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Responses of spatiotemporal chaos to oscillating forces
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The responses of soft-mode turbulence, a kind of spatiotemporal chaos seen in electroconvection of a nematic
liquid crystal, to alternating-current magnetic fields is investigated to uncover the dynamical properties of
spatiotemporal chaos. The dynamical responses can be measured by an order parameter, Mp(t), which indicates
ordering in the convective roll pattern induced by the magnetic field. Determined by properties of the liquid
crystal in a magnetic field, Mp(t) oscillates in accordance with the square of the magnetic field. The relaxation
time of the system was obtained by fitting the frequency dependence of the complex susceptibility for the pattern
obtained from the oscillation of Mp(t) to the Debye-type relaxation spectra. However, for the high-frequency
regime, the susceptibility deviates from the spectra because slow and large fluctuations of Mp(t) contribute to
the oscillation. The properties of this type of fluctuation were investigated by introducing a dynamic ordering
parameter defined as the period average of Mp(t).
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I. INTRODUCTION

In general, to investigate the physical properties of a system,
the responses to external forces are chosen for measurement.
The response is directly proportional to the external force if
it is sufficiently small. In this case, the physical properties
can be described as the response functions within the linear
response theory [1]. If the physical properties depend on time,
responses to periodically oscillating forces are useful means
to investigate them. Such responses can reveal the dissipation
and the absorption of energy of the system.

One interesting phenomenon is spatiotemporal chaos
(STC), which is observed in nonlinear nonequilibrium systems
with spatial degrees of freedom. Here STC is defined as weak
turbulence which is locally ordered but globally disordered
[2–4]. The topic of the present study is soft-mode turbulence
(SMT), which is one aspect of STC encountered in electrocon-
vection of a nematic liquid crystal (NLC) with homeotropic
molecular alignment. In the homeotropic nematic system,
because the director n is perpendicular to the electrodes (x-y
plane), continuously rotational symmetry in the x-y plane
is maintained. Applying a voltage higher than a certain VF

to the system along the z axis, an instability, called the
Fréedericksz transition, occurs whereby the director n tilts
from the z axis. With the appearance of the instability, the
continuously rotational symmetry is thereby spontaneously
broken. Here, we define a two-dimensional (2D) director C(r),
where r = (x,y), as the projection of n onto the x-y plane. The
azimuth φ(r) of C(r) behaves as a Nambu-Goldstone (NG)
mode [5]. Therefore, the excitation energy for the fluctuation
corresponding to zero wave number for φ(r) is 0. Moreover,
applying a voltage above a threshold Vc, electroconvection
is generated by the electrohydrodynamic effect [6] and a
convective roll pattern appears. Then, as φ(r) behaves as an
NG mode, C(r) rotates because of the viscous torque from the
convective flow [7]. This rotating C(r) changes the directions
of each of the convection rolls by the electrohydrodynamic
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effect. Consequently, the directions of convection are always
unstable by such an interaction. This unstable state is the SMT
in which local convective rolls are maintained and the direction
of the convective rolls spatiotemporally varies globally [see
Fig. 1(a)] [8]. Here, we define the local wave vector q(r),
which is perpendicular to the local convective rolls, and its
azimuth ψ(r).

The SMT induced by the nonlinear interaction between
the convective flow and the director occurs in the weakly
nonlinear regime because the director behaves as the NG mode.
Therefore, singularity, anisotropy, and intermittency are lower
than those of other kinds of STC. For this reason, the SMT is
regarded as an ideal feature in STC to research fundamental
properties of STC. STC can be regarded as fluctuations induced
by nonlinear interactions; their properties have been studied
from the viewpoint of statistical mechanics. With respect
to SMT, the temporal correlation and memory functions
describing the dynamics of the convective patterns [9,10] and
nonthermal Brownian motion driven by the fluctuations have
been studied [11–14].

In the present study, we investigate the response of the
SMT to external fields. Let us consider a substance which is
composed of polar molecules with permanent dipoles as a fa-
miliar example. Because there is competition between disorder
with the increase in entropy for the molecular alignment and
order from the coercive torque for the dipole moment by an
electric field, a finite value for an order parameter is determined
corresponding to temperature and strength of the electric field.
In contrast, applying a magnetic field to the homeotropic
nematic system after the Fréedericksz transition, the coercive
torque acts on C(r) to suppress the NG mode of φ(r) because
of the positive anisotropy of the magnetic susceptibility of
the NLC. In the electroconvective state beyond Vc, as there
is competition between disorder with the interaction between
the convective flow and director and order by this suppression,
a certain degree of order occurs depending on the strength
of the electric field, which controls the energy injected into
the system and the strength of the magnetic field, as shown
in Fig. 1(b). Hence, because the magnetic field, which acts
on the additional degrees of freedom in liquid crystals, can
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FIG. 1. Electroconvective patterns in a homeotropic nematic
system and their 2D power spectra. (a) H = 0, ε = 0.1. This pattern
corresponds to the SMT. (b) H = 400 G, ε = 0.1. (c, d) 2D power
spectra obtained from (a) and (b), respectively, by fast Fourier
transformation.

be used as an external field, which is independent of the
generation mechanism of electroconvection, one can study
responses of the dissipative structures to external fields. So
far, the responses of the SMT to dc magnetic fields [15–18]
and step magnetic fields [19] have been studied. However, it
is thought that alternating-current (ac) external field responses
are more suitable for investigating physical properties of the
system, because the SMT is a dynamical phenomenon with
several physical time scales. In the present study, therefore,
we propose methods to reveal dynamical properties of the
SMT obtained from the response to ac magnetic fields.

We introduce an order parameter that quantitatively mea-
sures the ordering induced by a magnetic field (Fig. 1). Here
we adopt the pattern ordering Mp defined by

Mp = 〈cos 2(ψ − ψH )〉

=
∫ π

2
− π

2
B(ψ) cos 2(ψ − ψH )dψ

∫ π
2

− π
2
B(ψ)dψ

, (1)

where ψH denotes the azimuth of the external magnetic field,
and B(ψ) the distribution function of the azimuth of q(r)
obtained from the 2D spectrum of the convection pattern. The
value of Mp is bounded in 0 � Mp � 1. For a completely
isotropic pattern, Mp is equal to 0, and for a completely striped
pattern Mp is equal to 1. Mp is based on the magnetization
in the 2D XY model and the orientational order parameter in
NLC [18–20].

II. EXPERIMENTAL AND ANALYSIS

The homeotropic nematic system used in the present
research was prepared as follows. The NLC was p-metoxy-
benziliden-p′-n-buthyl-annylin (MBBA), which has been a

standard material for the study of electroconvection. With
its electric conductivity increased by tetra-n-butylammonium
bromide, MBBA was enclosed between two glass plates coated
with circular transparent electrodes. The nematic director is
perpendicular to the electrodes (x-y plane). The distance d

between the two electrodes was 42.8 μm, and the diameter
of the circular electrode was 12.9 mm. The measurement
temperature was stabilized at 30.00 ± 0.05◦C.

An ac voltage Vac = √
2V cos(2πνt), which was generated

by a synthesizer (WF1974; NF, Yokohama, Japan) and
amplified by an amplifier (F10A; FLC Electronics, Partille,
Sweden), was applied to the NLC perpendicular to the
x-y plane (along the z axis). A normalized frequency η ≡
(ν − νL)/νL of the ac voltage was fixed at η = −0.5. Here,
νL = 700 Hz is the Lifshitz frequency, corresponding to the
absence of a magnetic field, which separates the oblique rolls
regime in ν < νL from the normal rolls regime in ν > νL

[20]. In particular, we performed the present experiments in
the oblique rolls regime in a manner similar to that used in
Refs. [18] and [19].

The ac magnetic field H (t) = H0 cos(2πfH t) generated by
an electromagnet (TM-WTV8615C-103; Tamakawa, Sendai,
Japan) with a bipolar power supply (BP4610; NF) was applied
to the homeotropic nematic system along the x axis. Because
the threshold of the magnetic field HF for the Fréedericksz
transition is 950 G, the amplitude H0 was set to 400 G, which
is sufficiently lower than HF to avoid the influence of the
transition. We measured H (t) directly by inserting a probe
from a Gauss meter (475DSP; Lakeshore, Columbus, OH).

Temporal sequences of images of the convective patterns
were captured using the following procedure. First, we applied
voltage VF < V < Vc to induce the Fréedericksz transition
and waited 20 min for φ(r) to become uniform. Here Vc is
the threshold voltage for the occurrence of electroconvection
in the absence of a magnetic field. Next we increased V

to obtain a normalized voltage ε ≡ (V 2 − Vc
2)/Vc

2 = 0.1
and waited 10 min for transient behavior of the convective
state to die away. Then we applied the ac magnetic field
H (t) to the homeotropic nematic system and waited 20 min
until the stationary convective state appeared. We captured
images of the convective patterns using a CCD camera
(Retiga 2000R; QImaging, Surrey, Canada) controlled by
software (QCAPTURE PRO v.5; QImaging). Upon capturing
the images, we set the sampling time �t so that the number
of measuring points 1/fH �t included in a cycle of H (t) was
larger than 16. In addition, we set the total measuring time T

so that the total number TfH of cycles of H (t) was larger than
20. The image size was 0.684 × 0.684 mm2 (1024 × 1024
pixels). We analyzed the image data using self-made programs
and ImageJ [21].

III. RESULTS AND DISCUSSION

Figures 2(a) and 2(b) show typical Mp(t) for low fH . We
found that Mp(t) oscillates at the same frequency as that of
H 2(t) = (H0

2/2)(1 + cos(2π · 2fH t)). This phenomenon can
be traced from the interaction energy between the director n
and the magnetic field H, written as −(1/2)�χ (H · n)2, where
�χ is the anisotropy of the magnetic susceptibility of NLC.
As mentioned above, the projection of the director n in the x-y
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FIG. 2. (Color online) Mp(t) for feff = 0.2 mHz (a) and feff =
2.8 mHz (b). Filled (blue) circles represent Mp(t), and solid (red)
lines show H 2(t).

plane is the C(r) director, and the electroconvection occurs
as a consequence of the nonlinear interaction between C(r)
and q(r). Therefore, q(r) oscillates synchronously with H 2(t).
Consequently, Mp(t), as the pattern ordering of the azimuth of
q(r), oscillates at the same frequency as that of H 2(t).

As there are no higher harmonic components in the power
spectra of Mp(t) for low fH , they can be described as

Mp(t) = Mp0 cos(2πfeff t − δ) + Mp1, (2)

where feff = 2fH [22]. Since Mp(t) is bounded between 0
and 1 and responses to H 2(t), the constant Mp1 is necessary.
The phase difference δ and the amplitude Mp0 were obtained
from the values of the maximum and minimum of Mp(t) and
H 2(t) as follows. The time delay of a maximum (minimum)
of Mp(t) to the corresponding maximum (minimum) of H 2(t)
was obtained. δ was obtained from the mean value of all the
time delays. The difference between a maximum value and the
next minimum value of Mp(t) was obtained. Mp0 is the mean
value corresponding to half the difference.

Figure 3 shows the feff dependence of M2
p0. The result that

a discontinuous change appears at feff � 6 mHz suggests that
the behavior in the high-feff regime is different from that in the
low-feff regime. Indeed, Mp(t) deviates from Eq. (2), an issue
we return to below. Therefore, a different analysis method
should be adopted for each frequency regime.
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M
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FIG. 3. (Color online) Dependence of M2
p0 on feff plotted on a

logarithmic scale.

In Ref. [18], the pattern susceptibility for dc magnetic fields
was introduced to investigate the effects of external forces to
convective patterns. For the present study, we also define the
pattern susceptibility χp by

M̃p(t) = χpF (t), (3)

where χp ≡ χ ′
p + iχ ′′

p is a complex number, and M̃p(t) ≡
Mp(t) − Mp1. The external force F (t) is represented by

F (t) = h0 cos(2πfeff t). (4)

χp is expressible in terms of δ and Mp0,

χ ′
p = Mp0

h0
cos δ, (5)

χ ′′
p = Mp0

h0
sin δ, (6)

where h0 = H0
2/2. The feff dependence of χp, which is

obtained from the results of δ and Mp0 using Eqs. (5) and
(6), is shown in Fig. 4.

In modeling the behavior for low feff , we use a linear
relaxation model with an external force [1],

d

dt
M̃p(t) = − 1

τ
M̃p(t) + χ ′

p(0)

τ
F (t), (7)

where τ is the relaxation time. For feff → 0, M̃p(t) =
χ ′

p(0)F (t). Substituting Eq. (3) into Eq. (7), we obtained the
Debye-type relaxation spectra [1]:

χ ′
p(feff) = χ ′

p(0)

1 + (2πfeffτ )2
, (8)

χ ′′
p(feff) = 2πfeffτ · χ ′

p(0)

1 + (2πfeffτ )2
. (9)

We performed fittings of χp to Eqs. (8) and (9) in feff �
6 mHz. As shown in Fig. 4, the experimental results for χ ′

p

and χ ′′
p in this frequency regime fit well with Eqs. (8) and (9),

respectively. From these fits, we obtain a relaxation time τr of
97 ± 5 s from χ ′

p and τi of 107 ± 5 s from χ ′′
p .
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FIG. 4. (Color online) (a) Dependences of χ ′
p [(red) circles] and

χ ′′
p [(blue) triangles] on feff . feff is represented on a logarithmic scale.

Solid lines show fittings to Eqs. (8) and (9). χ ′
p(0) = 3.4 × 10−6 G−2

was obtained by the fitting. (b) Relation between χ ′
p(feff ) and χ ′′

p (feff )
plotted using feff as a common parameter (Cole-Cole plot).

In Fig. 4(b), the relationship between χ ′
p(feff) and χ ′′

p(feff)
is plotted using feff as a common parameter. Called a Cole-
Cole plot [23], this plot for the Debye-type relaxation forms
a perfect semicircle [1]. In the present case, the left side of
the plot, corresponding to high feff , deviates from a perfect
semicircle. However, because the data points seem to follow
some function, a detailed analysis may help to clarify the
complex dynamics [24].

As shown in Fig. 4, the results of χp do not coincide with
Eqs. (8) and (9) for feff � 6 mHz. In this regime, Mp(t) also
deviates from Eq. (2) and has slow and large fluctuations other
than the oscillation with feff (see Fig. 5). To observe this
fluctuation, we introduce the dynamic order parameter, defined
as the average of Mp(t) over one period,

Mi = 1

Teff

∫ iTeff

(i−1)Teff

Mp(t ′) dt ′, (10)

where i = 1,2,3, . . . and Teff = 1/feff [22]. At t ′ = 0 s,
Mp(t) shows the first maximum. From Fig. 5, Mi can
sufficiently capture the large fluctuation of Mp(t). Moreover,
we evaluated the magnitude of the fluctuations using the
variance S2 = 〈(Mi − 〈Mi〉)2〉 of Mi , where 〈· · · 〉 denotes the
average on i. From the dependence of S2 on feff (Fig. 6),
the fluctuation in Mi increases with feff . This means that the
periodically oscillating force with high feff induces slow and
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FIG. 5. (Color online) Typical Mp(t) [solid (red) line] shown in
the high-feff regime and Mi [(blue) circles] obtained from Eq. (10).
feff = 40 mHz. Mi data are plotted at t = iTeff .

large fluctuations of Mp(t) other than the oscillation with feff .
If the present system is governed by the linear relaxation model
of Eq. (7) over the whole feff regime, Mp0 becomes smaller
and Mp1 is kept constant also for high feff . The result shown
in Fig. 6 suggests that the nonlinearity revealed in high feff

induces the slow and large fluctuations of Mp(t).
Let us again consider a substance that is composed of

polar molecules with permanent dipoles. The orientation of
the molecule is thermally fluctuating. If the orientation of the
molecule oscillates by applying an ac electric field to this
substance, energy given by the electric field is dissipated by
friction among the rotating molecules, and the dissipation is
described by the imaginary part of the response function. In
this case, the thermal fluctuations under no electric field and the

FIG. 6. (Color online) Dependence of the variance S2 of Mi

on feff .
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response function are associated by the fluctuation-dissipation
theorem [1]. In the SMT, in contrast, the direction of convective
rolls is always fluctuating because of interactions between the
convection and the molecular orientation, as stated earlier.
In this state, energy injected by applying electric fields is
dissipated by the molecular viscosity of the NLC. In the present
study, the chaotic convective patterns are ordered by applying
magnetic fields. Then the interactions which induce the STC
act as “friction” for the ordering. We obtained the imaginary
part of the complex pattern susceptibility for the responses to
the oscillating external force as shown in Fig. 4. This suggests
that the energy given by the external force induces a new
type of dissipation which is different from that caused by
the molecular viscosity. However, the relation between the
complex pattern susceptibility and the chaotic fluctuations
of convective patterns has not been revealed yet. Recently,
additional friction as a result of chaos has been researched
as a new subject in statistical mechanics [10,25–28]. In the
future, the fluctuation-dissipation relation in nonequilibrium
open systems may become an important aspect in clarifying
transport phenomena arising from such chaos-induced friction.

IV. SUMMARY

We have studied the responses to ac magnetic fields of
SMT, a form of STC, in electroconvection of nematics.
The results are summarized as follows. We measured the

dynamical responses using temporal changes of the order
parameter Mp(t), which indicates the degree of ordering in
a convective pattern induced by the magnetic field H (t).
Mp(t) oscillates at frequency feff , which is equal to that of
the square of the magnetic field H 2(t) and which can be
explained by the properties of the liquid crystal for magnetic
fields. The amplitudes Mp0 of Mp(t) and the phase differences
δ between Mp(t) and H 2(t) were obtained by changing feff .
We calculated the complex susceptibility χp of the pattern
from Mp0 and δ. We introduced the linear relaxation model
to explain the feff dependence of χp for the low-feff regime
and obtained the relaxation time by fittings to the Debye-type
relaxation spectra. In the high-feff regime, because slow and
large fluctuations of Mp(t) other than the oscillation with feff

appear, χp does not fit the relaxation spectra. The magnitude
of this fluctuation increases with increasing feff .

In the present study, we have evaluated the responses of
convective patterns using the global order parameter Mp,
which is a spatially averaged variable. However, to clarify the
response dynamics in more detail, especially for the higher feff

regime, a local measurement should be performed. Therefore,
it will be necessary to introduce the azimuth ψ(r) of the local
wave vector [29].
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