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Localization in chaotic systems with a single-channel opening
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We introduce a single-channel opening in a random Hamiltonian and a quantized chaotic map: localization
on the opening occurs as a sensible deviation of the wave-function statistics from the predictions of random
matrix theory, even in the semiclassical limit. Increasing the coupling to the open channel in the quantum
model, we observe a similar picture to resonance trapping, made of a few fast-decaying states, whose left (right)
eigenfunctions are entirely localized on the (preimage of the) opening, and plentiful long-lived states, whose
probability density is instead suppressed at the opening. For the latter, we derive and test a linear relation between
the wave-function intensities and the decay rates, similar to the Breit-Wigner law. We then analyze the statistics
of the eigenfunctions of the corresponding (discretized) classical propagator, finding a similar behavior to the
quantum system only in the weak-coupling regime.
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I. INTRODUCTION

One of the distinctive traits of all chaotic systems is their
seemingly “random” behavior [1]. As a consequence, one
usually assumes that the eigenfunctions of a quantized chaotic
Hamiltonian have the same statistical properties (i.e., wave-
function intensity distribution) of a complete set of waves
with random amplitudes and phases [2,3], or equivalently,
of the eigenvectors of a Hermitian matrix with random
entries, according to random matrix theory (RMT) [4,5]. Due
to a number of applications (quantum information theory
[6–8], classical [9,10] and quantum optics [11–13], quantum
transport [14,15], etc.), as well as to equally many theoretical
issues (see, for example, [16–18]), the quantum chaos com-
munity is largely focused at present on the behavior of open
systems [19].

In this paper, we address one of the simplest theoreti-
cal questions, namely whether and how the wave-function
statistics deviates from the predictions of the random wave
assumption as we perturb a chaotic system with a single-
channel opening. As the main result of our investigation,
we found numerically that the overall wave-function intensity
distribution at the location of the opening does change from
the RMT-expected χ2 shape to a longer-tailed curve, which
is analytically described using perturbation theory. Physically,
this implies that localization occurs at the opening. In our
theory, the opening can be an arbitrary state |a〉 in the Hilbert
space; however, in most of our testing models we take it as a
coherent state in the phase space.

Deviations of the wave-function statistics from RMT
have been observed before in real space: for time-reversal-
symmetric systems, it was conjectured [20] and then shown
analytically and experimentally [21] that the distribution of
the wave functions at the leads smoothly crosses over from
Porter-Thomas to Poisson distribution with the coupling to
the opening. Although there was no explicit mention of
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localization, the wave-function distribution for a two-channel
opening was found to be an inverse square root, of much
slower decay than the RMT prediction. In a later work [22],
this behavior was related to the correlations between real and
imaginary parts of the wave function, which may depend in
general on the underlying classical dynamics.

On the other hand, real- and phase-space localization have
been detected in closed systems in correspondence with the
so-called scars [23,24]. Within that framework, the distribution
of the intensities on an unstable periodic orbit was found to
decay more slowly than the RMT-expected distribution [25],
due to the phenomenon of constructive interference. This is
not our case: in order to rule out scarring, we place our probe
states away from periodic orbits. Still, the localization found
for weak coupling to the opening does hold in the semiclassical
limit, which makes us think of a classical effect.

Successively, we follow the evolution of the wave-function
statistics of the quantum map for strong coupling to the open-
ing. As a result, the intensity distribution becomes separated
into several long-lived- and a few short-lived eigenstates. We
show that their intensities are proportional to their decay
rates, arguing that this quantum effect can be explained
with the existing theories on resonance trapping [26,27]. In
particular, the intensities of the long-lived states depend on the
escape rates through a linear relation akin to the Breit-Wigner
law [3].

In the second part of the paper, we perform analogous
simulations on the classical cat map, and, by looking at the
statistics of the eigenfunctions of the classical propagator
(Perron-Frobenius operator [28]), we find the deviation from
the closed system to be similar to the quantum case for weak
coupling to the opening. This observation corroborates the
hypothesis of a classical mechanism behind localization in
this regime. On the contrary, we show that a strongly coupled
opening does not result in resonance trapping, which makes
the classical setting substantially different from the quantum
setting in this regime.

The paper is organized as follows: In Sec. II A we
calculate the deviation of the wave-function statistics from
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an exponential distribution due to a single-channel opening
by using first-order perturbation theory. In Sec. II B we verify
the theoretical expectation using random Hamiltonians drawn
from the Gaussian unitary ensemble (GUE) [5], and succes-
sively on the eigenfunctions of the quantized cat map [29].
Section II C deals with the strong-coupling regime: we analyze
the proportionality between escape rates and intensities, while
we account for the localization patterns of left and right
fastest-decaying eigenfunctions in Sec. II D. In Sec. III we
introduce the Perron-Frobenius operator of the same test map
as a classical propagator, and we demonstrate numerically an
analogous deviation from RMT of its eigenfunction statistics
for both weak and strong couplings to a small opening in the
phase space. A summary and conclusions are given in Sec. IV.

II. WAVE-FUNCTION INTENSITY DISTRIBUTION

A. Theory

Suppose H0 is a GUE Hamiltonian. Since its eigenfunctions
are complex valued, their intensities x = |〈a|ψ0〉|2 at a certain
state |a〉 follow the exponential distribution [3]

P (x) = e−x. (1)

Now we open the system at |a〉 [18],

H = H0 − i
�

2
|a〉〈a|, (2)

and ask how the distribution of intensities z = |〈a|ψ〉|2 is
changed with respect to the exponential, when � is small
enough. By using perturbation theory [30–33], we expand the
amplitudes 〈a|ψ〉 in first order as

〈a|ψn〉 � 〈
a|ψ0

n

〉 − i�
〈
a|ψ0

n

〉 ∑
p �=n

|〈ψ0
p|a〉|2

2(En − Ep)
. (3)

Left and right eigenfunctions are generally distinct for the
non-Hermitian operator (2), but they are just the complex
conjugate of each other in the first-order perturbation regime.
We recognize two uncorrelated quantities: ξ ≡ 〈a|ψ0

n〉, whose
real and imaginary parts are Gaussian distributed, and η ≡∑

p �=n

|〈ψ0
p |a〉|2

2(En−Ep) , following

P1(η) ∝
(

1

1 + γ 2η2

)2

(4)

with γ = �Eπ−1, and �E the average level spacing of
H0 (see the derivation in Appendix and [30]). We seek
the distribution of the variable z ≡ |〈a|ψ〉|2 = ξ 2 + �2ξ 2η2,
namely

P (z) =
∫

dξ dη δ(z − ξ 2 − �2ξ 2η2)P0(ξ )P1(η)

= 2γ

π

∫
dη e−z/(1+�2η2)

(1 + γ 2η2)2(1 + �2η2)
, (5)

where P0(ξ ) ∝ e−ξ 2
. We immediately see that its expectation

value

〈z〉 = �2 + γ 2

γ 2
(6)

FIG. 1. (Color online) (a) Rescaled sample distributions of the
overall wave-function intensities P (z = |〈a|ψ〉|2) in a logarithmic
scale, obtained diagonalizing several realizations of a GUE Hamilto-
nian, for N = 16 384 (dots, 8 realizations), N = 4096 (diamonds, 18
realizations), N = 200 (squares, 600 realizations), and loss parameter
� = 0.5; solid and dashed lines are the theoretical expectation (5)
and the exponential distribution (1), respectively. (b) The same
analysis with the quantum cat map (14): N = 4096 (diamonds, 28
realizations), N = 200 (squares, 600 realizations), and � = 1.

always exceeds unity, meaning the opening produces a longer
tail than the exponential distribution (1) we started with, and
therefore a certain amount of localization of the probability
density occurs.

B. Numerical tests

We now verify the theoretical intensity distribution (5) first
by diagonalizing multiple realizations of the non-Hermitian
Hamiltonian (2), where both H0 and the amplitudes 〈a|ψ0

n〉
are drawn from the Gaussian unitary ensemble (GUE). The
resulting probability distribution for the wave-function intensi-
ties |〈a|ψ〉|2 in the first-order perturbation regime agrees with
the expression (5) as shown in the example of Fig. 1(a). The
dimension of the Hilbert space chosen ranges from N = 200
to 16 384, suggesting that the result holds in the semiclassical
limit. We will go back to this issue in Sec. III.

Figure 1(b) shows that our prediction for a perturbed GUE
Hamiltonian also fits the distribution of the wave-function
intensities of the quantized kicked cat map with a small
opening. The classical evolution of the cat map reads [29,34]

Fε = F0 ◦ Mε, (7)
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with

F0 :

(
q ′
p′

)
=

(
1 1
1 2

)(
q

p

)
mod 1 (8)

and

Mε :

(
q ′
p′

)
=

(
q − ε sin(2πp)

p

)
mod 1. (9)

The quantization of the map is given by [29,35]

Uε = U0Vε, (10)

where

〈qj |U0|qk〉 = N−1/2eiπ/4e2πNi(q2
j −qj qk+q2

k /2) (11)

and

〈qj |Vε |qk〉 =
∑
pm

1

N
eNi(−ε cos 2πpm+2π(qj −qk )pm). (12)

The quantization of the linear map (8) is known to possess
pseudosymmetries [36] that cause the spectral statistics to
deviate from the circular unitary ensemble (CUE), hence the
use of the perturbation (9) to restore the RMT behavior. Here
the opening is a minimum-uncertainty Gaussian wave packet

〈q|a〉 =
(

1

π�2

)1/4

e−(q−q0)2/2�+ip0(q−q0)/�, (13)

whose center (q0,p0) is chosen at random on the unit torus (the
scar at the origin [34,37] is carefully avoided). The nonunitary
propagator is realized by replacing Uε of (10) with [18,37]

U =
(

1 − �

2
|a〉〈a|

)
Uε. (14)

All the steps of the derivation of Eq. (5) would still hold in this
case, except for Eq. (4), since the quasienergies of the cat map
follow the statistics of the CUE instead of the GUE’s. Still,
both are asymptotically equivalent for N → ∞ [5]. In our
simulations, we alternatively set N = 200 and 4096, and we
produce an ensemble statistics of over 105 states by repeatedly
diagonalizing the matrix (14) over different values of the kick
strength ε, chosen at random within the range [0.1,0.2].

C. Strong coupling to the opening

When we further increase the coupling � in the propagator
(14), the curve (5) no longer fits the numerical data, as we
leave the perturbation regime. Few short-lived left eigenstates
are localized on the opening, while the rest are characterized
by intensity suppression together with small decay rates.
We will clarify the localization patterns of left and right
eigenfunctions in Sec. II D, while we focus for the moment
on the left ones. The overlaps between the open region and
the eigenstates are presented as a function of the decay rate
in Fig. 2(a), reminiscent of the so-called “resonance trapping”
effect [26,27,38–44], whose main results we summarize as
follows.

Consider the complex eigenvalues of H , En − iγn, γn

being the decay rates. It has been observed and explained
[27,39] that when the overall loss w = ∑

n γn is greater than
the energy range �E where the levels are located, there
exists one particularly short-lived state |ψ1〉, having a decay

FIG. 2. (Color online) (a) Overlaps between the opening and the
left eigenfunctions of the quantized cat map vs decay rates γ , showing
the resonance trapping effect. (b) The linear part of the data is well
described by Eq. (18); here � = 2

√
2.

rate γ1 = w − O(�E/w), while the rest of the modes have
γn�=1 = O(�E/w), so that they are “trapped” near the real
axis, although still complex-valued. We will now use this
property together with a P -Q projection formalism to explain
the linear dependence of the intensities |〈φn�=1|a〉|2 on the
decay rates in this regime. Let PHP be the projection of
the Hamiltonian onto the fast-decaying state, P = |ψ1〉〈φ1|,
and let QHQ be the projection on the remaining states,
Q = ∑

n�=1 |ψn〉〈φn|. We first write an eigenvalue of QHQ
as

(Ej− iγj )=〈φj |QHQ|ψj 〉

=〈φj |QH0Q|ψj 〉− i
�

2
〈φj |Q|a〉〈a|Q|ψj 〉. (15)

On the other hand, we know that QHQ is almost Hermitian, so
that, to a very good approximation,

(Q|ψj 〉)† = 〈φj |Q. (16)

We can now recognize the eigenvalues as

Ej − iγj � 〈φj |H0|φj 〉 − i
�

2
|〈a|φj 〉|2, (17)

where the first term is the expectation value of a Hermitian
operator, hence a real number, and therefore

γj = �

2
|〈a|φj 〉|2, (18)
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FIG. 3. Husimi distribution of the fastest decaying eigenstate of
the quantized cat map. Top: for the closed system; bottom: the left
and right eigenfunctions of the same state, for the open map with loss
parameter � = 2

√
2. The opening is placed exactly at the position

where the Husimi distribution of the left eigenfunction is localized.

so that we “return” to a Breit-Wigner kind of law, as verified
in Fig. 2(b) for the simulations of the cat map.

D. Left and right eigenfunctions

We notice that in the strong-coupling regime, the left and
right eigenfunctions of the propagator (14) are well distinct.
In particular, we show in Fig. 3 the Husimi distributions of the
fastest-decaying eigenstates, whose left eigenfunctions only
are supported on the opening. This is explained as follows:

The discrete-time evolution operator (14) is indeed split into
unitary evolution U0 and a projection describing the opening,
Po = 1 − |a〉〈a|, so that U = PoU0. Given the eigenvalue λj

and its eigenfunctions 〈φj | and |ψj 〉,
〈φj |PoU0|x〉 = λ∗

j 〈φj |x〉,
(19)〈x|PoU0|ψj 〉 = λj 〈x|ψj 〉.

The projection Po acts first on the left eigenfunction, so that in
order for the loss to be maximal, the amplitudes 〈φj |x〉 should
be supported on the opening, in our case the coherent state |a〉.
On the other hand, the unitary propagator U0 acts first on the
right eigenfunction |ψj 〉: in one time step we approximate the
quantum evolution with the classical map F (x), and

|〈x|U0|ψj 〉|2 � |F [ψj (x)]|2, (20)

so that the decay rate is highest if |ψj 〉 is supported on the
classical preimage of the opening, F−1(o) [37,45] (Fig. 3).
The localization patterns of left and right eigenfunctions will
differ most when they occur where the system is more sensitive
to initial conditions, typically away from fixed points or
stable/unstable manifolds of the classical map.

In general the outcomes depend on how the propagation
and the loss are arranged, which is usually U = PoU0 as in
our model, but they can be inverted sometimes [46].

III. CLASSICAL SYSTEM

In this section, we consider a classical chaotic map with a
small opening, again looking for deviations from RMT of the
sample distributions of the wave-function intensities, properly
defined. The idea is to fit the numerical data with analytic
formulas obtained equivalently to (5) in the perturbation
regime, and then to extend the analysis to a strongly coupled
opening, as is done in the quantum setting.

Using the density operator ρ̂, the wave-function intensities
in the quantum regime can be written as

|〈a|ψ〉|2 = 〈a|ρ̂|a〉. (21)

Here ρ̂ obeys the Liouville–von Neumann equation [47]

i�∂t ρ̂ = [H,ρ̂], (22)

whose classical analog is [48]

∂tρ = {H,ρ}. (23)

The classical Liouville propagator can be written as

Ut
cl = eiL̂t , (24)

where L̂ = {H,·} is the Liouville differential operator. In the
Hamiltonian case, L̂† = −L̂, and therefore the evolution (24)
is unitary. The classical evolution operator is supported on a
space of generalized functions, and its spectrum has a discrete
and a continuous part (Stone’s theorem); all the eigenfre-
quencies lie on the unit circle. In particular, ergodic and
mixing systems only have one isolated eigenvalue, eiω0 = 1,
while the rest of the spectrum is continuous [49].

In reality, every system experiences noise, coming, for
example, from uncertainties or roundoff errors. However
small, noise breaks unitarity and changes the spectrum of
the Liouville propagator, from continuous to discrete [50].
The (“leading”) unit eigenvalue is still there, but the rest of
the spectrum moves inside the unit circle. Because of the
noise, the propagator acquires a smooth kernel [51], which
makes the eigenfunctions also smooth. In a closed system,
the ground-state eigenfunction of an eigenvalue equal to unity
(natural measure) is real and positive-definite, the density to
which all initial conditions asymptotically converge. The other
eigenfunctions are in general complex and called “relaxation
modes,” as they are associated with the decay of correlations
[28]:

〈g|L|f 〉 =
∑

e−γn〈g|ρn〉〈ρ̃n|f 〉. (25)

The classical-to-quantum correspondence was studied by
Fishman and co-workers [52,53], who found that the formal
solution to the classical Liouville equation, called the Perron-
Frobenius operator [here x = (q,p)],

(Lt ◦ ρ)(x) =
∫
M

dx0 δ
(
x − f t (x0)

)
ρ(x0,0), (26)

when discretized, effectively behaves like the weakly noisy
operator, and it has the same spectrum as the quantum
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propagator of the Wigner function in the classical limit (a
similar result was shown in [54]).

Based on that, we can say that the noise introduced by
the discretization washes out the fine details of the chaotic
dynamics, and makes the random-wave assumption hold for
the eigenfunctions of (26). These are smooth and complex
valued (in the phase space), and therefore their squared
magnitudes (“intensities”) |ρn(x)|2 follow a χ2 distribution.
Ideally, the classical limit of the minimum-uncertainty wave
packet would correspond to just one cell of the phase-space
discretization. Here we want to repeat the analysis carried
in the quantum setting and appreciate the difference in the
statistics of the eigenfunctions from the closed to the open
system. We believe this is done most effectively by taking
the sum of the square magnitudes over a small phase-space
interval, as

ξn =
∫
Mo

dx0

∫
dx|ρn(x)|2δ(x − x0), (27)

which is the overlap of |ρn(x)|2 with a δ function [classical
limit of the coherent state |a〉 of Eq. (13)] supported on the
probing region Mo. The quantum analog of Eq. (27) would
be

∑
a′ |〈a′|ψ〉|2 over a number of probe states. In that case,

the probability density P (
∑

a′ |〈a′|ψ〉|2) for the unperturbed
system is a χ2 distribution with M degrees of freedom,

PM (ξ ) = ξM/2−1e−ξ/2

�
(

1
2M

)
2M/2

, (28)

which becomes a Gaussian as M → ∞.
We then perform numerical simulations on the classical cat

map (7): the Perron-Frobenius operator is discretized with the
Ulam method [55],

[L]ij = 1

|Mi |
∫
Mi

dx

∫
Mj

dy δ(y − f (x)) . (29)

The entries [L]ij are estimated using a straightforward Monte
Carlo technique [56], based on counting how many trajectories
starting from each Mj land in Mi . A partial opening is
realized by randomly decreasing the number of trajectories
that start from the hole, which overall covers a tiny 1% of
the available phase space. The 104 × 104 matrix (29) is then
diagonalized. Figure 4(a) shows a fast-decaying eigenfunction
peaked in correspondence with the hole, as an extreme case

FIG. 4. (Color online) Absolute values of (a) a fast- and (b) a
slow-decaying eigenfunction of the evolution operator (26) for the
open cat map (7), with the hole located in the square [−0.4, − 0.3] ×
[−0.2, − 0.1], obtained diagonalizing a 104 × 104 discretization
(29). The manifold structure of the cat map is shown in (b).

FIG. 5. (Color online) Sample distributions of the intensities ξ

[given by Eq. (27)] of the eigenfunctions of the Perron-Frobenius
operator for the cat map (7): diamonds, closed system; filled dots,
25% partial opening; squares, 50% partial opening; empty dots, 75%
partial opening; dashed curve, Eq. (28) rescaled to the data set, where
the number of degrees of freedom has been fitted from the data to
M = 46; solid curve, Eq. (32) with M = 46, while �̃ = 1 is fitted
from the data. Inset: full opening at the same location; the peak at the
tail is due to the instantaneous-decay states.

of density enhancement at the opening. We then measure the
statistics of the intensities (27) in both the closed and open
systems (Fig. 5): while the sample taken from the closed
system agrees with the law (28) (M is fitted from the data),
the “intensities” on the opening exhibit a longer tail, as in
the quantum regime. We qualitatively account for this obser-
vation by performing the convolution (5) on the unperturbed
distribution (28), this time in M degrees of freedom,

P (z) ∝
∫

rM−1dr dη δ(z − r2 − �̃2r2η2)e−r2/2PM (η), (30)

where r2 = ∑
x |ρn(x)|2 (here x is discretized by our grid),

while the perturbation η follows [30]:

PM (η) ∝
(

1

1 + γ 2η2

)1+M/2

. (31)

The outcome is

PM (z) = CM

∫
dη

zM/2−1e−z/2(1+�̃2η2)

(1 + �̃2η2)M/2(1 + γ 2η2)1+M/2
, (32)

where γ = π−1, CM = 2−1−M/2M

π3/2�( 1+M
2 )

, while �̃ is fitted from

the sample distribution. Figure 5 also shows two sample
distributions of the intensities obtained for stronger couplings
to the opening, away from the perturbation regime:
importantly, the trend of a flatter curve with a longer tail stays
qualitatively the same, indicating an increasing number of
fast-decaying states. A full opening introduces a number of
instantaneous-decay states [45] that completely localize on
the hole. That generates a peak at the very tail of the sample
distribution, whose shape remains otherwise qualitatively the
same as for the partial openings (inset of Fig. 5, note the scale).
As seen, the quantum system in the same regime behaves
differently, as the states that do not decay instantaneously
are instead long-lived, and the overall intensity distribution is
consistent with the resonance-trapping picture.
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We may now give an interpretation of our findings. An open
system, be it classical or quantum, must allow for some fast-
decaying initial conditions, among the others. Densities and
wave functions must be expressible in terms of the eigenstates
of the linear operators we are using. As a consequence, some of
these eigenstates also decay fast and are more concentrated on
the opening and its preimages [45]. For weak coupling, both
classical and quantum simulations fit this physical picture,
and they behave likewise. Moreover, the calculated deviations
of the intensity distributions from the RMT results all rely on
perturbation theory, which can be applied to any linear operator
with a discrete, nondegenerate spectrum. That is the case for
both the quantum Hamiltonian/propagator and the discretized
classical evolution operator.

On the other hand, classical and quantum systems behave
differently when strongly coupled to the opening, the latter
only displaying resonance trapping, while the former does not
show any signatures of mode interaction.

IV. SUMMARY

We have shown the following:
(i) The overall wave-function intensity distribution of a

random (GUE) Hamiltonian and a quantized chaotic map
deviates from the predictions of RMT, when a weakly coupled,
single-channel opening is introduced. The result holds in the
semiclassical limit.

(ii) By further increasing the coupling to the open channel
in our model, few states localize on the opening particularly
strongly and decay fast, while the rest show the opposite
behavior, i.e., slow decay together with intensity suppression at
the opening. Using well-known results in the context of the res-
onance trapping effect, we derived a linear relation between the

intensities of the long-lived states and their decay rates, similar
to the Breit-Wigner law. In this framework, we also showed
that the difference in the localization patterns between fast-
decaying left and right eigenfunctions can be recognized as an
artifact, inherent in the construction of open quantum maps.

(iii) Analogous simulations of the discretized classical
evolution operator result in a deviation of the intensity
distribution from the RMT expectations akin to what is
observed in the quantum setting, when the coupling to the
opening is weak enough for perturbation theory to be valid.
A stronger coupling to the opening increases the number of
fast-decaying states, so as to obtain a longer-tailed intensity
distribution, very different from the resonance trapping
observed in the quantum simulations.
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APPENDIX: DERIVATION OF EQ. (4)

We start from the joint probability distribution [30] of η =∑
p �=n

|ξ |2
En−Ep

and ζ = ∑
p �=n

|ξ |2
(En−Ep)2 ,

P (η,ζ ) ∝ (1 + γ 2η2)M

ζ 2+3M/2
e
− Mπ

2γ ζ (1+γ 2η2), (A1)

with M number of degrees of freedom. We simply integrate
over ζ to obtain the distribution of η, in one [Eq. (4)] or M

[Eq. (31)] degrees of freedom.
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