
This is the reason of strong enhancement of the collision-coalescence rate inside the clusters. The mean-field
theory of the droplet growth developed in this study can be useful for explanation of the observed fast growth of
cloud droplets in warm clouds from the initial 1-μm-size droplets to 40- to 50-μm-size droplets within 15–20 min.

DOI: 10.1103/PhysRevE.92.013012 PACS number(s): 47.27.tb, 47.55.Hd

I. INTRODUCTION

When an ascending parcel of moist air reaches the conden-
sation level, an initial mist of small, micron-size water droplets
is formed, which are suspended in the air. In the supersaturated
environment water droplets grow due to condensation of water
vapor from the surrounding atmosphere. However, to form the
raindrops, which can fall down, triggering rain, they must grow
to about 50-μm-size droplets, which would take a very long
time. Observations indicate that the average time for rainfall
initiation is approximately 15–20 min, while existing theories
predict that the duration of a time interval required for droplets
to grow up to 50 μm in radius is of the order of hours (see,
e.g., reviews in Refs. [1–3] and references therein). Indeed,
although the actual time to form large droplets depends on the
initial droplet size spectrum and cloud water content (see, e.g.,
[4]), the predicted growth time differs considerably from the
observations.

Initiation of rain in turbulent clouds comprises three stages.
The first stage involves condensation of water vapor on cloud
condensation nuclei (CCN; typically having a size of the order
of 0.05 μm) and formation of small micron-size droplets. At
the next stage, droplets grow efficiently through condensation
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and diffusion of water vapor and may attain radii of about
10 μm. It is generally believed that droplets having radii
larger than 50 μm fall out of the cloud due to gravitational
sedimentation and continue to grow in size mainly through
gravitational collisions into rain droplets with the size of the
order of 80–100 μm. Understanding a mechanism of rapid
growth of initially small droplets to the size of the order
of 50 μm when gravitational collision-coalescence becomes
effective is still poorly understood and remains a subject of
active research (see, e.g., Refs. [1–3]). Identifying mechanisms
of rapid growth of cloud droplets and determining the growth
rate, i.e., theoretical explanation of the “size gap or the
condensation-coalescence bottleneck in warm rain formation”
[3] is one of the major challenges in cloud physics.

Observations show the existence of strong turbulence
in clouds. Different mechanisms have been suggested and
different aspects of turbulence effects on the growth of cloud
droplets have been considered to explain the rapid formation
of rain droplets in clouds [3]. These mechanisms involve,
e.g., effects of giant aerosol particles for faster formation
of large cloud droplets, thereby initiating coalescence sooner
[5], and droplet spectra broadening under conditions of water
vapor supersaturation [6–8]. Numerous theoretical, numerical,
and experimental studies have used different approaches and
models to investigate the effects of atmospheric turbulence on
growth of cloud droplets by collision-coalescence and forma-
tion of rain droplets (see Refs. [1–3], and references therein).

Most of the studies have focused on amplification of the
fall velocity of cloud droplets in turbulent atmosphere and
turbulence induced increase of the droplet collision kernel. Air
turbulence can enhance droplet coalescence rate by increasing
the relative velocity of droplets due to differential acceleration
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and enhance collision kernel of cloud droplets. For example,
when the dissipation rate of turbulence is increased from
100 to 400 cm2 s−3, the droplet coalescence rate (between
droplets with the sizes 18 and 20 μm) increases by a factor
of 3.5 [9]. The increase of droplet relative velocity and local
accumulation of inertial droplets near the periphery of turbu-
lent eddies due to centrifugal effect can increase the droplet
collision rate (see, e.g., Refs. [1,9–25]). Numerical simulations
showed that due to the effect of preferential concentration of
inertial particles in turbulent flows their settling rate is about
20% larger than the terminal fall velocity in the quiescent
atmosphere (see, e.g., Refs. [1,10,14,15,18,20,21,26]). This
list of references is obviously not complete because the
topic is a subject of intense ongoing research and has
attracted the attention of numerous researchers (see, e.g.,
Refs. [2,3]).

Accurate modeling of droplet collision-coalescence is
important because collisions strongly affect droplet size,
velocity distributions, and dispersion of droplets [27]. Droplet
collisions may have numerous outcomes—the droplets might
smoothly merge with little deformation, bounce off each
other, coalesce following large deformation, or separate after
temporarily coalescing. Many of the used droplet interaction
models assume that droplet velocities before collisions are not
correlated. However, this assumption is violated in turbulent
flows. Indeed, small droplets have low inertia and follow
almost the same trajectories as fluid particles and, therefore,
their precollision velocities are strongly correlated with the
velocity of a carrying fluid [28]. Many of the studies focused
on collisions between identical droplets whereby the collision
outcome depends on the impact parameter and the ratio of
kinetic energy to surface tension. It was demonstrated that
size disparity can significantly increase the parameter range
over which droplets permanently coalesce [29].

Dynamics and interactions of liquid droplets, and their col-
lisions, coalescence, and bouncing, become more significant
with an increase of their size and are encountered in many
naturally occurring phenomena and industrial applications,
including rain initiation and combustion. Nevertheless, the
collision rate for typical droplet number densities in clouds is
too far from being sufficient for their efficient coalescence. The
general opinion is that turbulence somehow enhances droplet
collision rate and droplet coalescence. However, it still remains
unclear and not completely established yet to what extent and
how turbulence can affect and control droplet coalescence and
rain initiation (see, e.g., Refs. [2,3]).

In this paper we explain the fast growth of cloud droplets
by collision-coalescence, taking into account the recently
discovered phenomenon of the tangling clustering instability
of small water droplets in turbulent temperature-stratified
atmosphere [30]. We assume that water droplets coalesce after
collisions. However, the ambient mean number density of the
droplets is too low, so their collision-coalescence time is very
large. The situation dramatically changes in the presence of
tangling clustering instability, which results in the formation
of clusters with the mean number density of the droplets inside
the clusters that by several orders of magnitude exceeds the
ambient mean number density of the droplets.

The mechanism of droplet clustering in turbulence is as
follows. Due to inertia effects droplets inside turbulent eddies

are carried out to the boundary between the eddies by inertial
forces. Therefore, water droplets are locally accumulated in the
regions with low vorticity and maximum pressure fluctuations
[31]. Contrary to the inertia induced preferential concentration,
the pressure fluctuations in stratified turbulence with a nonzero
mean temperature gradient are increased due to additional
temperature fluctuations generated by tangling of the mean
temperature gradient by velocity fluctuations. This is a reason
why clustering of water droplets is much more effective in
stratified turbulence [30,32] in comparison with a nonstratified
turbulence [12].

The tangling clustering instability leads to the formation
of clusters, which accumulate surrounding droplets. Since
the number density and, correspondingly, the collision-
coalescence rate of small droplets inside the clusters drastically
increase, the characteristic time of droplet coalescence sharply
decreases. The effect of the tangling clustering instability [30]
is much stronger than that of the inertial clustering instability
[12] in nonstratified isotropic and homogeneous turbulence.
The strong enhancement of the droplet collision-coalescence
rate caused by the effect of the tangling clustering instability
of small droplets can explain the observed fast growth of cloud
droplets from the initial 1-μm-size droplets to 40- to 50-μm
size droplets within 15–20 min.

II. TANGLING CLUSTERING INSTABILITY

Small cloud droplets with a size of the order of 1 μm
have to grow in diameter by a factor 50–100 in order to fall
out of the cloud as rain droplets. Initial formation of cloud
droplets is associated with an intricate process that allows
conversion of water vapor into small liquid water droplets.
Droplet formation always requires the presence of aerosols
and their activation to cloud droplets and further growth of
droplets via condensation-coalescence. Clearly, the growth
of cloud droplets is constrained by their vaporization, and
droplet collisions and coalescence may modify the droplet
size distribution (see, e.g., Refs. [33–35]).

In the present study we invoke the recently discovered
phenomenon of tangling clustering instability of droplets in
temperature-stratified turbulence which causes formation of
clusters with the droplet number density inside the clusters by
several orders of magnitude larger than the ambient droplet
number density [30]. The size of the formed clusters is of the
order of the Kolmogorov microscale length. For the sake of
simplicity in this section we assume that vapor condensation
produces small droplets of the same size, which then grow
due to the collision-induced coalescence. The droplet size
distribution is taken into account in the next section.

A. Governing equations

The theory of the tangling clustering instability in the
temperature-stratified turbulence has been developed in
Ref. [30]. In this section we summarize these theoretical results
and explain why the clustering instability is essentially en-
hanced in turbulence with a large-scale temperature gradient.
Equation for the instantaneous number density n(t,r) of small
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spherical droplets in a turbulent flow reads:

∂n

∂t
+ ∇·(n v) = Dm �n − n

τev
+ I0, (1)

where Dm = kB T /(3πρ ν d) is the coefficient of molecular
(Brownian) diffusion of droplets having diameter d and the
instantaneous velocity v(t,r), ν is the kinematic viscosity,
T and ρ are the mean air temperature and density, kB is
the Boltzman constant, and I0 is the rate of production of
the droplets number density caused by an external source
of droplets, e.g., through activation. The term −n/τev in
the right-hand side of Eq. (1) describes the decrease of the
droplet number density due to the evaporation, where τev is
the characteristic evaporation time determined by Eq. (26) in
Sec. III B, see, e.g., Ref. [36].

The droplet velocity v is determined by the equation of
motion:

dv

dt
= u − v

τst
+ g. (2)

Here u(t,x) is the fluid velocity and g is the gravity
acceleration, τst = mdr/3πρ ν d is the Stokes time, mdr =
(π/6) ρm d3 is the droplet mass, and ρm � ρ is the droplet
mass density. The ratio St = τst/τη = ρm d2/18ρ 	2

η, of the
Stokes time and the Kolmogorov turbulent turnover time,
τη, is the Stokes number, where τη = 	η/uη = τ0/Re1/2,
uη = u0/Re1/4 is the characteristic velocity of eddies in the
Kolmogorov microscale, 	η = 	0/Re3/4, Re = u0	0/ν is the
Reynolds number, u0 is the characteristic turbulent velocity in
the integral turbulent scale 	0, and τ0 = 	0/u0 is the turbulent
time in the integral turbulent scale.

The solution of Eq. (2) for St � 1 reads (see, e.g.,
Ref. [31]):

v = u − τst

[
∂u
∂t

+ (u·∇)u − g
]

+ O
(
τ 2

st

)
. (3)

This equation implies that ∇· v �= 0, i.e., the droplet velocity
field is compressible,

∇· v = ∇· u − τst ∇·
(

du
dt

)
+ O

(
τ 2

st

)
= − 1

ρ
(u·∇)ρ + τst

ρ
∇2p + O

(
τ 2

st

)
. (4)

In the derivation of Eq. (4) we used the Navier-Stokes equation
for the fluid. The mechanism of the clustering instability
is associated with the droplet inertia. The centrifugal forces
cause the droplets inside the turbulent eddies to drift out to
the boundary between the eddies, i.e., to the regions with
the maximum fluid pressure fluctuations. Indeed, for a large
Peclet number, when the molecular diffusion of droplets in
Eq. (1) can be neglected, we can estimate dn/dt ∝ −∇· v.
Here we neglected evaporation and consider the case I0 = 0.
Since ∇· v ∝ (τst/ρ) ∇2p �= 0 even for incompressible fluid,
this implies that dn/dt ∝ −(τst/ρ) ∇2p > 0 in the regions
where ∇2p < 0. Therefore, the droplets are accumulated in
regions with maximum pressure fluctuations.

Averaging Eq. (1) over an ensemble of turbulent velocity
field, we obtain the following equation for the mean number

density of droplets N = 〈n〉:
∂N

∂t
+ ∇·(N V p + 〈n′ v′〉) = Dm �N − N

τev
+ I0, (5)

where v′ and n′ are the fluctuations of the droplet velocity
and number density, respectively, and Vp is the mean droplet
velocity that is the sum of the mean fluid velocity, U , and the
terminal fall velocity of droplets, Vg = gτst [see Eq. (3)].

The clustering instability of droplets in turbulent flow is
determined by fluctuations of the droplet number density,
n′(t,r) = n(t,r) − N (t,r). Equation for the fluctuations n′ is
obtained by subtracting Eq. (5) from Eq. (1) [30]:

∂n′

∂t
+ ∇·[n′ (v′ + V p) − 〈n′ v′〉] − Dm �n′

= −(v′·∇)N − N ∇· v′ − n′

τev
. (6)

B. Mechanism of tangling clustering instability

In a case of temperature-stratified turbulence with a nonzero
large-scale temperature gradient, the turbulent heat flux 〈u′ θ〉
is not zero, where u′ are the fluctuations of the fluid velocity.
This implies correlation between fluctuations of fluid temper-
ature, θ , and velocity, and, therefore, the correlation between
fluctuations of pressure and fluid velocity. In temperature-
stratified turbulence there are additional pressure fluctuations
caused by the tangling of the mean temperature gradient by
the velocity fluctuations. This causes the increase of pres-
sure fluctuations and, correspondingly, enhances the droplet
clustering. The tangling clustering mechanism is dynamically
similar to the inertial clustering mechanism. In particular, the
inertial particles drift out to the regions with higher pressure
fluctuations, i.e., the regions with lower vorticity and higher
strain rate. However, in the temperature-stratified turbulence
the pressure fluctuations are stronger than in nonstratified
turbulence. Since the clustering is related to the Laplacian
of the pressure [see Eq. (12) below] this is the reason for the
enhanced tangling clustering.

Fluctuations of the droplet number density are described
by the two-point second-order correlation function, �(t,R) =
〈n′(t,x)n′(t,x + R)〉. The analysis of the tangling clustering
instability employs the equation for the correlation function
�(t,R) that has been derived using the path-integral approach
for random compressible flow with a finite correlation time
[12]:

∂�

∂t
=

[
B(R)− 2

τev
+ 2U (A)(R) · ∇ + D̂ij (R)∇i∇j

]
�(t,R),

(7)

where U (A)(R) = (1/2) [Ũ(R) − Ũ(−R)],

B(R) ≈ 2
∫ ∞

0
〈b[0,ξ (t,x|0)] b[τ,ξ (t,x + R|τ )]〉 dτ, (8)

Ũi(R) ≈ −2
∫ ∞

0
〈v′

i[0,ξ (t,x|0)] b[τ,ξ (t,x + R|τ )]〉 dτ,

(9)

D̂ij = 2Dmδij + D
T

ij (0) − D
T

ij (R), (10)
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D
T

ij (R) ≈ 2
∫ ∞

0
〈v′

i[0,ξ (t,x|0)] v′
j [τ,ξ (t,x + R|τ )]〉 dτ.

(11)

Equation (7) is written in the frame moving with the mean
droplet velocity. The function B(R) is determined by the
compressibility of the droplet velocity field, b = div v′. The
vector Ũ(R) determines a scale-dependent drift velocity which
describes transport of fluctuations of droplet number density
from smaller scales to larger scales. The tensor of the scale-
dependent turbulent diffusion D

T

ij (R) tends to the tensor of
the molecular (Brownian) diffusion at very small scales, while
in the vicinity of the integral turbulent scale it coincides with
the tensor of turbulent diffusion. Other variables in Eqs. (7)–
(11) are defined as follows: δij is the Kronecker tensor, the
Wiener trajectory ξ (t,x|s) in the expressions for the turbu-
lent diffusion tensor D

T

ij (R) and other transport coefficients

is ξ (t,x|s) = x − ∫ t

s
v[τ,ξ (t,x|τ )] dτ + √

2Dm w(t − s), and
〈. . . 〉 denotes averaging over the statistics of turbulent velocity
field and the Wiener random process w(t) that describes the
Brownian motion. The second term in the right-hand side of
Eq. (7) describes the effect of droplets evaporation.

The exponential growth of the correlation function of
the droplet number density fluctuations, �(t,R), due to the
tangling clustering instability, is determined by the first term,
B(R) �(t,R), in the right-hand side of Eq. (7), which is
the only positive one. To estimate the function B(R) we
take into account the equation of state of an ideal gas that
yields: p′/P = ρ ′/ρ + θ/T + O(ρ ′θ/ρT ), where ρ,T ,P and
ρ ′,θ,p′ are the mean and fluctuations of the fluid density,
temperature, and pressure, respectively. For small Stokes
numbers, ∇· v′ ≈ (τst/ρ) ∇2p′ + O(St2), we obtain

B(R) ≈ 2τ 2
st

ρ2
〈τ [∇2p′(x)] [∇2p′( y)]〉

≈ 2τ 2
st

ρ2

P 2

T 2
〈τ [∇2θ (x)] [∇2θ ( y)]〉 (12)

(see the Appendix), where τ is the turbulent time. In
k space the correlation function 〈τ [∇2θ (x)] [∇2θ ( y)]〉 =∫

τ̃ (k) k4 〈θ (k) θ (−k)〉 exp (ik·R) dk. Taking into account
that the correlation function of temperature fluctuations
〈θ (k) θ (−k)〉 = 〈θ2〉Ẽθ (k)/4πk2, and integrating in k space,
we obtain:

B(R) ≈ 2 τ 2
st c

4
s

3 ν

(∇T

T

)2

Re, (13)

where cs is the sound speed, Ẽθ (k) = (2/3) k−1
0 (k/k0)−5/3

is the spectrum function of the temperature fluctuations for
k0 � k � 	−1

η , with k0 = 	−1
0 and τ̃ (k) = 2τ0 (k/k0)−2/3. To

determine 〈θ2〉 = 2Eθ we used the budget equation for the
temperature fluctuations: DEθ/Dt + div �θ = −(F·∇)T −
εθ , that for homogeneous turbulence in a steady state yields:
〈θ2〉 = −2 τ0 (F·∇)T = (2/3)(	0∇T )2, where Fi = 〈u′

iθ〉 =
−D(θ)

T
∇iT is the turbulent heat flux, D(θ)

T
= u0	0/3 is the

coefficient of the turbulent diffusion of the temperature
fluctuations, and the dissipation rate of Eθ is εθ = 〈θ2〉/2τ0.
Equation (13) implies that the correlation function B(R)

vanishes when the Reynolds number tends to zero. The effect
exists only in the presence of developed turbulence.

In a nonstratified turbulence (∇T = 0), the function
B(R) = 20σv/τη(1 + σv), where σv ≡ 〈(∇·v′)2〉/〈(∇×v′)2〉
is the degree of compressibility of the particle velocity
field. For small Stokes numbers, σv ≈ (8/3)St2, so B(R) =
160 St2/3τη, where we took into account that for a Gaussian ve-
locity field: 〈(∇·v)2〉 = (80/3τ 2

η ) St2 and 〈(∇×v)2〉 = 10/τ 2
η

(for details see Ref. [12]). On the other hand, for stratified
turbulence (∇T �= 0) and small Stokes number,

B(R) ≈ 2 τ 2
st c

4
s

3 ν

(∇T

T

)2

Re = 160 S̃t
2

3τη

= 20σ̃v

τη

, (14)

where S̃t = St �, σ̃v ≈ (8/3)S̃t
2
,

�(Re,Leff/LT ) = Re1/2

(
Leff ∇T

T

)
, (15)

and variables with tilde symbols correspond to those for
stratified turbulence. Here Leff = c2

s τ
3/2
η /9ν1/2 is an effective

length scale, and LT = T/|∇T | is the characteristic scale of
the mean temperature variations.

In the general case that includes both the tangling clustering
instability and the inertial clustering instability, the parameter
� can be written in the following form:

�(Re,Leff/LT ) =
[

1 + Re

(
Leff ∇T

T

)2
]1/2

, (16)

where the inertial clustering instability corresponds to the
case of � = 1. For typical parameters of atmospheric tur-
bulence: (i) Re = 107 (u0 = 1 m/s, 	0 = 100 m) and the
mean temperature gradient, |∇T | = (0.3 − 1) K / 100 m, the
effective length Leff = 23 km, the dimensionless parameter
� = (1 − 2) × 103; (ii) Re = 106 (u0 = 0.3 m/s, 	0 = 30 m)
and the mean temperature gradient, |∇T | = (0.3 − 1) K /

100 m, the effective length Leff = 130 km, the dimensionless
parameter � = (1 − 4) × 103.

When the Stokes number is not small, the degree of
compressibility is given by

σv = (8/3)St2

1 + St2
(17)

(for details see Ref. [13]). Since for the stratified turbulence
B(R) = 20σ̃v/τη(1 + σ̃v), and σ̃v = (8/3)S̃t

2
/(1 + S̃t

2
), the

function B(R) for the stratified turbulence and for arbitrary
Stokes numbers reads:

B(R) = 160 St2 �2

τη(3 + 11 St2 �2)
. (18)

For � = 1 Eq. (18) describes the inertial clustering. When
the diameter of the droplet d ≈ 1.7 μm, St2 �2 ≈ 3/11. This
implies that when the diameter of the droplets is much larger
than 1.7 μm, the parameter St2 �2 � 3/11, and the function
B(R) ∼ 160/11τη is independent of the Stokes number and
the size of droplets. As can be seen from Eq. (18) the effect of
tangling clustering is much stronger than the inertial clustering
only for droplets smaller than 20 μm. Remarkably, the inertial
clustering instability can be excited only if the size of droplets
is larger than 20 μm (see Ref. [12]). Analysis of the solution
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of Eq. (7) for the two-point second-order correlation function,
�(t,R), performed in Sec. V in Ref. [30], shows that the ratio
of the minimum and maximum of the pair correlation function
reads:

�min

�max
= − π

e λ

(
Sc−λ/2

ln Sc

)
, (19)

where Sc = ν/Dm is the Schmidt number and the parameter
λ(σ̃v) = (20σ̃v + 1)/4(σ̃v + 1) in Eq. (19) depends on the
degree of compressibility of the particle velocity field, σ̃v .
For typical parameters of atmospheric turbulence, parameter
λ varies in the range from 0.5 to 2.5.

As follows from Eq. (18), the temperature fluctuations,
which are caused by the tangling of the mean temperature
gradient, ∇T , by the fluid velocity fluctuations u′, strongly
contribute to the function B(R) and the growth rate of the
tangling clustering instability in the temperature-stratified
turbulence. The mechanism of coupling related to the tangling
of the gradient of the mean temperature gradient is quite robust.
The tangling is not sensitive to the exponent of the energy
spectrum of the background turbulence. Anisotropy effects do
not introduce new physics in the clustering process because
the main contribution to the tangling clustering instability
is at the Kolmogorov (viscous) scale of turbulent motions,
where turbulence can be considered as nearly isotropic, while
anisotropy effects can be essential in the vicinity of the
maximum scales of the turbulent motions.

Equation (16) shows that the tangling clustering instability
can be much more effective than the inertial clustering
instability which is excited in a nonstratified turbulence [12].
In both instabilities, the particle clustering is determined by the
two-point correlation function of the Laplacian of air pressure
fluctuations. However, in the case of nonstratified turbulence
the pressure fluctuations are of the order of ρu′2, while in
the case of the temperature-stratified turbulence there are
additional pressure fluctuations caused by temperature fluc-
tuations, p′ ∝ P (θ/T ) ∝ (P/T )	0|∇T |, where we took into
account that the root mean square of the tangling temperature
fluctuations θ ∼ 	0|∇T | (see Ref. [37]). Consequently, the
ratio of the two-point correlation functions of the Laplacian of
air pressure fluctuations in stratified and nonstratified flows is
proportional to

Btangling

Bisothermal
∼

(
ñkBT

ρu2

)2
	2

0

L2
T

, (20)

which is a large parameter because the thermal energy density
ñkBT is much larger than the turbulent kinetic energy ρu′2,
where ñ is the number density of molecules. Here we used the
equation of state for the ideal gas P = ñkBT .

Due to inertia effects, droplets accumulate in the regions
with increased pressure of the air flow. The effect of increased
pressure fluctuations in a temperature-stratified turbulence is
more pronounced in small scales because the function B(R)
is determined by the two-point correlation function of the
Laplacian of pressure fluctuations. The tangling clustering is
also enhanced by the effect of turbulent thermal diffusion
[38] that causes nondiffusive streaming of particles in the
direction of a heat flux and accumulation of particles in the
regions with the minimum mean temperature of the air flow.

0 5 10 15
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FIG. 1. Growth rate γ of the tangling clustering instability
(measured in units 1/τη) versus the droplet diameter d (measured
in μm) for � = 103 and Sc = ν/Dm = 5 × 105d (μm).

Temperature fluctuations in the stratified turbulence produce
pressure fluctuations and cause particle clustering due to the
tangling clustering instability with the growth rate, that is,
by a factor Re(Leff/LT )2 larger than the growth rate of the
inertial clustering instability [see Eq. (16)]. For large Reynolds
numbers the tangling mechanism is universal and weakly
dependent on the origin of turbulence.

C. Growth rate of the instability

To illustrate the tangling clustering instability we use the
standard dependence of the droplet evaporation time on their
diameter and the relative humidity [see Eq. (26) below].
Figure 1 shows the growth rate of the instability (measured in
the inverse turbulent Kolmogorov time scale units, τ−1

η ) versus
the droplet diameter d (measured in μm) for different values
of relative humidity, φ, i.e., for very low humidity (45% and
90%) and for very high humidity (99% and 100%). Inspection
of Fig. 1 shows that the threshold for the tangling clustering
instability based on the size of the droplets is dth = 0.7 μm.
The instability is excited when d > dth, and there is a sharp
maximum of the growth rate of the instability at d = 1.75 μm
if the relative humidity is close to saturation, 99% and 100%.
This explains the fast growth of the droplets having the initial
diameter of the order of 1.75 μm caused by the tangling
clustering instability. For lower values of the relative humidity
the threshold for the tangling clustering instability increases
and the droplet growth rate sharply decreases. For d � 5 μm
and for very high humidity (99% and 100%) the growth rate of
the tangling clustering instability is constant and independent
of the droplet size.

The exponential growth of droplet number density inside
the cluster is saturated by nonlinear effects. The droplet
number density inside the cluster can be constraint by depletion
of particles in the surrounding air flow caused by their accumu-
lation inside the cluster. Another effect that inhibits the growth
of the droplet number density inside the cluster is related to a
strong momentum coupling of particles and turbulent air flow
when the mass loading parameter mdrnmax/ρ ≈ 0.5.

It can be shown [30] that the maximum increase of particle
number density inside the cluster, nmax/N , caused by the first
effect is

nmax

N
=

(
1 + e λ

π
Scλ/2 ln Sc

)1/2

. (21)
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FIG. 2. The time evolution of droplet concentration nmax/N

inside the cluster for droplets of different diameter for relative
humidity 99% (upper panel) and 100% (bottom panel); � = 103

and Sc = 5 × 105 d . Thick solid line corresponds to droplets with
d � 5 μm (for which the growth rate of the tangling clustering
instability is independent of the droplet size).

In this analysis small yet finite molecular diffusion Dm has
been taken into account. In the limit Dm = 0 Eq. (21) is not
valid. For instance, the Schmidt number for droplets in the
atmospheric flow is Sc = 5 × 105 d (μm).

Let us estimate the limitation caused by strong momentum
coupling of particles and turbulent air flow. Assuming as total
cloud water content ρ̄dr ≡ mdrnmax = 1.5 g/m3 and taking
into account that the air density in the atmosphere ρ ≈
1.3 × 103 g/m3, we obtain: nmax/N < 0.5 ρ/ρ̄dr ≈ 470.

Figure 2 shows the increase of droplets concentration
nmax/N inside the cluster during development of the tangling
clustering instability for the relative humidity 99% and 100%
and for different droplet sizes. The growth rate of the instability
is of the order of 10 inverse Kolmogorov time scales, where
τη ≈ 0.1 s. In this study we consider only droplet clustering,
but not aerosol dynamics. Clearly, the clustering of aerosols is
similar to that of droplets for humidity of 100%, i.e., without
evaporation.

Strong increase of clustering in a temperature-stratified
fluid in comparison with the inertial clustering has been con-
firmed in laboratory experiments [32]. The experimental study
of the particle clustering compared the two-point correlation
functions for both inertial and tangling clustering measured
with sub-Kolmogorov scale resolution. The experimental
parameters were the rms velocity u0 = 12 cm/s, the integral
(maximum) scale of turbulence 	0 = 3.2 cm, the Reynolds
numbers Re = 250, the Kolmogorov length scale 	η =
510 μm, and the Kolmogorov time scale τη = 1.7 × 10−2 s.
The Stokes time for the particles with the diameter d = 10 μm
is τst = 10−3 s, the Stokes number St = 5.9 × 10−2, the coeffi-
cient of molecular diffusion Dm = 1.4 × 10−8 cm2/s, and the
Peclet number Pe = u0 	0/Dm = 3 × 109. These experiments

demonstrated that the two-point correlation function of the par-
ticle number density fluctuations for the tangling clustering in
temperature-stratified turbulence is by one order of magnitude
larger than that for the inertial clustering in isothermal turbu-
lence [32]. This is consistent with the efficiency of the tangling
clustering being proportional to Re1/2 [see Eq. (16)]. In these
laboratory experiments Re1/2 ∼ 15. Since in the atmospheric
turbulence the Reynolds number is 107 (Re1/2 ∼ 3 × 103) it is
plausible to suggest that for atmospheric conditions the effect
of the tangling clustering will be more pronounced.

III. DETECTION OF DROPLET CLUSTERING IN
ATMOSPHERIC CLOUD MEASUREMENTS

In this section we present a short discussion of the existing
cloud measurements and their relation to the droplet clustering.
Aircraft mounted with forward-scattering spectrometer probe
[39] was used for study of 1-cm droplet concentrations in
cumulus clouds. In these experiments over 50 cloud passes
have been done. The statistical analysis in Ref. [39] has shown
significant deviations from the Poisson distribution, which
characterizes a random homogeneous spatial distribution of
the droplets. These findings were interpreted in Ref. [39] as
appearance of small-scale (about 1-cm) droplet clusters in
cumulus clouds.

The droplet clusters were detected in Ref. [40] by analyzing
the measurements obtained in situ in 57 clouds by use of
the fast forward-scattering spectrometer probe (FSSP). This
finding is direct evidence of the turbulence-inertia impact on
droplet motion in clouds. The dissipation rate of the turbulent
kinetic energy in clouds was varied in the atmospheric
measurements [40] from 10−4 to 2.3 × 10−2 m2 s−3. The rms
of small-scale droplet concentration fluctuations was estimated
to be about 31% of the mean values of droplet concentration
both over the whole cloud and in a more homogeneous
adiabatic core. The power spectrum shows that fluctuations
with spatial scales within the 0.5- to 5-cm range contain over
80% of the energy of small-scale fluctuations [40]. An increase
in turbulence intensity and droplet inertia result in an increase
of the droplet concentration fluctuations.

In other experiments [41] the droplet positions have been
measured with the Meteo-France fast forward-scattering spec-
trometer probe. The cloud droplet data were collected during
a single traverse by the Meteo-France Merlin IV research
aircraft through a cumulus cloud encountered during the Small
Cumulus Microphysics Study. The energy dissipation rate was
of the order of 10−4 m2 s−3. The collected data in Ref. [41]
reveal droplet clustering even in cumulus cloud cores free
of entrained ambient air. The pair correlation function was
obtained in Ref. [41] for droplets in a high-Reynolds-number
turbulent flow. The super-Poissonian variances which were
detected in these homogeneous core data were viewed in
Ref. [41] as conclusive evidence of clustering. It was shown in
Ref. [42], by using the correlation-fluctuation theorem and the
Wiener-Khinchin theorem, that the pair-correlation function
is ideal for quantifying droplet clustering because it contains
no scale memory and because of its quantitative link to the
Poisson process.

Simultaneous observations of cloud droplet spatial statis-
tics, cloud droplet size distribution, and cloud turbulence were
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made in Ref. [43] during several cloud passages, including
cumulus clouds and a stratus cloud. The measurements were
conducted using the Airborne Cloud-Turbulence Observation
System (ACTOS), which was suspended from a tethered
balloon. The ACTOS instrumental payload was equipped with
sensors to measure the three-dimensional wind velocity, static
air temperature, and humidity with a sampling frequency of at
least 100 Hz. The wind velocity was measured by an ultrasonic
anemometer. Cloud droplet number density and droplet size
distribution were obtained from measurements with the M-
Fast-FSSP, which records sizes and arrival times of individual
droplets. The primary finding of the study in Ref. [43], by
determining the droplet pair correlation function (with the
spatial resolution about 100–200 μm), is the indication of
the droplet clustering even for small Stokes numbers (smaller
than 10−2) and also in weakly turbulent clouds (with the
dissipation rate of the turbulent kinetic energy that is smaller
than 10−2 m2 s−3). For three analyzed cases, two horizontal
passages through cumulus clouds and vertical profiles through
a stratus cloud, the regions where droplets are clustered at
sub-cm scales, were found in Ref. [43].

All these studies for the most part show very modest
clustering at Kolmogorov separations and below. Note, how-
ever, that the FSSP measures droplets along a narrow almost
1D horizontal path through a cloud volume, which means
that a long sample is necessary to construct a reasonable
spectrum [2]. The interpretation of the results remains con-
troversial because deviations from Poisson distributions could
be possible due to instrumental artifacts and the necessarily
limited samples that are obtained from aircraft measurements,
which inevitably compromise the assumption of the statistical
homogeneity of the sample [2]. Unfortunately, the detailed
measurements during all these atmospheric cloud experiments
of the spatial temperature distributions and of the vertical and
horizontal heat fluxes in clouds have not been presented in
the papers discussing the droplet clustering. Consequently, we
cannot make any conclusions about tangling clustering in these
experiments.

It must be emphasized that the pair correlation function
�(R) for the clustered droplet population measured in
Ref. [43] (see Fig. 1 in Ref. [43]) agrees with the pair
correlation function determined analytically in our previous
study (see Eqs. (43) and (47) in Ref. [30]). The discrepancy
occurs only in the scales smaller than a Kolmogorov scale
(that is, 	η = 2 mm in Ref. [43]). Our theory predicts that
the pair correlation function vanishes in the vicinity of 	η,
in agreement with the atmospheric experiments (reported
in Ref. [43]), as well as with our laboratory experiments
(see Ref. [32]). However, the pair correlation function �(R)
according to our theory (see Ref. [30]) sharply increases at
smaller scales. The ratio of the minimum and maximum of the
pair correlation function, �min/�max, is given by Eq. (19) of
the present paper (or Eq. (62) in Ref. [30]). Using the value
of �min = −0.05 measured in Ref. [43] and the parameters
of turbulence and droplets for the atmospheric experiments in
Ref. [43] we find that Sc ≡ Pe/Re = 3 × 104 and the ratio
�

1/2
max/N is of the order of 500, where Pe is the droplet

Peclet number. This value of the ratio �
1/2
max/N agrees with the

estimated value 470 obtained in Ref. [30]. To determine the
pair correlation function in the scales much smaller than

the Kolmogorov scale, the spatial resolution of the atmospheric
measurements reported in Ref. [43] should be improved by
a factor of 10 at least. Conducting measurements in these
scales may require us to abandon the Taylor hypothesis and
to employ the particle image velocimetry or holographic
techniques. In this case the radial distribution function (RDF),
G(R) = 〈n(t,x)n(t,y)〉/N (t,x)N (t,y), can be determined from
two-dimensional images of a field of M droplets by binning
the droplet pairs according to their separation distance, so the
function G(R) is determined as follows:

G(R) ≈ N
(p)
�S

/
�S

N
(p)
S

/
S

, (22)

where �S = π [(R + �R/2)2 − (R − �R/2)2] is the area
of the annular domain located between R ± �R/2 and S

is the area of the part of the image with the radius Rmax

that is used in data processing in order to exclude the edge
effects. The measured radial distribution function allows us
to determine the two-point correlation function of the droplet
number density, �(t,R) = N2 [G(t,R) − 1].

In order to attain a high spatial resolution, the following
method should be used: (i) to determine the response function
for the charge-coupled device (CCD) camera by analyzing
the light intensity distribution in the image for single droplet
located at the center of the pixel in the form of the Gaussian
distribution, (ii) segmentation of the image using a threshold
technique, and (iii) identification of droplet locations in the
segments by least-squares fitting of the recorded light intensity
distribution and the light intensity distribution caused by
superposition of the Gaussian distributions at the droplet
locations (for details see Ref. [32]).

To detect the tangling clustering in the atmospheric clouds,
the measurements of the spatial temperature distributions in
clouds, as well as the fluid velocity measurements, should be
conducted in addition to the measurements of RDF of droplets.
In particular, it is important to measure the vertical and hor-
izontal heat fluxes, 〈u θ〉, and two-point correlation functions
of the temperature fluctuations, 〈θ (x) θ (y)〉, in clouds. This
allows us to determine the rate of tangling clustering B(R) [see
Eqs. (12) and (18)]. In addition, measurements of two-point
noninstantaneous correlation functions of fluid velocity allow
us to determine the integral scale of turbulence and turbulent
time scales. Measurements of turbulent fluxes of droplets 〈u n′〉
in combination with the measurements of spatial distributions
of droplets allow us to determine the turbulent diffusion
coefficients of droplets.

IV. COLLISION KERNEL AND DROPLET COAGULATION

In this section we consider droplet coagulation and apply
the theory of the tangling clustering instability to explain
acceleration of raindrops formation in warm clouds. The
warm clouds often exist in the region of atmospheric turbulent
convection with coherent structures (cloud “cells” in shear-free
convection and cloud “streets” in sheared convection, see, e.g.,
Ref. [44,45]). The vertical large-scale temperature gradient is
small inside the large-scale circulation (coherent structures)
in a small-scale turbulent convection. However, the horizontal
large-scale temperature gradient inside the circulations is not
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small. Atmospheric observations showed that this gradient
is about 1 K/100 m [46]. Similar results were reported
in laboratory experiments where the horizontal large-scale
temperature gradient inside the large-scale circulation was
0.6 K/cm, while the vertical large-scale temperature gradient
was 0.05 K/cm [47]. This magnitude of the horizontal
temperature gradient is sufficient for the generation of strong
temperature fluctuations in the stratified turbulence by use of
the tangling mechanism.

The initial stage of cloud droplets formation involves
condensation of water vapor on CCN and formation of small
micron-sized droplets. In the present study we show that the
tangling clustering instability strongly enhances the growth
rate of cloud droplets at both stages: at the first stage when
droplets grow from the micron size to 10-μm droplets and at
the next stage from 10- to 50-μm radius droplets.

A. Smoluchowski coagulation equation

Subsequent evolution and growth of small droplets due to
collision-coalescence depend on the interplay between their
collision time and evaporation time, in particular because of
water vapor depletion. The collision time of small droplets can
be determined using the Smoluchowski coagulation equation
(see, e.g., Ref. [48], chap. 13):

∂ñ(d)

∂t
+ div(ñ v) − Dm�ñ + ñ

τev

= 1

2

∫ d

0
K(d̂,x) ñ(d̂) ñ(x) dx

−
∫ ∞

0
K(d,x) ñ(x) ñ(d) dx, (23)

where d̂ = (d3 − x3)
1/3

, ñ(d) is the droplet size distribution,
n = ∫

ñ(x) dx is number density of droplets, and K(d,x) is the
coagulation kernel that describes coagulation rate of droplets
of the diameter d and droplets of the diameter x. In the present
study we use the coagulation kernel K(d,x) as a sum of
the Brownian coagulation kernel (see Table 13.1, p. 600 in
Ref. [48]) and the gravitational coagulation kernel (see Eq.
(13.A.4), p. 615 in Ref. [48]).

Averaging Eq. (23) over the statistics of particle tur-
bulent velocity field, estimating integrals in Eq. (23), us-
ing the mean-value theorem, and taking into account that
〈ñ(d) ñ(d1)〉 is calculated in the same point, so 〈ñ(d) ñ(d1)〉 �
ñmax(d) ñmax(d1) = C(d,d1) Ñ (d) Ñ (d1), we obtain the fol-
lowing equation for the mean droplet size distribution Ñ (d):

∂Ñ(d)

∂t
+ div(Ñ V dr + 〈ñ′ u〉)

= − Ñ

τev(d)
− Ñ

τ st
eff(d)

+ DT �Ñ, (24)

where C(d,d1) = ñmax(d) ñmax(d1)/Ñ (d) Ñ (d1), DT (d) is the
turbulent diffusion coefficient, and

τ st
eff(d) = 1

Ñ (d) K(d,d1) C(d,d1)

>
1

Ñ (d) K(d,d1)

[
ñmax(d)

Ñ (d)

]−2

. (25)

1 10

10
−9

10
−8

10
−7

10
−6

d

K(d, d1)

d1 = d

d1 = 0.999999d
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FIG. 3. Sum of Brownian and gravitational coagulation kernels
versus the droplet diameter d in microns for two droplets having
different diameters: d = 0.9d1 (dotted line), d = 0.99d1 (dashed-
dotted line), and d − d1 = 10−6d (dashed line). The solid line is the
Brownian coagulation kernel K(d,d1) [measured in cm3/s] for two
droplets having equal diameters d = d1. The diameter d of droplets
is measured in μm.

Notably, the collision term Ñ (d)/τ st
eff(d) in Eq. (24) is similar

to the droplet evaporation term. The coefficient of molecular
diffusion of droplets having the diameter d in the atmosphere is
Dm = 2 × 10−7/ d(μm) cm2 s−1, while the turbulent diffusion
coefficient DT = u0	0/3 = 3 × 105 cm2 s−1, where turbulent
velocity u0 at the integral turbulent scale 	0 = 100 m is
u0 = 1 m/s. Therefore, the coefficient of molecular diffusion
of droplets is much smaller than the turbulent diffusion
coefficient.

B. Effective collision-coalescence time

Now we can estimate the droplet collision time and compare
it with the evaporation time of droplets having different sizes.
The most interesting case is the growth of droplets when the
relative humidity is only slightly less 100% and the evaporation
of droplets competes with their coagulation. Figure 3 shows the
numerical values of the sum of the Brownian and gravitational
coagulation kernels versus droplet diameter d when droplets
have the same or different sizes [48]. Inspection of Fig. 3 shows
that the collision kernel varies slightly when d < 2 μm, and
it increases by one order of magnitude for d = 5 μm, while
for d > 5 μm the collision kernel can increase by three orders
of magnitude depending on the difference in size of colliding
droplets (d and d1). However, the effect of this increase on
the droplet collision rate is much smaller than the increase of
droplet collision rate due to the increase of the droplet number
density caused by the tangling clustering instability that is up
to five orders of magnitude.

Dynamics of the raindrops evolution and their growth
depend on the interplay between the characteristic times of
droplet collisions resulting in droplet coagulation and the
time of droplet evaporation. The characteristic times of vapor
diffusion and thermal relaxation in the gaseous phase in the
vicinity of a droplet can be estimated as τdif ∝ d2/Dv and
τth ∝ d2/χ , where Dv = 0.216 cm2 s−1 is the coefficient of
binary diffusion of water vapor in air and χ = 0.185 cm2 s−1

is the thermal diffusivity of air [48]. Since these characteristic
times are much smaller than the time of droplet evaporation
or growth, the evaporation or growth of cloud droplets is
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FIG. 4. Evaporation times versus droplet diameter for relative
humidity φ = 99% (dashed-dotted line) and φ = 99.99% (dashed
line) and effective collision-coalescence time (solid lines for different
d − d1). The diameter d of droplets is measured in μm and time is
measured in minutes.

determined by stationary vapor diffusion. In this case, the
characteristic time of the decrease of droplet radius due to
evaporation can be estimated using the coupled analytical
model of the evaporation or growth rates of droplets (see
Ref. [36]). For the ambient air temperature Ta = 274 K, this
model yields the following expression for the evaporation time:

τev = 0.5 × 10−3 d2

1 − φ
, (26)

where the droplet diameter is measured in microns and time
is given in seconds. The calculated evaporation times versus
droplet radius for relative humidity φ = 99% and φ = 99.99%
together with the effective collision-coalescence time within
the cluster are shown in Fig. 4. To determine the effective
collision-coalescence time we have assumed that a total cloud
water content of mean droplets mass density is about ρ̄dr =
1.5 g/m3, which corresponds to the typical mean number
density of 10 μm droplets, N ≈ 2 cm−3, while for 2 μm
droplets it is about N ≈ 2 × 102 cm−3.

In the absence of tangling clustering instability, for
the ambient number density of the micron-size droplets
having the mean number density N ≈ 102 cm−3,
the collision-coalescence time is of the order of
τ st

eff(d = 2 μm) ≈ (Ñ K)−1 ≈ 107 s, and for droplets
with diameter d = 10 μm and the mean number density
N (d = 10 μm) ≈ 1 cm−3, the collision-coalescence time is
τ st

eff(d = 10 μm) > 107 s. These values are too large to account
for the collision-coalescence growth of cloud droplets since
the droplet evaporation time is much less than their collision
time. The latter conclusion implies that small micron-size
and submicron-size droplets are either in equilibrium or grow
very slowly due to condensation of supersaturated water
vapor. In these calculations we have taken into account kinetic
corrections to submicron-size droplet evaporation time using
the flux-matching approach suggested in Ref. [49].

The situation drastically changes in the presence of the
tangling clustering instability. In this case the droplet colli-
sion time inside the clusters, which are formed due to the
tangling clustering instability, decreases by the large factor,
[nmax/N ]2 ∼ 105. Indeed, the number density of droplets

inside the cluster sharply increases and their effective collision
time dramatically decreases:

τ st
eff = 1

Ñ (d) K(d,d1)

(nmax

N

)−2
. (27)

Using the numerical values of the coagulation kernel showed
in Fig. 3 we can estimate the effective collision-coalescence
time inside the cluster. The equilibrium between the effective
droplet collision-coalescence and droplet evaporation depends
on the value of the relative humidity φ and the temperature of
the ambient air. The calculated effective collision times inside
the cluster for two typical values of the relative humidity for
T = 274 K versus the droplet diameter are shown by solid
lines in Fig. 4.

Using data shown in Fig. 4, we estimate the time of growth
of droplets by cascade of successive collisions of droplets
having close diameters (with diameters ratios d1/d = 1.1 or
d1/d = 1.01). In the calculations we take into account that
after each collision droplet the diameter increases and the
effective droplet collision time changes nonmonotonically,
as shown in Fig. 4. For d1/d = 1.1 the time of droplet size
growth diameter from 1 to 10 μm is about 3 min, while for
d1/d = 1.01 this time is approximately 11 min. The time
required for further droplet size growth from 10-μm to 50-
to 60-μm diameter droplets is about 1 min for d1/d = 1.1 and
5.5 min for the colliding droplet diameter ratio d1/d = 1.01.
It should be noted that the real droplet size growth time can
be shorter due to direct enhancement of the droplet collision
kernel by turbulence (see Ref. [1] and references therein).
Since the droplet collisional growth time is smaller for droplets
with larger diameters ratios, the estimated droplet growth
time can be considered a fairly reasonable estimate of the
time required for droplet growth. The total time required for
collisional growth of droplets having a diameter of 1 μm
to droplets having a diameter of 50 μm is of the order of
15 min, which is close to the observed 15 to 20 min required
for formation of rain droplets.

V. CONCLUSIONS

A new effect of the tangling clustering instability of
small droplets in a turbulent temperature-stratified atmo-
sphere results in the formation of clusters with drastically
increased droplet number density and, correspondingly, a
sharply increased rate of their collision-coalescence. Without
the tangling clustering instability, the droplets’ collision-
coalescence time is much larger than the characteristic time
of droplet evaporation. Consequently, in the absence of
tangling clustering instability droplets do not grow due to
collision-coalescence, and rain droplets are not formed. On
the contrary, in the presence of tangling clustering instability
the effective collision-coalescence time inside the clusters
strongly decreases by the factor [nmax/N ]2 ∼ 105. As a result,
droplets within the cluster coalesce and grow, forming large
rain droplets. The growth time of droplets from the initial size
of 1 μm to the size of about 50 μm is 15–20 min.

In summary, we can conclude that the effect of the tangling
clustering instability provides a convincing explanation of the
observed fast growth of cloud droplets.
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APPENDIX: DERIVATION OF THE FUNCTION B(R)

Let us determine the functions B(R):

B(R) ≈ 2τ 2
st

ρ2
〈τ [∇2p′(x)] ∇2p′( y)〉 ≈ 2τ 2

st

ρ2

[
P 2

T 2
〈τ [∇2θ (x)] ∇2θ ( y)〉 + P 2

ρ2
〈τ [∇2ρ ′(x)] ∇2ρ ′( y)〉

+ P 2

ρ T
(〈τ [∇2ρ ′(x)] ∇2θ ( y)〉 + 〈τ [∇2θ (x)] ∇2ρ ′( y)〉)

]
, (A1)

where ∇2p′(x) = [∇(x)]2
p′(x) and ρ ′ are the fluid density

fluctuations. In derivation of this equation we used the
relationship

p′

P
= ρ ′

ρ
+ θ

T
+ O(ρ ′ θ ) (A2)

that follows from the equation of state for an ideal gas. We
also take into account that characteristic spatial scales for
fluctuations of fluid pressure, temperature, and density are
much less than those for the mean fields.

In stratified turbulence with turbulent heat flux, the cor-
relation function 〈θ (x)θ ( y)〉 is much larger than the corre-
lation functions of density-density fluctuations or density-
temperature fluctuations. Indeed, the correlation function
〈[∇2θ (x)] ∇2θ ( y)〉 is caused by the turbulent heat flux, i.e.,
〈θ (x) θ ( y)〉 ∝ −τ0 〈ui(x) θ ( y)〉 (∇iT ), where τ0 is the charac-
teristic turbulent time. On the other hand, the correlation func-
tions of density-density fluctuations or density-temperature
fluctuations are nearly independent of the turbulent heat flux,
and they are proportional to the mass flux 〈u(x) ρ ′( y)〉, which
is very small for low-Mach-number flows. In particular, the
temperature fluctuations can be estimated as θ ∝ −τ0 ui ∇iT .
Consequently, the temperature-density correlator can be esti-
mated as 〈θ (x) ρ ′( y)〉 ∝ −τ0 〈ui(x) ρ ′( y)〉 (∇iT ). The density
fluctuations are determined by the continuity equation:

∂ρ ′

∂t
= −∇·(ρu′ + ρ ′U) + O(ρ ′u′), (A3)

where U is the mean fluid velocity. The correlation function
of density-density fluctuations 〈ρ ′(x) ρ ′( y)〉 is determined by

the following equation:

∂

∂t
〈ρ ′(x) ρ ′( y)〉

= −ρ
[∇(y)

i 〈ρ ′(x) u′
i( y)〉 + ∇(x)

i 〈ρ ′( y) u′
i(x)〉]

− ∇i ρ

ρ
[〈ρ ′(x) u′

i( y)〉 + 〈ρ ′( y) u′
i(x)〉], (A4)

which follows from Eq. (A3). Since 〈ρ ′(x) u′
i( y)〉 is very small

(it is of the order of O(Ma2), where Ma is the Mach number,
see Ref. [50]) and is nearly independent of the turbulent heat
flux, the correlation functions of the density-density fluctu-
ations or density-temperature fluctuations are much smaller
than the correlation functions of the temperature-temperature
fluctuations, i.e.,

1

T 2
|〈[∇2θ (x)] ∇2θ ( y)〉| � 1

ρ2
|〈[∇2ρ ′(x)] ∇2ρ ′( y)〉|, (A5)

1

T
|〈[∇2θ (x)] ∇2θ ( y)〉| � 1

ρ
|〈[∇2ρ ′(x)] ∇2θ ( y)〉|, (A6)

1

T
|〈[∇2θ (x)] ∇2θ ( y)〉| � 1

ρ
|〈[∇2θ (x)] ∇2ρ ′( y)〉|. (A7)

In k space the correlation function 〈τ [∇2θ (x)] [∇2θ ( y)]〉
reads:

〈τ [∇2θ (x)] [∇2θ ( y)]〉
=

∫
τ (k) k4 〈θ (k) θ (−k)〉 exp(ik·R) dk. (A8)
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