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In this paper, a simple and constructive method is presented to find the generalized perturbation (2, M)-fold
Darboux transformations (DTs) of the modified nonlinear Schrodinger (MNLS) equation in terms of fractional
forms of determinants. In particular, we apply the generalized perturbation (1, N — 1)-fold DTs to find its explicit
multi-rogue-wave solutions. The wave structures of these rogue-wave solutions of the MNLS equation are
discussed in detail for different parameters, which display abundant interesting wave structures, including the
triangle and pentagon, etc., and may be useful to study the physical mechanism of multirogue waves in optics.
The dynamical behaviors of these multi-rogue-wave solutions are illustrated using numerical simulations. The
same Darboux matrix can also be used to investigate the Gerjikov-Ivanov equation such that its multi-rogue-wave
solutions and their wave structures are also found. The method can also be extended to find multi-rogue-wave

solutions of other nonlinear integrable equations.
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I. INTRODUCTION

In general, it is difficult to directly seek exact solutions
including solitons of nonlinear wave equations in the soliton
theory and integrable system. If one can find a proper Lax
pair [1] of a nonlinear wave equation, then, based on its
Lax pair, one may find its solutions by means of some
transformations such as the inverse scattering transformation
[2—-4], the Riemann-Hilbert scattering method [5], the Darboux
transformation [6—8], and so on. The Darboux transformation
[6-8] is regarded as a powerful approach to study solutions of
nonlinear integrable systems in terms of their corresponding
Lax pairs, which originally arose from Darboux’s study [9] of
the linear Sturm-Liouville equation, ¥, + [A — u(x)]¥ = 0,
which is also called the linear Schrodinger equation with
the external potential in quantum mechanism. Until now, the
Darboux transformation has been used to investigate many
types of solutions of nonlinear integrable equations, including
multisoliton solutions, breathers, periodic solutions, and ra-
tional solutions. In fact, the Darboux transformation exhibits
different forms in nonlinear integrable systems, in which the
following three main types of Darboux transformations were
usually used: the Darboux transformation without the Darboux
matrix (see, e.g., Ref. [10]) [Type ()], the Darboux transfor-
mation with the iteration Darboux matrix (see, e.g., Ref. [6])
[Type (ii)], and the Darboux transformation with the N-order
Darboux matrix whose elements being the polynomials of the
spectral parameters (see, e.g., Refs. [7,8]) [Type (iii)].

Recently, the modified Darboux transformation related to
Type (i) was used to find multi-rogue-wave solutions of the
self-focusing nonlinear Schodinger (NLS) equation from the
initial plane-wave solution [11]. Moreover, the generalized
Darboux transformation related to Type (ii) with the initial
plane-wave solution was also used to investigate multi-rogue-
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wave solutions of the self-focusing NLS equation [12]. In fact,
there exist some other methods to study rogue-wave solutions
of many nonlinear wave equations with constant or varying
coefficients (see, e.g., Refs. [13—17]). It is still an important
topic to present more powerful and simple methods to find
other types of solutions including multi-rogue-wave solutions
of nonlinear integrable equations.

To the best of our knowledge, Type (iii) of the Darboux
transformations and their some extensions have not been
used to investigate other types of solutions (e.g., multi-
rogue-wave solutions) of integrable equations except for their
multi-soliton-type solutions. In this paper, we will present an
approach to construct the generalized perturbation (n, M)-fold
Darboux transformation of nonlinear integrable equations
based on other Type (iii) Darboux transformations and the
Darboux matrix in terms of the Taylor-series expansion for the
parameter and a limit procedure such that their multi-rogue-
wave solutions can be obtained.

The modified nonlinear Schrodinger (MNLS) equation with
the self-steepening term is given by the form

i + qux + i(1g1*Q)x +201q17q = 0, (1)

where ¢ = g(x,t) is the slowly varying complex envelope of
the wave, p is areal constant, and i> = —1, where the subscript
denotes the partial derivative with respect to the variables
x, t and the term i(|g|?q), is called the self-steepening term,
which causes an optical pulse to become asymmetric and
steepen upward at the trailing edge [18,19]. When p =0,
Eq. (1) reduces to the Kaup-Newell type of the derivative
NLS equation [20]. In fact, Eq. (1) can also reduce to the
derivative NLS equation via a gauge transformation [21].
Equation (1) describes the short pulses propagate in a long
opticaj fiber charaterized by a nonlinear refractive index
n(w,E) = n(w) + ny|E|* [22]. Equation (1) can also be used
to describe Alfvén waves propagating along the magnetic field
in cold plasmas [23] and the deep-water gravity waves [24].
Equation (1) was also called the perturbation NLS equation
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[25]. Equation (1) was shown to be completely integrable
by the inverse scattering transformation [26]. The dynamics
of optical solitons with initial phase modulation was studied
[27]. The projection matrix method combining the Daroux
transformation and the Riemann-Hilbert problem was used
to derive the DT and Bécklund transformation for Eq. (1)
such that a new solution was obtained [28]. Its N-soliton
solutions were also obtained in terms of the generalized
Zakharov-Shabat equation [29] and the bilinear method [30].
Moreover, multiple pole solutions of Eq. (1) were also found
[31]. Equation (1) and its higher-dimensional case were also
studied analytically or numerically [32-35]. Recently, some
rogue-wave solutions of the derivative NLS equation have been
investigated [36].

In this paper, we will further investigate multi-rogue-wave
solutions of Eq. (1) via the generalized perturbation (n, M )-fold
Darboux transformation technique, which is a simple and
constructive method. Moreover, this method, with the same
formal Darboux matrix, can also be applied to investigate
multi-rogue-wave solutions of the Gerjikov-Ivanov equation
[37]

. . D% 1 4

i9r + gxx —iq°q; + 3lq"q = 0. 2
The rest of this paper is organized as follows. In Sec. II,
we will give a brief introduction of Type (iii) of N-fold DT

¢x=U§0aU=(
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for Eq. (1) based on the Lax pair in Ref. [28]. In Sec. III,
we present an idea to derive the generalized perturbation
(1,N — 1)-fold (using one spectral parameter) and (n,M)-
fold (using n spectral parameters) Darboux transforma-
tions for the MNLS equation (1) by means of the Taylor
expansion and a limit procedure related to the N-fold
Darboux matrix. In particular, the generalized perturbation
(1,N — 1)-fold Darboux transformation is used to exhibit
its multi-rogue-wave solutions. Moreover, we analyze the
wave structures and dynamical behaviors of the multi-rogue-
wave solutions for differential parameters using the numer-
ical simulations. In Sec. IV, we illustrate the multi-rogue-
wave solutions of the Gerjikov-Ivanov equation [Eq. (2)] in
terms of its generalized perturbation (1, N — 1)-fold Darboux
transformation. Finally, we will address the conclusions in
Sec. V.

II. THE N-FOLD DARBOUX TRANSFORMATION

In the following we first give the N-fold Darboux trans-
formation of Eq. (1) in order to present our main aim, i.e., its
generalized perturbation (n, M)-fold Darboux transformation
presented in Sec. III. The modified NLS equation (1) is just a
zero-curvature equation U, — V, + [U, V] = 0with [U, V] =
UV — VU and two 2 x 2 matrices U and V satisfying the
linear isospectral problem (Lax pair) [28],

iy g
itm '3w> 3)
—2i( —p)’ il
x * . 2,
O+ ML i n(h - ) il

“

where ¢ = ¢(x,1) = (¢p(x,1),¥(x,1))" is the complex eigenfunction; A € C is the spectral parameter; ¢ = g(x,7) denotes the
complex potential and is also the solution of Eq. (1); the subscript denotes the partial derivative with respect to the variables x, #;
and the star stands for the complex conjugate of the corresponding variables.

In what follows, we introduce the gauge transformation

o=Ty, Q)

where ¢ = (¢, Y)T satisfies the Lax pair (3) and (4), T is a 2 x 2 Darboux matrix to be determined later, and ¢ =q¢(x,t)=
(q)(x 1), W(x N is required to satisfy the same formal Lax pair (3) and (4) with U and V replaced by U and V, that is,

I A/
G=0p U= " ), 6)
=5 e
- . 22i(L = p)* 4l 2L — o) — BT 4T
~t _ V(Z, V _ ()\2 ) 22 (A} A) A A i (7)

where ¢ = ¢(x,r) is a new potential function and g* is its
complex conjugate.
Therefore, according to the compatibility condition @, =

@rx due to Egs. (6) and (7) we have

T, + [T, {U,U}] =0, (8a)
T, +[T,{V,V}] =0, (8b)

where we have introduced the generalized Lie bracket
[F.{G, G}] =FG—GF.In particular, the generalized Lie
bracket reduces to the usual Lie bracket [F,{G, G} [F,G]
for the case G = G.

Therefore we have

U —-Ve+[U.VI=TWU -V, +[U. VDT =0, (9
which yields the same equation (1) with ¢ — ¢, i.e., ¢ in the
new spectral problem (6) and (7) is a solution of Eq. (1).
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Hereby we assume that the Darboux matrix 7'(1) is of the form

N=1 42j)32j
Ti(h) _ [V” + Xy ACAY

T®= |:T21()»)

with the complex functions A?? and BU*+D (j =0,1,...,N — 1) solving the linear algebraic system T (A;)@r(Ax) = 0 (k =
1,2,...,N),ie.,

(10)

T12(A)
Tn(X)

N=1 p@2j+1)y2j+l

Zj:() BQRi+1)2i j|
N=1 p@j+1)*y2j+1 2N N=1 4@2j)*y2j |

_Zj:OB(J )*22J A +Zj=0A(j))\‘j

N-1 N—1

}"zN + Z A(ZJ)()\k))‘-ij Wl()tk) + Z B(2j+l)()\k))\.ij+l(p2()"k) = 0, (11)
j=0 j=0
N-1 ' N-l .
=Y B 0 010w + | A2 + Y AN @20) =0, (12)
j=0 /=0

where (M) = (D), Ve )T = (¢, )T (k = 1,2, ...,N) is a solution of the spectral problem (3) and (4) for the given
spectral parameters A; and the initial solution go. The spectral parameters Ax (A; # A;,i # j,i = 1,2,...,N) are some different
parameters suitably chosen such that the determinant of coefficients of Eqs. (11) and (12) for the 2N variables A?), B@/+D (j =
0,1,...,N — 1) are nonzero. It can be shown that £A;, = A} (k =1,2,...,N) are the 4N roots of detT'(A) = 0 in terms of
Egs. (11) and (12), i.e.,
N
det7T(1) = [T (»* = 20) (3> = 27?).
k=1
The substitution of Eq. (10) into Egs. (8a) and (8b) with the conditions (11) and (12) yields the following theorem for the N-fold
Darboux transformation of Eq. (1).
Theorem 1. Let o1(11), 2(X2), ..., on(Ay) be N distinct column vector solutions of the corresponding spectral problem (3)
and (4) for the spectral parameters A1, Ay, ..., Ay and the initial solution go(x,?) of Eq. (1), respectively. The N-fold Darboux
transformation of Eq. (1) then is given by

13)

(2N-1)
N (D) = ol 1) + ———— — 2ipBNY, (14)
X

. _ (2N-1)
with BV D(x,1) = 85—,

MU M P e Wy A3

Ag(N71)¢2 N D, L 22Ny 25Ny ()

A )»%N_])fﬁzv AN Dy on AN Tlyy ANy YN

N — _ _ _ _ ’
)\'T(Z(N l)l//ik )\.1*2(1\/ Z)Ip.ik o 1//.1* _)\'T(ZN 1)¢l _)"T(ZN 3)¢~ik _¢ik
)\;2(1\/*1)1#2* )\-Z*Z(N_z)l/fz* _(pz* _)\;(ZN*I)d)Z _A;(2N*3)¢>2k _¢;
2(N—1 — 2N—1 2N-3
T B S R S I S ~b%

In the next sections, we will discuss the generalized
perturbation (n,M)-fold DT and multi-rogue-wave solutions
of Egs. (1) and (2) through the Taylor expansion and a limit
procedure.

and AB?N~V is given by the determinant Ay by replacing its
(N + 1)-th column with the column vector [—)»%Ncbl, —)@N b2,
2 % 2 * 2 *
ey =AW gy, =AM SN PNy T
Notice that when p = 0, the DT (14) reduces to the DT of
the derivative NLS equation, which differs from the known DT

[37,38]. The N-fold Darboux transformation with the initial IIl. GENERALIZED PERTURBATION (1, M)-FOLD

solution gy = 0 (or gy is an initial plane-wave solution) can be
used to seek multisoliton solutions (or breather solutions) of
Eq. (1). This is not the main aim of our paper. Our aim is to
extend the N-fold DT to generate the generalized perturbation
(n,M)-fold DT such that multi-rogue-wave solutions of Eq. (1)
are found in terms of determinants.

DARBOUX TRANSFORMATIONS AND
MULTI-ROGUE-WAVE SOLUTIONS

In the following we first choose Eq. (1) as an example to
investigate the “novel” generalized perturbation (n,M)-fold
DTs in applications of nonlinear integrable equations. In fact,
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this idea can also be extended to other nonlinear integrable
equations and differs from the known ones [11,12].

Nowadays, to study other types of solutions of Eq. (1)
such as multi-rogue-wave solutions, we need to change some
functions A?) and B% =V (j = 0,1,...,N — 1) in the above-
mentioned Darboux matrix 7 given by Eq. (10) and initial
solution ¢g¢ such that we may obtain other types of solutions
of Eq. (1) in terms of some generalized DTs.

A. Generalized perturbation (1, N — 1)-fold Darboux
transformation method

Here we still consider the Darboux matrix (10), but we only
consider one spectral parameter . = A; and not N (N > 1)
distinct spectral parameters A = A (k = 1,2, ...,N),in which
the condition T (A;)@(A;) = 0 leads to the linear algebraic
system with only two equations:

N-1
WV YA 1 e0n)
j=0
N-1 .
+ Y By =0, (15)
j=0
N-1 .
)‘«T(ZN)‘l_ ZAQ]))"T(ZJ) 1!/*()\‘1)
j=0
N—1 )
_ Z B(21+1))"T(21+1)¢*()‘-l) — O, (16)
j=0

where (A1) = (¢(A1),¢(A1))T is a solution of the linear
spectral problem (3) and (4) with the one spectral parameter
A = A and the initial solution go(x,?) of Eq. (1).

For the two linear algebraic equations (15) and (16)
containing 2N unknown functions A?) and B®*D (j =
0,1,...,N — 1), we have two cases for the parameter N:

PHYSICAL REVIEW E 92, 012917 (2015)

can not obtain the different functions A and B comparing
from the above-mentioned onefold DT such that the “new”
solutions cannot be found; and

(i) If N > 1, then we have 2(N — 1) > 0 free functions
for A®) and B®+V (j =0,1,...,N — 1). This means that the
number of the unknown variables A?/ and B?/*V is larger
than one of equations such that we have some free functions,
which seems to be useful for the Darboux matrix, but it may
be difficult to show the invariant conditions (8a) and (8b).

For the case N > 1, we only have two above-given
algebraic constraints (15) and (16) for 2N functions A/
and B%*V (j =0,1,...,N — 1). To determine these 2N un-
known functions A@") and B@/*D, we need to find additional
2(N — 1) equations about 2N functions A?) and B®/*D
such that we have 2N equations about 2N functions A®?/)
and B% ¥V, in which we may determine them. If we can
determine these 2N functions A?/ and B?/*D then we may
obtain “new” solutions of Eq. (1) in terms of the Draboux
transformation.

Now we start from Egs. (15) and (16), i.e., T (A1)¢(r1) = 0.
It follows from Eq. (10) that 7;; (i = 1,2) are two polynomials
of degree 2N for A; with the coefficients being A/ and
T;; (i # j,i,j = 1,2) are two polynomials of degree 2N — 1
for A; with the coefficients being B?/*1. Since ¢(1) is a
column vector solution of the spectral problem (3) and (4) for
the given spectral parameters A; and the initial solution qo,
thus ¢(A) is a vector function with every component being a
function of parameter A;. To generate “new” additional 2(N —
1) equations from 7 (A;)@(A;) =0, we consider the Taylor
expansion of T()Ll)ga()hl)mﬁhﬂ} =T +&)p(h +¢) at
& = 0. We know that

oM +8) = P00 + V(e + P e + -, (A7)

(k 1 9 _ 1 ¥ 1 9k T
where  ¢®(h)) = ganQO(M) = (Emﬂ)\l), Em‘ﬁ()\l))

(i) If N =1, then we can determine only two complex  with Q1)) = p(r1) = (@(r1), v(1))', (k=0,1,2,...),
functions A® and B" from Egs. (15) and (16), in which we  and
|
2N N N
TOu+&) =T+ Y TP =TO) + ) THD0)e* 4> 10, (18)
k=1 k=1 k=1

where TP*~D(%,) and T?¥(1,) are given by

2%—14 2N—2k+1 N—1 ~2k—1 4(2j)y 2/—2k+1 N—1  ~2k—1 p2j+1)y 2/—2k+2
T (CZN g i +Zj:k Cyj ARDLY! Zj:k—ICZ.HlB(Z‘IH))‘l] (19)
V= N-1 “1pe) 2j-2k+2 1,208 No1 2k—1 4 (2jy%, 2—2k+1 |
_Zj:k—l C§j§+llB(2J+|)*MJ Cgfv 1)\%1\/ 2k+1 +Zj:k C%c lA(zj)*)Llj
2%k 3 2N—2k N=1 0k £(2j) 20—2k N—1 ok it1)q 2j—2k+1
T(Zk)(k ) (CZN)‘I + Zj:k CZ_]'A(ZJ))LII Zj:k C2j+lB(2]+l))”1] (20)
1= N-1 ; 2j-2%k+1 - N-1 iy ) 2j—2k
— X5 G BT oM+ 200 ALY
with C = JU=Dalizksh)
Therefore, it follows from Eqgs. (17) and (18) that we obtain
400k
TODPOD| 5, iy = TO1+ 001 +2) = DY TV0 (). @1
k=0 j=0
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Let
. T +8)p +e)
lim

e—0 &es

S e TV Gt (et
= lim
e—0 e’
=0 (s=012,...). 22)
Since we know that T(A)p(%;) = TO )@ (1) = 0 [ie.,
Egs. (15) and (16)], we have Z,‘czo ZI;ZO TOD* D) =
0 for s=1. Similarlyy, we can also get
Y o Z_];:o TPO)e*=D(A)=0 for any s > 1. Since
for every s € {0,1,2,...}, we can have two ‘algebralc
equations for unknown functions A?? and B@®/*D, thus

we choose s =0,1,...,N —1 to generate 2N algebraic
equations for these 2N unknown functions A?/ and B?/*+D
(j=0,1,....,N —1),ie,

TO0)eP0) =0,
TON)eV () + TV (1) = 0,
TOMPP ) + TPV (A1) + TP )P (1) = 0,
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in which the first vector system, i.e., T@M )@ =
T(X1)e(A1) =0, are just Egs. (15) and (16), which are
required.

Therefore we have obtained the system (23) containing 2N
algebraic equations with the 2N unknowns functions A®/)
and B%+D(j =0,1,...,N —1). When the eigenvalue A,
is suitably chosen so the determinant of the coefficients for
system (23) is nonzero, the transformation matrix 7 is uniquely
determined by system (23). It can be shown that Theorem 1
still holds for the Darboux matrix (10) with A%, B@/+D(; =
0,1,...,N — 1) being determined by system (23). Due to
new distinct functions A%, BZ/+D obtained in the N-order
Darboux matrix 7, we can derive the “new” DT with the
same eigenvalue A = A;. Here we refer to Eqgs. (14) and (5)
associated with new functions A?), B?/*1 determined by
system (23) as a generalized perturbation (1, N — 1)-fold DT.

Theorem 2. Let (A1) = (¢(r1),¥(11))T be a column vector
solution of the spectral problem (3) and (4) for the spectral
parameter A; and initial solution go(x,?) of Eq. (1). The gen-
eralized perturbation (1, N — 1)-fold Darboux transformation
of Eq. (1) then is given by

...... , @N-1)
N1 an(x,1) = qo(x,1) + —2ipB*NY,(24)
@)] (N=1-j) —
ZOT G)e (1) =0, where B®N~D is by solving the linear algebraic system
= (23) in terms of the Cramer’s rule, i.e., B®¥-D = %,
23 yith !
|
A2N=2(0) AZN=45©) . @O AN=1y, 0 AN 3,0 RS
Asy Az oo Az N1 Az N2 c 2D 4y ©
. |Awa Anp s N A v AN N+2 R A
Ay = WECN=D 0% HsCN=H O O CJHONTDGOF 3 s@NDg0F O ,  (25)
Ani21 Ani22 DT Ay Anta.N+2 A
Aoy AN o DT A v Aan N2 —)rpN DT — gD
ch;(l) C§N723)\.1(2N7257k)¢(j717k) for 1 < j, s g N,
L ]i;(l) Chy g gy M N2 10y (=10 for 1<j<N,N+1<s<2N, 26)
. IZVED ¢k g HON =2y (=N 1=hys for N+1<j<2N,1<s<N,
_ Zi;(()NJrl) C§N72s+1)‘1*(4N_25+1_k)¢(j7N717k)* for N +1 < j, s <2N
and A€ BN~V is formed from A, by replacing its (N + 1)-th column by the column vector b = (b;)an«1 with
i—1 ) 1 (—1— ,
R b Y for 1<j<N o
J _ Z}i;E)N-H) CécN)Ll*(ZN—k)I//(j—N—l—k)* for N +1 < ] < 2N.

Notice that in the name of the generalized perturbation (1,N —
1)-fold DT, the number 1 means that we use the number of the
distinct spectral parameters and N — 1 means that the sum of
the orders of the highest derivative of the Darboux matrix 7" in
system (23) or the vector eigenfunction ¢ for the used distinct
spectral parameters in Eq. (22).

(

B. Generalized perturbation (n, M)-fold Darboux
transformation method

In fact, we can also further extend the above-found generalized
perturbation (1, N — 1)-fold DT, in which we only use one
spectral parameter A = A; and its mth — order perturbation
derivatives of T'(Ay) and ¢(\;) with m; =1,2,...,N — 1.
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Here we use n distinct spectral parameters A; (i = 1,2, ... ,n)
and their corresponding highest-order m; (m; = 0,1,2,...)
perturbation derivatives, where the non-negative integers n, m;
are required to satisfy N =n+ > ;_,m; =n+ M with M =
Z;’z | mi, where N is the same as the one in the Darboux matrix
T (10).

We consider the Darboux matrix (10) and the eigenfunc-
tions ¢;(A;) (i = 1,2,...,n) are the solutions of the linear
spectral problem (3) and (4) for the spectral parameter A; and
initial solution gy of Eq. (1). Thus we have

N-1 &k

YN TG0 Gu)e

k=0 j=0

T(hi +e)pi(ri +&) = (28)

where (p(k) ) = k, axk @i(AM)|r=2,, and € is a small parameter.
It follows from Eq. (28) and

T + &)pi(hi +¢)

PHYSICAL REVIEW E 92, 012917 (2015)

with i =1,2,...,n and k; = 0,1, ...,m; that we obtain the
linear algebraic system with the 2N equations (N =n +
Y ymi=n+ M):

TG, (ki) =0,

() (n 1) (0) _
TP (L) + TV ) (A) =0, (30)

Y TO0Ne™ () = 0,

i =1,2,...,n,in which we have some first systems for every
index i, i.e., TO()p® (k) = T(A)gi() = 0 are just some
ones in system (23), but they differ if there exists at least one
index m; # 0.

Theorem 3. Let (p,()\.,) = ((ﬁi()\.l‘), wi()\,i))T (l = 1,2, . ,n)
be the column vector solutions of the spectral problem (3)
and (4) for the spectral parameters A; (i = 1,2, ...,n) and the
same initial solution go(x,?) of Eq. (1), respectively. Then the

gio ki =0 29 generalized perturbation (n, M)-fold DT of Eq. (1) is given by
|
BAN-1)
G (1) = qolx.1) + ———— = 2ip BNV, 31
x
with BCN=D = % being defined by solving the linear algebraic system (30) in terms of the Cramer’s rule, where
A = det([AD .- ATy with
— N=1 (0 2,0 0 ~1,0 2,0 0 -
A[N l¢l() )\‘IN 2¢1() d)l() )\‘.N ll/fi() )\"N 2wi() wi()
(@) (@) D (@) (@) ()]
AY) Ads é; Ad N4 AY N2 Vi
(@) @) (m;) @) (@) (m;)
A At Apisi2 ;" A1 N1 A1 42 178 32)
= “1), (O ~2) (O 0)* _1) L (O ~2) ,(O)* 0* |
@) @) (H* @) @) H*
Ar;,+3 1 Anlm-s 2 ‘/’i Anl1 +3,N+1 Arrln+3,N+2 _¢i
(@) @) (mi)* (@) (@) (mi)*
[ AdGm+10.1 Aomi+1).2 178 Adlmi+1),N+1 2m+1).N+2 -
and AS."’)S A<j<2m;+1), 1<s< Ni=1,2,...,n)being given by the following formulas:
o Chy_ag k™ 2R for 1<j<m+1,1<s<N,
AD {20 Chy g M 2y 70 for 1<j<mi+1,N+1<s<2N, -
S 3 A R ol NP Ve e for m;+2<j<20m+1),1<s<N,
= YLD Ol AN IR o my 42 < < 20mi + 1), N +1 <5 <2N
and A€B@N=D is formed from the determinant A" by replacing its (N + 1)-th column by the column vector (b - .- h()T
with 5O = (b ), +1)x1 and
./—] k 2N —k 4 (j—1=k)
B0 — o Conhi o, for 1<j<m+1, 34)
B B i v Chy AN U0 for my 42 < j < 2N

Notice that when n = 1 and m; = N — 1, Theorem 3 reduces
to Theorem 2; whenn = N andm; = 0,1 <i < N, Theorem
3 reduces to Theorem 1. In the following we will use the gener-

(

alized perturbation (1, N — 1)-fold Darboux transformation to
investigate multi-rogue-wave solutions of the MNLS equation
(1) from the initial plane-wave solution.
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C. Multi-rogue-wave solutions and parameters controlling

In this section, we give some multi-rogue-wave solutions in
terms of determinants, which differs from Ref. [12], of Eq. (1)
by means of the generalized perturbation (1, N — 1)-fold DT.
We now consider the “seed” plane-wave solution

CIO(X f) — cei[ax+(2p(‘2—acz—a2)t]

where a and ¢ # 0 are real-valued constants, a is the wave
number, and c is the amplitude of the plane wave. It is known

J

PHYSICAL REVIEW E 92, 012917 (2015)

that the phase velocity is (a + ¢ — 2pc?/a), the group velocity
is 2a + ¢?, and |qo(x,1)| = |c| # 0 as |x|,|t] = oo.

The substitution of the plane-wave solution go(x,7) into
the Lax pair (3) and (4) yields their solution for the spectral
parameter A as follows:

(CleiA + CzeA)eB i|

p() = |:l.(CleA — CyeA)eB (35

with

’

Ci=C,, C=C_,
c \/:I:[Z +A2(a — 2p)]1 4+ V/A*a —2p) +4r2a+ 2 —2p) + 4
T V2ch
/3¥a — 200 + 432a + 2 —2p) + 4 2
4 VA —2pP + 42+ 2 —2p) + [H(

212

B = —lz[ax + (2,002 —ac® — az)t],

N
Oe) = Y (b + dii)e™,
k=1

v —2p—¢c? —a>t+®(£):|,

where by,di(k = 1,2, ...,N) are real free parameters and ¢ is a small parameter.

Nowadays, we fix the spectral parameter A = A; + &2 with

N \/Z(a —20)22p —a — %+ /c2Qa — 4p + ¢?)]
1 =

(a—2p)?

s

in Eq. (35), and then we can expand the vector function ¢ in Eq. (35) as two Taylor series at ¢ = 0, because the expansion
expressions of ¢(g?) are so complicated. Here we may choose a = —1, p = 2, and ¢ = 1, in which A; = % + %i, to simplify our

calculation process. Therefore, we obtain

§0(82) — §0(0) + (p(1)52 + ¢(2)82 + ¢(3)82 4+

©)
- (2)-

where

(36)

ﬁeg(fwm
. . (37)
2~ (x4

o %e%<—x+4f>[234t2 —26x2 — 108xt + 12x + 481 — 1 4+ i(156xt — 18x2 4 1621> — 361 + 16x — 3)] 38)
= ,. ,
%e*ﬂfﬁ‘m[mzﬂ — 18x2 4 156xt — 16x + 361 — 3 + i(26x2 — 23412 + 108xt + 12x + 481 + 1)]

2) 3
o= (7 S (39)
1}”(2) ’ w@) T
and (¢©, )T = 2,3) are listed in Appendix A.
By means of Egs. (5), (14), and (37), we can derive new solutions of Eq. (1) as follows:
BaN-1)
gn(x,1) = qo + 3 —2ipBCN=D, (40)
x

It is worth pointing out that we rederive the seed solution §; (x,7) = —ce'lex+2pe*~ac=a’il for N = 1. To understand the wave

propagation of nontrivial solution (40) of Eq. (1) for different parameters, we study their wave structures as shown in Figs. 1-7

for N =2,3,4.

Case I. When N = 2, according to Theorem 2, we have the first-order rogue-wave solution of Eq. (1):

~ oB . 3)
q2(x,t) = qo(x,1) + W —2ipBY,

3
(41

012917-7
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with B® = %B;m and
2

PHYSICAL REVIEW E 92, 012917 (2015)

}"2¢(0) ¢(0) )\.3 Vf (0) w (0)
A2¢(1) + 2)@(0) ¢(1) )ﬁ,ﬂ(l) + 3)\21[,(0) Mp(l) + 1,0(0)
A; = * * * * )
)\*21#(0) W(O) _)\’*3¢(O) _A*¢(0)
)\*Zw(l)* + 2)¥*W(0)* 1p(l)”‘ _k*3¢(1)* _ 3k*2¢(0)* —A*¢(l)* _ ¢(O)*
)»2¢(O) ¢(O) —)»4(13(0) w(O)
ABO) _ A2 4 210 o 24D — 4x39© Ay ©
A2y @F ACk —a ey OF —1*pO*
A2y 4 opxy OF Y AT g3, 0% —1xpD* — pOF
For example, we give the simplification forms of solution (41).
Case la. Fora = —1,c =1, p =2, we have the solution
~ 10(x? + 9¢2 1 —2i(x — O[10(x2 +97?) — 3 — 2i 191)] .
1y 110G +9r) 41— 2 = DI0G? +97) i A 190] sy @)
[10(x2 +92) + 1 + 2i(x — 1)]?
Case Ib. Fora = —1,c = 1,p = 0, we have the solution
- Rx2+12)+1—2i(x — O[22 +12) — 3 — 2i(x + 31)] Zix
gn(x,t) = - e . (43)
[2(x2 +12) + 1 4 2i(x — 1)]?
whose wave profiles are exhibited in Fig. 1.
Case Il. When N = 3, according to Theorem 2, we have the second-order rogue-wave solution of Eq. (1):
- 9B®
33(x,1) = qo(x,1) + —2ipB®, (44)
with B® = %:5) and
3
MO 22O o© AWy© Ay© YO
As As» oV Any Ass @ 4y ©
A Az Az ¢ Asy Aszs @ 4@ 45
3 )\*41%0)* A*Zw(O)* w(O)* _)\*5(])(0)* —k*3¢(0)* _)\*(p(O)* ’ 45)
As As) YO Asy Ass —1rpT — pO*
Ag 1 Ag 2 v Aga Ag 5 —1FpPT — p*
Ap© 22O PRUBE Y AU PENAC) Y ©
Az Azp o =20 —617¢© Azs Ay 4y ©
Acp® _ | Az 9P 1% — 6331 — 15049 Ass My 4y P
- )\‘*410(0)* )\*2,‘#(0)* w(O)* _)\‘*Gw(O)* _)L*3¢(0)* _}L*(P(O)* ’ ( )
As 1 Asp AR SACEE VRl AL Ass 1M — 0"
Ag.1 A2 Y@T Oy @ — a7 — 150407 Ags —)3p@" — "
where
Agy =290 +4030O, Ayy =120 +209O, Ay =5y D+ 520y O Ay s =13y D 43229 ©,
Az =24 +40%00 + 6020, Azy =129 + 2190 + 90, Ay =AY 4+ 504D 41073y,
Ass =2Y@ 432290 £ 30y @, Asy =ty DT Sy OF 0 Asy = a2y D 4 2y O, (47)

Asy = —2P¢D" —5pxp07 - Ag s = a3 _3px2pO0% 1 Ag = Ay DT 4 4nx3y (DT 4 a2y O
A6,2 — A*Zw(2)* + ZA*w(])* + l[/(())*, A6,4 — _)\*5¢(2)* _ 5)\*4¢(])* _ 10)»*3¢(0)*,
Ags = —22p@" —3px2p10* _ 3pxpO,

With the aid of symbolic computation, we know that the second-order solution (44) can explicitly be given from Egs. (44) and
(39) with Eqgs. (45)—(47), but it is of the long expression about x, t and parameters a, c, p, by, and d;. Here we give its explicit
expressions for some special parameters:

012917-8
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Case Ila. For the parametersa = —1,¢ = 1, p = 0, and b; = d; = 0, we have the second-order rogue wave of Eq. (1),

gz (x,1) =

with

GG
——e
(Fri +iFp)

—ix’ (48)

Fri = 8x° 4+ 6661% — 12x* — 216x%t% 4 815 + 180r* — 72x1 + 24x*1? + 48x%t + 24 x%t* 4 48xr°> +90x*> 49,  (49)
Fip =24x° —24x% +48x°t> + 54x — 336> — 1981 + 48 x> — 241° + 241*x — 2881%x — 48 x%1, (50)
G = 8x% — 12x* 4 180r* + 81° + 6661% + 90x2 + 24x*1* + 4813 x + 48x31 — 216x%1% — 72x1 + 241*x* +9
+ (2417 — 48x3t% + 1981 — 24x° + 3361° + 48x213 + 288x1> + 24x*r — 48x% — 54x — 24x1%),
G = —8x% + 60x* + 60r* — 816 + 4861% 4 198x2 — 24x*1% + 14413 x + 144x31 + 504x%1* — 504x1 — 241x* — 45
+i(24x° — 48x3 + 7265 + 52813 — 4141 — 90x — 288x% + T2x*t — 576x1% + 144x%13 + 24xt* +48x31%).  (51)

The second-order rogue-wave solution profile is displayed in Figs. 2(a) and 2(c).
Case IIb. For another parametersa = —1,¢ = 1, p = 2, and b; = d; = 0, we have the second-order rogue wave of Eq. (1),

G Gn
(Fra + i Fp2)?

gn(x,t) =

with

ei(4t —X) (52)

El

Fra = 306 x> + 11106 > + 2160 xt> + 240 x>t — 19800 x2t> — 72 xt + 180 x* + 239220 #* + 27000 x*#>

+729000 £° + 1000 x° 4 243000 x>*,

Frp = 600x° + 144 x3 — 1981 — 1022413 + 54 x + 48600 7> + 288 x%¢ + 48600 *x — 10800 x%13

+ 10800 x3#> — 4608 t>x — 600 x*z,

(53)

Ga1 = 1000x° + 180x* + 239220¢* 4 7290007° + 111061 + 306x% + 27000x*1 + 21603 x + 240x°>t
— 19800x%72 — 72x 4 243000:*x? + 9 + i (486007 + 102241 + 1981 — 600x> — 144x> — 54x
+10800x%#3 — 48600xt* — 10800x°1> — 288x>t + 600x*t + 4608x72), (54)
Gy = —1000x% 4 1020x* + 246780¢* — 729000¢% + 11358¢> + 558x2 — 27000x*+> + 41040¢° x
+4560x>t + 84600x%1> — 1656xt — 2430001*x% — 45 + i(205200x2¢> + 11400x*t + 48600x1*
+10800x%#> — 17568x1% — 6912x%¢ + 9234001 + 344161° + 600x° — 18541 — 336x> — 90x).

The second-order rogue-wave solution profile is displayed in
Figs. 2(b) and 2(d).

In fact, the parameters b; and d; in solution (44) can be used
to split the second-order rogue wave (44) into three first-order
rogue waves, whose center points make the triangle exhibited
in Fig. 3. In fact, we find that the sides of this triangle become

(b) lal |

(@l .

©,

to

4

R R 6 0 6

X X

(@3
to
3

FIG. 1. (Color online) The first-order rogue-wave solution
g>(x,t) given by Egs. (42) and (43) with a = —1,¢ = 1. [(a) and
©1p=0;[(b)and (d)] p = 2.

bigger and bigger as |b;| and |d|| increase from zero and the
parameter d; can also control the rotation of the rogue-wave
profile [see Figs. 3(b) and 3(d)].

Case Ill. When N = 4, according to Theorem 2, we have

the third-order rogue-wave solution of Eq. (1)
)

Ga(x,1) = qo(x,1) + —2ipB7, (55)

® )

@ 2 g

to ‘»’ to o
-6 -2

-8 0 2 -4 0

X X

FIG. 2. (Color online) The second-order rogue-wave solution
given by Egs. (48) and (52) witha = —1,c=1,b; =d, =0. [(a)
and (¢)] p = 0; [(b) and ()] p = 2.
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109 1O 22O o© Ay © W@ Ay© Ay ©@

Az Azp Az o) Ays Az Az A 4y ©

Az Az Az ¢ Azs Az Az S A

A€ — Ag Ay AVES ¢ Ay AV Ay A+ @ (56)
5= )\'*61#(0)* )L*4w(0)* )\'*21/,(0)* 1)0(0)”‘ _)\'*7¢(0)* —)\*5(]5(0)* —)»*3(1)(0)* _)‘*4)(0)* ’

A1 A2 Aoy y* A5 Asy6 Ae,7 —1rp" — 0"

A7 A7, Ay Y@ Azs A7 A7 1@ —p*

As, Asg Ags  Y" As;s A6 Asg7 —1*g" — "

where

Aoy =209 + 62707, Mgy =219V + 41700, Ag s =229 + 2497, Ags = 2Ty D + 7209,

Aso = 2P + 5234 @ Ay s = 3y D 13029 O A5 =159 + 63501 + 15249,

Azr = 1P + 42700 + 6279, Ayz = 179P + 200" + ¢, Ay s = 2Ty + 720y + 2107y O,

Ase = 1Y@ + 520D +10°y @, Ay 7 =23y @ + 322y D + 3y @,

Agr = 250 +61°9@ + 152491 + 20030, Asy = 179 +413¢@ + 62201 + 40p?,

Agz =220 + 2192 + ¢V, Ays = ATy + 700y @ + 2105y D 4 35049 ©,

Ase =YD+ 5259 £ 10839 D 11029 @, Ay = 23y 43229 4 3y D 4+ O,

At = K0P D* L oA YO A, = D 4 43O Ag s = a2y DF 4oy ©F

Aos = —=2"¢0" = 100", Age = =271 — 5270607, Ay = 270" - 322607,

Agy = 20P@" + oy O L ISy O A, =2ty 4 4y 4 en Py O,

A7’3 — )\'*Zw(Z)* + 2)‘-*10(1)* + 1‘0(0)*’ A7‘5 — _)L*7¢(2)* _ 7k*6¢(1)* _ 21)\'*5¢(0)*’

Azs = =297 — 500" 100790 A7 7 = —aFg@" = 332" — 33xpO07

Agi = AP 4oy @ L1504y DT 1200y O Agy = A YD 4y @ 4 a2y DT 4 apry O,
A8,3 — )»*21#(3)* + 2)‘-*10(2)* + 1)y(l)"" AS,S — _)L*7¢(3)* _ 7)\'*647(2)* _ 21)\'*54)(1)* _ 35)\'*44)(0)*’

AS,G — _k*5¢(3)* _ 5)\*445(2)* _ 10)»*3(]5(1)* _ 10)»*2(}5(0)*, A8,7 — _)\*3¢(3)* _ 3)\‘*2(]5(2)* _ 3)\.*(]')(1)* _ ¢(0)*. (57)

Here A€ B is produced from A€ by replacing its first column
with (—=A3¢©@, —A8¢M) — 8)\?¢<0>, —A8p? — 879 —
28109 —a8p® — 8AT9p? 28101 —5613¢©),

(b)

FIG. 3. (Color online) The second-order rogue-wave solution
g3(x,t) given by Eq. (44) witha = —1,c =1, p = 2. [(2) and (¢)]
b = —10%,d, = 0; [(b) and ()] b; =0, d; = 10°.

(

_)\*810(0)*’_)\*8]#(1)* —8)\.*71ﬂ(0)*, _)L*Sw(Z)* _ 8)\*7110‘(1)* _
ZSA*GW(O)*, _)\'*81”(3)* _ 8)\*71ﬁ(2)* _ 28)‘*610(1)* _ 56)\,*5
d,(O)*)T.

With the aid of symbolic computation, we know that
the second-order solution (55) can explicitly be given from
Egs. (55) and (39) with Eqgs. (56) and (57), but it is of the
long expression about x, ¢t and parameters a, c, p, by, by, d;,
and d».

For the given parameters a = —1,¢ =1, p = 0,2, other
parameters by, by, d;, d, can make the third-order rogue wave
become the different structures.

(a) When the parameters by = b, =d) =d, =0, the
strong interaction of the third-order rogue wave and their
corresponding density graphs are shown in Fig. 4.

(b) When the parameters b, = 10°,—10°,d, = b, = d, =
0, the weak interaction of the third-order rogue wave is split
into six first-order rogue waves, and they array a triangle
structure (see Fig. 5).

(c) When the parameters b, = 10*,—10*,d, = b, = d, =
0, the weak interaction of the third-order rogue wave is also
split into six first-order rogue waves, but they array a pentagon
structure with a first-order rogue wave being almost located in
the center of the pentagon structure (see Fig. 6).

(d) If we choose one nonzero parameter from two families
{b1,d,} and {b,, d,}, respectively, then the third-order rogue-
wave solution (55) displays the different structures (see Fig. 7).
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(®) |q

@ q]
4.

FIG. 4. (Color online) The third-order rogue-wave solution
ga(x,r) given by Eq. (55) witha = —1,c=1and by = b, =d; =
dy = 0.[(a) and (c)] p = 0; [(b) and (d)] p = 2.

D. Dynamical behaviors of multi-rogue-wave solutions

To further illustrate the wave propagations of some above-
obtained rogue-wave solutions, we here consider the dynam-
ical behaviors of these rogue-wave solutions of Eq. (1) by
comparing these obtained exact multi-rogue-wave solutions
(e.g., first-order, second-order, and third-order rogue-wave
solutions) of Eq. (1) with their time evolutions using them as
initial conditions with or without a small noise via numerical
simulations.

Case 1: First-order rogue waves. For two families of
parameters {a = —1,c=1,p=0}and{a = —-1l,c=1,p =
2}, Figs. 8 and 9 exhibit the exact first-order rogue-wave
solution (42) of Eq. (1), time evolutions of the rogue wave

(d) 4

i
t o

|
\

-
R

, 5
10 10 0 10
X

FIG. 5. (Color online) The third-order rogue-wave solution
gs(x,r) given by Eq. (55) with a=—1,c=1,p=2. [(a) and
(©)by =10°,dy = by = dy = 0;[(b)and ()] by = —10°,d; = b, =
d, =0.

PHYSICAL REVIEW E 92, 012917 (2015)

(b) | |

-2

2L

FIG. 6. (Color online) The third-order rogue-wave solution
gu4(x,t) given by Eq. (55) with a=—1,c=1,p=2. [(a) and
(©)]by =10*,dy = by = d, = 0;[(b)and (d)] by = —10*, d; = by =
d, =0.

of Eq. (1) using exact solution (42) and exact solution (42)
perturbated by a small noise [2% and 1% for Figs. 8(c) and
9(c), respectively] as the initial conditions, respectively. It
follows from Figs. 8(a), 8(b), 9(a), and 9(b) that the profiles
of the time evolutions of the rogue waves of Eq. (1) without
noise agree with ones of the corresponding exact rogue-wave
solutions. Figure 8(c) shows that the wave profile exhibits an
almost-stable propagation, except for some oscillations when
time approaches 3. Figure 9(c) illustrates no collapse-instead
stable wave propagation, except for some oscillations in the
wings of waves when time approaches to 0.

Case 2: Second-order rogue waves.  For three fami-
lies of parameters {a = —1,c=1,p=0,b; =d; =0}, {a =
—l,ce=1,p=2,b)=d =0}, and {a=—-1,c=1,p=
2,b; =0,d, = 10%}, Figures 10-12 illustrate the exact
second-order rogue-wave solution (52) of Eq. (1), the time
evolution of the rogue wave of Eq. (1) using exact solution
(43) and exact solution (52) perturbated by a small noise
[e.g., 2%, 1%, and 0.5% for Figs. 10(c), 11(c), and 12(c),
respectively] as the initial conditions, respectively. It follows
from Figs. 10(a), 10(b), 11(a), 11(b), 12(a), and 12(b) that the
profiles of the time evolutions of the rogue waves of Eq. (1)
without a noise agree with ones of the corresponding exact
rogue-wave solutions. Figure 10(c) displays the almost-stable
wave propagation; however, Figs. 11(c) and 12(c) exhibit the
no collapse-instead stable wave propagation, except for some
oscillations in the wings of waves when time approaches 0.

Case 3: Third-order rogue waves. For three fami-
lies of parameters {a = —l,c=1,p=2,b; =b, =d, =
d2=0}, {a:—l,c: 1,p=2,b1 = 103,b2=d1 =d2=
O},and{a =—1,c=1,p=2,b; = 10*, b, =d| = d, =0},
Figs. 13—15 illustrate the exact third-order rogue-wave solution
(55) of Eq. (1) and the time evolution of the rogue wave
of Eq. (1) using exact solution (55) and exact solution (55)
perturbated by a small noise [e.g., 1.5% for Figs. 13(c) and
0.1% for Figs. 14(c) and 15(c)] as the initial conditions,
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%
*

FIG. 7. (Color online) The third-order rogue-wave solution g4(x,t) given by Egs. (55) and (43) witha = —1,c =1, p = 2. [(a) and (¢)]
by =100, b, = 3000, d; = d, = 0; [(b) and (e)] b; = 100,d; = 0, b, = 10, d> = 10*; [(c) and ()] b; = d, =0, d, = 100, b, = 10*.

[al

-10 1 -10 1 -10 1

FIG. 8. (Color online) The first-order rogue-wave solution g;(x,t) given by Eq. (42) with a = —1, ¢ = 1, p = 0. (a) Exact solution, (b)

time evolution using exact solution (42) as the initial condition, and (c) time evolution using exact solution (42) perturbated by a 2% noise as
the initial condition.

[al

10 1

FIG. 9. (Color online) The first-order rogue-wave solution g (x,t) given by Eq. (43) witha = —1, ¢ = 1, p = 2. (a) Exact solution, (b)

time evolution of the wave using exact solution (43) as the initial condition, and (c) time evolution of the wave using exact solution (43)
perturbated by a 1% noise as the initial condition.
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|q| (a)

s -10 -3

FIG. 10. (Color online) The second-order interactive rogue-wave solution g3;(x,t) given by Eq. (48) witha=—1,c=1,p=0,b; =
d; = 0. (a) Exact solution, (b) time evolution of the wave using exact solution (48) as the initial condition, and (c) time evolution of the wave
using exact solution (48) perturbated by a 2% noise as the initial condition.

FIG. 11. (Color online) The second-order interactive rogue-wave solution g3, (x,t) given by Eq. (52) witha = —1,c=1,p=2,b; =
d; = 0. (a) Exact solution, (b) time evolution of the wave using exact solution (52) as the initial condition, and (c) time evolution of the wave
using exact solution (52) perturbated by a 1% noise as the initial condition.

-1 -10 -1
FIG. 12. (Color online) The second-order separatable rogue-wave solution g3(x,t) given by Eq. (44) witha = —1,c=1,p=2,b =

0,d, = 10°. (a) Exact solution, (b) time evolution of the wave using exact solution (44) as the initial condition, and (c) time evolution of the
wave using exact solution (44) perturbated by a 0.5% noise as the initial condition.

[al

FIG. 13. (Color online) The third-order interactive rogue-wave solution g4(x,t) given by Eq. (55) witha = —1,c=1,p=2,b, = b, =
d; = d, = 0. (a) Exact solution, (b) time evolution of the wave using exact solution (55) as the initial condition, and (c) time evolution of the
wave using exact solution (55) perturbated by a 1.5% noise as the initial condition.
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FIG. 14. (Color online) The third-order separatable rogue-wave solution g4(x,t) given by Eq. (55) with a = —1,c=1,p=2,b; =
103, b, = d, = d, = 0. (a) Exact solution, (b) time evolution of the wave using exact solution (55) as the initial condition, (c) time evolution
of the wave using exact solution (55) perturbated by a 0.1% noise as the initial condition.

respectively. It follows from Figs. 13(a), 13(b), 14(a), 14(b),
15(a), and 15(b) that the profiles of time evolutions of rogue
waves of Eq. (1) without a noise are agree with ones of
the corresponding exact rogue wave solutions. Figure 13(c)
exhibits the almost unstable wave propagation from the
beginning of about ¢ = 0.5; however, Figs. 14(c) and 15(c)
exhibit no collapse-instead stable wave propagation, except
for some oscillations when time approaches to 1.4 and 0,
respectively.

J

IV. THE MULTI-ROGUE-WAVE SOLUTIONS
OF THE GERJIKOV-IVANOV EQUATION

A. The generalized perturbation (n, M)-fold Darboux
transformation method

The Gerjikov-Ivanov equation (2) is just a zero-curvature
equation U; — V, +[U,V] =0 with [U,V]=UV - VU
and two 2 x 2 matrices U and V satisfying the linear
isospectral problem (Lax pair) [28]

=i’ + 5lq? A
(pX = U(an = . i ’ (58)
( i»* = 5lql?
Vv —=2i)* +iXg)* + 3(qqt — g% qx) + lq1* 213q + iAgy 59)
901 = (/)7 = . . . )
—2)3q* +iAg} 2i0t —ix*q)* — Hqq! — q%qx) — gl

where ¢ = (¢,¥)" is the complex eigenfunction, A € C is the
spectral parameter, ¢ = g(x,t) denotes the complex potential
and is also the solution of Eq. (2), the subscript denotes
the partial derivative with respect to the variables x, ¢, and
the star denotes the complex conjugate of the corresponding
variables.

Similarly to the MNLS equation (1), we choose the same
Darboux matrix 7' given by Eq. (10) to consider the Darboux
transformation of Eq. (2) such that we have the following
theorem for the multisoliton solutions and multi-rogue-wave
solutions of GI equation (2).

Theorem 4. Let ¢;(A;) = (¢ (A;), wi(ki))T (i=12,...,n)
be column vector solutions of the spectral problem (58) and
(59) for the spectral parameters A; (i = 1,2,...,n) and the
same initial solution go(x,7) of Eq. (2), respectively; then
the generalized perturbation (n,M)-fold DT of Eq. (2) is
given by

Gn(x,1) = qo(x,1) +2i BN, (60)
where BN-D = % and A" = det([AD ... AM]T)
N

with A®) being given by Eq. (32) and A*B@"~D is formed
from the determinant A" by replacing its (N + 1)-th column
by the column vector (6@ - - b™)T with 5@ = (B )y, +1)x1
and by) being given by Eq. (34).

B. The multi-rogue-wave solutions

In the following we give some multi-rogue-wave solutions
of Eq. (2) in terms of determinants by use of generalized
perturbation (1, N — 1)-fold DT in Theorem 4. We consider
the seed solution of Eq. (2) in the plane-wave form

go = cei[ax+<%c4—ac2—a2)ﬂ, (61)
where a and ¢ # 0 are real-valued constants, a is the wave
number, and ¢ is the amplitude of the plane wave. It is
known that the phase velocity is [a + ¢?> — ¢*/(2a)], the group
velocity is 2a + ¢2, and |go(x,t)| — |c| # 0 as |x|,|t| — oo.

Substituting Eq. (61) into Egs. (58) and (59), we can give the
solution of Lax pair (58) and (59) with the spectral parameter
A as follows:

i(Cle 4 — CzeA)e—B} 62)

p() = [ (Cre? + Cre™4)eB
with

Ci=C,, C,=C_,

c \/ +2A2 4+ a — ) + /(a + 2222 + c(c? — 2a)
= v 2ch '
A =iv(a+ 222+ c(c? — 2a)

: PRI PR
X|:§x+< _E) + (8)]1
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FIG. 15. (Color online) The third-order separatable rogue-wave solution g4(x,t) given by Eq. (55) with a = —1,c=1,p=2,b; =
10%, by = d; = d, = 0. (a) Exact solution, (b) time evolution of the wave using exact solution (55) as the initial condition, (c) time evolution
of the wave using exact solution (55) perturbated by a 0.1% noise as the initial condition.

j 1
B = —%|:ax + (504 —ac® — a2>ti|,

N
Oe) = Y (b + dii)e™,
k=1

we fix

A= %\/2\/ 2c2a — ¢* —2a + €2, (63)

for the special casea = 0,c =2, wehave A =1 +1i + &2 for
simplification, expanding the vector function ¢(£?) in Eq. (62)
at ¢ = 0, we obtain

2y _ (0) 1.2 2) 4 B)g6 4 ...
where bi,dy(k=1,2,...,N) are real free PE) =97 e Tt - (69
parameters and & is a small parameter. Next, where
|
) 4it
0 ¢ —2e
o = <¢(0)> = (ﬁe—4it>’ (65)
o0 = —‘/Tie“”[32x2 — 512¢% + 256x¢t + 64t — 1 + (51212 — 32x? — 16x + 256x1 — 1)] 66)
%e“‘”[?ﬂx2 — 51212 + 256x1 — 641 — 1 + i (51262 — 32x2 + 16x + 256x1 — 1)] |
(@) 3
o = <£<z)), o = <f§<g)), (67)

and (¢, )T(i = 2,3) are listed in Appendix B.

For N = 1 we only deduce the trivial plane-wave solution
of Eq. (2). In the following we consider the multi-rogue-wave
solutions of Eq. (2) for N = 2,3,4.

Case 1. For N =2, we have the first-order rogue-wave
solution (60) of Eq. (2) witha = 0,c = 2:

41 +32ir)
1+ 32(x2 + 16£2) — 8i(x — 41)

Go(x,1) = 2[1 :|eg”, (68)

whose wave profile is shown in Fig. 16. This solution is the
same as the one in Ref. [39].

(b) 0.6

@) 6 al i

FIG. 16. (Color online) [(a) and (b)] The first-order rogue-wave
solution g>(x,t) given by Eq. (68) witha =0, ¢ = 2.

(

Case Il. For N = 3 we have the second-order rogue-wave
solution of Eq. (2), which is complicated and are omitted
here, but we give its wave profiles for different parameters. In
fact, the parameters b; and d; in the second-order rogue-wave
solution g3(x,7) can be used to split the second-order rogue
wave into three first-order rogue waves, whose center points
make the triangle exhibited in Figs. 17(b) and 17(d). In fact, we
find that the sides of this triangle become bigger and bigger as
|b1| and |d;| increase from zero and the parameter d; can also
control the rotation of the rogue-wave profile [see Figs. 17(b)
and 17(d)].

Case III For N =4 and the given parameters
a =0, c =2, other parameters by, b», d;,d> can make the
third-order rogue wave become the different structures.
Figure 18 displays the the interaction of three-order rogue
waves.

(i) When the parameters by = b, = d; = d, = 0, the in-
teraction of the third-order rogue wave and their corre-
sponding density graphs are shown in Figs. 18(a) and
18(d).

(ii) When the parameters b; = 10%,d; = by = d, = 0, the
interaction of the third-order rogue wave is split into six first-
order rogue waves, and they form a triangle structure [see
Figs. 18(b) and 18(e)].
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FIG. 17. (Color online) The second-order rogue-wave solution

Gs(x,1) with a =0,c=2. (a), (¢): by =d; =0; (b), (d): b =
100,d, = 0.

(iii) When the parameters b, = 10°,b; =d, =dp, =0,
the interaction of the third-order rogue wave is also split into
six first-order rogue waves, but they form a pentagon structure
with a first-order rogue wave being almost located in the center
of the pentagon structure [see Figs. 18(c) and 18(f)].

For other cases N > 4, we can also obtain the higher-order
rogue-wave solutions of Eq. (2), which display the abundant
structures. Similarly to Eq. (1), we can also illustrate the
time evolutions of these solutions using numerical simulations,
which are omitted here.

(b)
6/lal

’

PHYSICAL REVIEW E 92, 012917 (2015)

V. CONCLUSIONS

In conclusion, we have presented a simple and construc-
tive method to find the generalized perturbation (n,M)-fold
Darboux transformations (DTs) of the modified nonlinear
Schrodinger equation and the Gerjikov-Ivanov equation in
terms of fractional forms of determinants. In particular, we
apply the generalized perturbation (1, N — 1)-fold DTs to find
their explicit higher-order rogue-wave solutions. The dynam-
ics behaviors of these rogue waves are discussed in detail for
the different parameters, which display abundant interesting
wave structures, including the triangle and pentagon, etc., and
may be useful to study the physical mechanism of multirogue
waves in optics. Moreover, we study the time evolutions of
these obtained multi-rogue-wave solutions using numerical
simulations.

For the MNLS equation, if we choose two different spectral
parameters A; = (3 +i)/5 and A, = 2i, then the higher-order
rogue waves can be degraded to lower-order rogue waves.
It is still a problem to generate abundant wave structures by
choosing more spectral parameters. In fact, this method can
also be extended to seek multi-rogue-wave solutions of other
nonlinear integrable equations such as the NLS equation, KP
equation, AB system, AKNS hierarchy, which will be studied
in a future work.
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FIG. 18. (Color online) The third-order rogue-wave solution g4(x,t) witha = 0, ¢ = 2. [(a) and (d)] b; = b, = d; = d> = 0; [(b) and ()]
by = 1000, d, = b, = d, = 0; [(¢c) and (f)] b, = 1000, b, =d; =d, = 0.
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APPENDIX A

Some components of eigenfunctions in Eq. (36) are listed below

¢ =

¢ =

yO =

1 :
6—4J§e2<—x+‘”)(88 + 384ib; — 684x — 10620r + 51192¢ 4 1944x1> + 57024it> x + 648ix>t + 288b, — 384d; — 1896i x>

—72x3 — 1012ix — 2592itd, — 864ixb; + 1404ix* + 2180x% — 44964¢> + 2340it — 28512xt> — 1516323x
+ 864d; x + 16848x3t + 41904 xr — 1248xb, — 3744td, — 2592tb; + 42768t* + 528x* + 3744ith; — 17064x%r — 21528i x¢
+51192ix1> — 1248idyx + 3240i x> — 96552i1> + 113724it* + 288id, + 9i — 6336ix°t — 1944it> — 75816ix°t2),

= —é«/ie—ﬂ—”‘”)(w — 288iby — 1012x + 2340¢ + 528ix* — 51192i¢% + 88i — 194413 + 51192x1> — 2592ith,

+ 16848i x>t + 10620it + 384b; + 288d; — 151632i13x — 1896x> — 3240x% + 965521% + 75816x21> — 570243 x + 12484, x
+6336x3t + 21528x1 + 864xb; + 2592td; — 37441by — 1137241* — 1404x" + 648x%¢ + 684ix — 28512ix%1> — 1944ixt?
+ 17064ix%t + 2180i x> + 864id,x — 3744itd, — 1248ixb, + 41904ixt + 42768it* 4+ 72ix> — 44964i1> + 384id,),

1 ;
ﬁﬁe7<—’c+‘”>(—2925 + 1676160itd; + 2021760i x%td; + 100960x + 1709740t — 416361607

+ 6065280x12d; + 12862800x1> — 2280960ix1%d, + 11757312it> + 3481660ixt — 27360b; + 40480d, + 84480id, x>

+ 115200, — 15360d, — 6065280ix1*b; — 572580i x* 4 19852560i1°x — 46320x> — 49920id, by — 34560i xby — 49920i dx
+2975i + 51840i xth; + 64045080i x>t + 174400id,x — 352170x> + 33539832i1° 4 54284101% — 5770440x°12

+ 16121592013 x — 259200, x — 10551600x°t — 9475380x1 + 174400xb; + 861120td; 4+ 1676160tb, + 211231807

— 47060x* + 7807680x%t — 84155761° 4 24960d} + 11544x° — 24960b7 — 670796641 x — 60652801°b; — 828144x°¢
—224640d, x> + 34560d, b, + 140259601* x> — 1558440x*1? + 34560d,x + 248443201 x> + 84480x°b; — 49920xb,

— 103680tb, — 1497601 d, + 760320x>td, 4+ 2021760x>th, — 2280960x12b; — 22809601 d; — 1365120i xtd; 4 259200i xb,
4 15360ib, — 358800ix>t — 145756260i1* 4 530240i x> + 17280id? — 6065280ir°d; — 46008ix® — 17280ib? + 75888ix’
—461310i x> — 8640ix>d; + 2280960i1°b; + 6233760i> x> + 87780ix + 184407841° — 48384x° — 207792ix7t

— 13063680i x21> + 725760ix*t — 760320i x>tb; + 6211080ix*1*> + 149760itb, — 18668880ir> + 2352240i x>t — 547680t
—103680itd, — 1365120xtb; — 8640x>b; + 227520x%d; — 19595520t*x + 4354560x°1% + 77760t*b; — 2047680¢%d,
—20489760x%1% + 1138320x*t — 51840x1d, — 40480ib; + 11520id, + 30734640ir*x — 27360id, — 16831152i1°x
+31635630i1% — 32529600i x> + 224640ix°b; — 55899720i1*x* 4+ 77760it*d; — 227520ix*b; — 6829920i x°1*
—861120ith, + 2047680itb1),

ﬁ«/ﬁe—%—”“”(zws —21123180it* — 41636160i> — 46320ix> — 27360ib; + 11520iby — 15360id,

— 48384 x> + 18440784i1° 4 40480id, — 2021760ix>tb, — 760320ix*td, + 1709740it — 51840ixtd, — 87780x

— 5428410it + 100960ix + 352170ix* + 4354560i x°t* + 47060i x* + 547680t + 186688801> — 2280960x1d,
+32529600x1% + 67079664it°x — 24960id; — 11544ix® — 14025960i1*x* 4 40480b; + 27360d; — 15360b, — 11520d,
+ 828144ix°t + 24960ib7 — 530240x°> + 259200id, x — 34560idyx + 6065280it°b; — 84480ix°by + 1558440ix*+?
+7807680ix%t — 461310x2 4 316356301% + 64045080x%1% + 198525601 x + 174400d;x — 358800x>1 + 3481660x¢
+259200xb; + 1676160td, — 861120th; — 1457562601 — 572580x* — 24844320i1° x> — 2352240x%t — 861120i1d,
+103680ith, + 335398321° + 17280d} — 46008x° — 17280b7 — 16831152t x + 2280960t°h; — 207792x°t + 84480d, x>
—49920d, b — 55899720¢*x? + 6211080x*1* — 49920d,x + 62337601° x> + 224640x°b; — 34560xb, + 1497601b,
—103680¢d, + 2021760x>td; — 760320x%th; — 6065280x1>b; — 606528013 d; + 49920i xb, — 34560id, by + 5770440 x*1*
+ 8415576it% 4 2925i — 19595520it*x — 2047680it*d, + 224640id,x> — 6065280ixt*d; — 161215920it>x + 149760itd,
— 11757312¢° — 75888x> — 1676160itb; — 1365120ixtby — 51840xtb; + 77760i1*b; + 227520x%b, + 8640x2d,
—30734640t*x 4 6829920x°1? — 20476801%bh; — 777601*d; + 13063680x21> — 725760x*t 4 1365120xtd; — 174400i xb,
+227520ix%d; — 20489760i x°t> — 8640ix>b; + 10551600i x>t 4 2280960i x1>b; + 1138320ix*t + 2280960i1>d;

+ 12862800ix1% + 9475380i x1).
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APPENDIX B

Some components of eigenfunctions in Eq. (64) are listed below

? =

23040

1,
@e“”\/i(—]z +48x — 2112t — 768d; + 192x% + 327681 + 512x> — 24576x1> — 6144x%r — 3072¢>

—21504xt — 3072xb; — 3072xd; — 12288tb; + 12288td; — 16384xt + 26214413 x + 262144ir* — 24576ix1>
—98304ixt% + 1728it + 768iby — 12288itd; — 3072ixd; + 3072ixb; — 12288ith, + 6144ix’t + 1152ix> + 15i

+ 144ix — 67584it> — 32768i1> + 512ix> + 1536ixt + 1024ix*),

1 ,
—@e—*’ﬁ(—lz — 768ib; — 48x + 2112r — 1728it + 15i — 67584it*> + 768d; + 192x% — 32768:> — 512x°

+24576xt% + 6144x%t — 3072t> — 21504xt — 3072xb; — 3072xd; — 12288tb; + 12288td; — 16384x>t + 26214413 x
+1024ix* + 1152i x> + 32768i1> + 262144ir* — 144ix + 3072ixb; — 12288itb, — 3072ixd; — 12288itd; — 512ix>
— 6144i x>t + 24576ixt> — 98304i x%1> + 1536ixt),

1 .
——eY1/2(405 — 368640ith; + 2949120itd;x — 5160960ixt + 1474560itb, — 125829120i1*x2

23040

+ 47185920i1%b;x —2949120ith; x + 11796480i x%td, — 50331648i1°> —92160i b, — 6480x + 1474560itd, + 5160960i1d,
—368640ib7 — 210240it — 41760ix* — 168960ix* + 8778240i1* — 169082880ir* — 34560ib; + 31457280it> — 15360i x*
— 11520id, + 46080t + 134217728i1° — 32768ix° — 983040ix*t 4 368640id} + 5898240it°b; — 368640ix>b,
—368640i x2d; + 5898240i1%d; + 11796480x%tb; + 31457280ix%1> + 145489920i1x + 368640ixd; + 7864320i x*1>
—201326592it7x — 786432ix°t + 41943040i1° x> 4 737280ib,d, — 62914560it>d, — 983040ix°b; — 92160ixd,
—552960ixb; — 2177280ixt — 2949120i x>t 4 737280i x1> + 2949120td, x 4 2949120¢b,x — 47185920x1d,
—368640ixb, + 39813120i x1> — 589824012d, + 368640x°d, — 11520b; + 34560d; 4 92160d, — 64800x> — 9830407
— 122880x% + 17694720x1> 4 184320x°t + 106214401> — 199680x* — 176947200¢* + 1624320xt — 92160xb,
+552960xd; + 51609601b, + 3686401d, + 4669440x°t — 1376256001° x + 42762240x%1% + 368640xb, + 368640xd,

+ 1474560tb, — 1474560td, + 737280b,d; + 983040x°d; — 629145601 b + 786432x°t + 7864320x*> — 419430407° x*
—125829120¢*x? + 20132659217 x + 368640b7 — 368640d; — 32768x° + 134217728¢° + 1395i + 7864320x°1>

—629145601*x — 49152x> — 368640x%b, + 5898240¢b,),

1 .
e~ 41/2(405 — 2177280ixt + 145489920i1°x + 6480x — 737280ixt> — 46080t — 368640i xb,

+39813120ix%t* — 368640ib7 + 11796480x%th; — 125829120it*x* — 2949120td,x — 2949120tb,x — 47185920x1%d,
+ 58982401%d, — 368640x°d, + 983040ix*t + 11520b; — 34560d; — 92160d, + 47185920it*b;x — 552960i xb;
—368640ith; — 64800x> +9830407° + 122880x> — 17694720x1> — 184320x>t 4+ 106214401> — 199680x* — 1769472001*
+ 1624320x1 — 92160xb; 4 552960xd; + 5160960tb; + 368640td; + 4669440x>t — 1376256001 x + 42762240x>1>

— 5898240i12b; + 368640xb, + 368640xd, + 1474560tb, — 1474560td, + 737280b,d; + 983040x>d, — 62914560¢°b,
+786432x7t + 7864320x*t? — 419430401° x* — 125829120¢*x? + 2013265921 x + 368640b7 — 368640d; — 32768x°

+ 1342177281 — 5898240i1d, + 1474560itd, + 1474560itb, + 210240it + 11796480i x’td; — 201326592i1°x

— 7864320x°1% + 62914560r*x — 31457280i x>t +49152x° — 31457280i1> — 5160960i x>t + 50331648i1> + 737280ib,d,
+368640x2b; — 58982401°b; — 41760i x> + 2949120i x°t 4 15360i x> + 34560ib; + 5160960itd, — 168960ix*
+368640id? — 32768ix% + 92160ib; — 2949120itd,x + 134217728it% + 11520id, + 368640ix*d, + 41943040i1° x>
—983040ix°b; — 62914560i1°d; — 169082880i1* 4+ 2949120ith x 4 1395i + 368640i xd, + 368640i x>b; — 786432ix°t
+ 8778240it> — 92160i xd; + 7864320ix*1%).
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