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We define auto- and cross-correlation functions capable of capturing dynamical characteristics induced by
local phase-space structures in a general dynamical system. These correlation functions are calculated in the
standard map for a range of values of the nonlinearity parameter k. Using a model of noninteracting particles,
each evolving according to the same standard map dynamics and located initially at specific phase-space regions,
we show that for 0.6 < k � 1.2 long-range cross correlations emerge. They occur as an ensemble property of
particle trajectories by an appropriate choice of the phase-space cells used in the statistical averaging. In this
region of k values the single-particle phase space is either dominated by local chaos (k � kc with kc ≈ 0.97)
or it is characterized by the transition from local to global chaos (kc < k � 1.2). Introducing suitable symbolic
dynamics we demonstrate that the emergence of long-range cross correlations can be attributed to the existence
of an effective intermittent dynamics in specific regions of the phase space. Our findings support the recently
established relation of intermittent dynamics and cross correlations [F. K. Diakonos, A. K. Karlis, and P.
Schmelcher, Europhys. Lett. 105, 26004 (2014)] in simple one-dimensional intermittent maps, suggesting its
validity also for two-dimensional Hamiltonian maps.
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I. INTRODUCTION

Dynamical systems with mixed phase space (PS) [1] are
characterized by the coexistence of time scales that may differ
by several orders of magnitude. The fast propagation in the
chaotic sea is usually interrupted by long-time stickiness on
local PS structures such as dynamical traps of hierarchically
arranged islands, net traps, or dynamical traps of stochastic
layers [2]. Usually the dynamics in these regions is almost
regular in contrast to the stochastic profile of the complete
trajectory. Furthermore, the PS geometry in the regions where
regular and chaotic trajectories approach each other arbitrarily
close is typically fractal and this leads to the presence of
unusual statistical properties in the ensemble of the chaotic
trajectories [3]. This is mainly due to the fact that the dynamics
is in this case pseudoergodic [4], making impractical the use
of trajectory-based common tools, such as, for example, the
Lyapunov exponents or the correlation functions. In the context
of Lyapunov exponents, the main interest for a nonhyperbolic
Hamiltonian system is to capture the large variation of the
local instability due to the coexistence of chaotic and laminar
phases along a reference chaotic trajectory [5]. Suitable tools
for this purpose are provided by the finite-time Lyapunov
exponents [6] and the recently introduced finite-time rotation
numbers [7], which turn out to be much more sensitive to
local PS structures than the corresponding global quantities,
thereby allowing for a better understanding of the mixed PS
dynamics. This is clearly demonstrated in Ref. [8], showing
that in Chirikov’s standard map (SM) [9], which is a prototype
Hamiltonian system with mixed phase space, the statistical
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distribution of the finite-time Lyapunov exponents detects
stickiness in the form of a secondary peak. The SM is
in general a very useful laboratory for the exploration of
local PS structures being at the same time an approximate
description of several physical systems, such as the kicked
rotor [10], the relativistic cyclotron [11], and the equilibrium
configurations of the Frenkel-Kontorova model [12]. Simple
to simulate, two-dimensional, and discrete in time, the SM
has been extensively studied in recent decades with emphasis
on diverse dynamical aspects such as anomalous diffusion
and stickiness [13], accelerator modes [14], and generating
phase space partitions [15], which are closely related to the
presence of local PS structures and their impact on mixed PS
dynamics.

Concerning correlation functions, the investigations in
area-preserving maps with mixed PS have a long history. In
Ref. [16] the properly normalized relative frequency for the
occurrence of a pair of PS cells separated by m iterations
(a coarse grained version of the correlation function) was
calculated for an ensemble of SM chaotic trajectories using
a large value for the nonlinearity parameter k. An exponential
decay of this quantity as a function of the delay time m was
found. In Ref. [17] it was observed that by changing the value
of k in the SM, the correlation functions exhibit different
asymptotic behavior ranging from faster than exponential to
algebraic decay. In Ref. [18] it was shown that this exponential
decay of correlations is related to the dynamics in “island-free”
chaotic regions and becomes a power-law decay when the
chaotic trajectories evolve in a PS region possessing stability
islands. Later it was recognized that the long tails in statistical
distributions of area-preserving maps with mixed PS originates
from stickiness effects initiating a series of works on the impact
of stickiness in the dynamics and the emergence of long-range
autocorrelations [11,19–25].
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The implications of pseudoergodicity on the behavior of
correlation functions are quite intricate, since these quantities
contain an additional time scale (the delay time), which
implies a lower cutoff on the trajectory lengths used in the
corresponding time-averaging. In fact, for the correlation
function to be representative for the PS dynamics it is required
that the associated trajectory length is order(s) of magnitude
larger than the maximum delay time. Thus, the locality of the
PS structures and the conditions of long-time propagation are
compelling factors, making the use of correlation functions
for exploring local PS dynamics a difficult task. On the other
hand, in a class of Hamiltonian systems with PS dominated by
stratification due to the presence of invariant KAM spanning
curves, different PS regions may be dynamically disconnected.
Thus, ergodicity may be partially restored within an isolated
PS region and the definition of correlation functions within
such a region is plausible. Usually, in this case, even after
the destruction of the invariant spanning curves, remnants
of the stratified structure survive in the form of a dense set
of stability islands [26]. Consequently, the stickiness on this
net of dynamical traps induces large differences between the
time-scale characteristic for an ergodic covering of a single PS
zone through a chaotic trajectory and the time scale needed to
cross the destroyed spanning curve and enter in the accessible
neighboring PS zone. One could naturally think that even in
this case, despite the presence of global chaos, the definition
of appropriate correlation functions sensitive to the local PS
structures may be possible.

The aim of the present paper is twofold. First, we introduce
a class of correlation functions possessing the ability to
explore the dynamics in restricted PS regions for an arbitrary
Hamiltonian system. Second, using these correlation functions
we analyze the dynamics of the SM close to the transition
from local to global chaos. In particular, we focus on cross-
correlation functions between trajectories with different initial
conditions. Such a trajectory ensemble corresponds to a set
of noninteracting particles each evolving according to the
SM dynamics with the same k, similarly to the scheme used
in Ref. [27] to study the emergence of stochasticity due to
fixed-point transitions. We show that around the local-to-
global chaos transition point, long-range cross correlations
develop, and subsequently, inspecting the trajectories in the
ensemble used for the calculation of the cross-correlation
function, we reveal the presence of effective intermittency
in a symbolic representation of the associated dynamics. The
observed intermittency is strong in the sense that the mean
waiting time in the laminar region diverges. Thus, our analysis
demonstrates that the previously recorded emergence of cross
correlations in a system of noninteracting particles following
non-Hamiltonian 1D intermittent dynamics [28] is present also
in a 2D Hamiltonian system like the SM close to the transition
from local to global chaos.

Our paper is organized as follows. In Sec. II we give
the definitions of the correlation functions and we introduce
the dynamical system we are considering in the subsequent
analysis. Section III provides the numerical results of the
correlation functions in the considered model for a dense set
of values of the nonlinearity parameter k around the critical
value kc, signaling the transition from local to global chaos.
In Sec. IV we analyze the obtained results by performing

a detailed evaluation of the characteristic trajectories and
introducing an appropriate symbolic dynamics to reveal the
underlying effective intermittency. Finally, Sec. V provides
our concluding remarks.

II. CORRELATIONS IN THE STANDARD MAP MODEL
AND BASIC OBSERVABLES

The model we consider consists of M noninteracting
particles, each evolving according to the dynamics of the
standard map ([9]):

p
(i)
n+1 = p(i)

n + k(i) sin θ (i)
n ,

θ
(i)
n+1 = θ (i)

n + p
(i)
n+1,

(1)

where k(i) is the control parameter of the nonlinearity and
i = 1,2,...,M . We will here consider exclusively the case
k(1) = k(2) = .....k(M) = k, which simplifies the description
significantly, reducing the study of the M-particle system to
the study of an ensemble of initial conditions for a single
particle. In this case the particle index (i) can be omitted in
the description. Then the variables of the system, θn and pn,
stand for the single-particle angular position and momentum
at time instant n, respectively, both calculated with modulo
2π . We restrict our analysis to the range k ∈ [0,2]. The system
undergoes a transition from local to global chaos at the critical
value kc = 0.971635... [29]. At kc the last KAM curve with
ratio φ (golden ratio) is destroyed and therefore chaotic orbits
are not trapped between KAM tori any more, but they evolve
across their remnants covering in principle all the available
PS except the remaining islands of stability. Dynamically the
trace of the destroyed regular PS structure is revealed in the
stickiness of the chaotic orbits around these stability islands.
As mentioned in the introduction, it is likely to assume that
the sticky evolution of the chaotic orbits in the immediate
neighborhood of the remaining stability islands may introduce
some correlations even between chaotic orbits originating from
different initial conditions. To explore this scenario we will
calculate the autocorrelation (AC) and cross-correlation (CC)
functions of the considered system for the aforementioned k

values, focusing mainly on the k region, where the transition
from local to global chaos takes place.

For this task one usually employs the standard definition
[1] for the correlation functions:

ρx,ij (m) = lim
N→∞

[
1

N − m

N−m−1∑
n=0

xi(n)xj (n + m)

− 1

(N − m)2

N−m−1∑
n=0

xi(n)
N−m−1∑

n=0

xj (n + m)

]
, (2)

where N is the orbit’s length, x represents the PS variables
θ or p, m stands for the usual time-delay occurring in the
correlation functions (CFs), and i, j label the different sets
of initial conditions (θ0,p0) that define the orbits i and j .
The diagonal entries i = j in Eq. (2) determine the AC
function, which expresses the statistical similarity of a single
trajectory at any two time instances differing by m. The
CC function is obtained from the nondiagonal entries i �= j

in Eq. (2) and expresses the respective statistical similarity
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between two different orbits (i.e., two orbits with different
initial conditions) at any two time instances differing by m.
The limit N → ∞ is usually replaced by averaging over the
entire PS requiring the system to be strongly ergodic, which
is not for all the considered values of k the case for the SM.
In fact, in the most interesting region of k ∈ [0.6,2.0], the
PS is mixed. As a result the associated averaging contains
qualitatively different dynamical components (chaotic, regular
trajectories) and washes out properties (i.e., correlations),
which characterize each dynamical component separately.
Thus, it is obvious that global averaging is not representative
of the local structures of the phase space.

Another property that disfavors the use of the global
averaging is related to the symmetries of the SM. The PS of the
standard map is point symmetric around (π,π ), causing the fact
that for each trajectory, denoted as (θ,p), there exists a partner
trajectory (θ,p)ps = (2π − θ,2π − p) [where the index ps is
used to notice the point-symmetric partner of (θ,p)]. This
implies that the contribution to the CC function of a pair of
orbits {a,b} and the contribution of the pair {a,bps}, with bps

the point-symmetric partner of b, will be exactly opposite
canceling out in the averaging. Thus, as long as there coexist
orbits in the ensemble with their point-symmetric counterparts,
the averaging will always lead to vanishing cross correlations.

In order to overcome both, the peculiarities of the averaging
procedure originating from the fact that the ergodicity is
not strongly satisfied, as well as the trivial behavior of the
correlation functions due to the PS antisymmetry, we introduce
here a new class of correlation functions, the localized finite-
time correlation functions (LFTCFs). Their aim is to extract
information on the possible emergence of correlations due to
the local structures in the phase space and they are defined as
follows:

A(d)
x (m) = lim

Sd→∞
1

Sd

∑
i∈C(d)

ρ
(d)
x,ii(m); C(d)

x (m)

= lim
Sd→∞

1

Sd

∑
i,j∈C(d)

i �=j

ρ
(d)
x,ij (m) (3)

with

ρ
(d)
x,ij (m) = 1

N − m

N−m−1∑
n=0

x
(d)
i (n)x(d)

j (n + m)

− 1

(N − m)2

N−m−1∑
n=0

x
(d)
i (n)

N−m−1∑
n=0

x
(d)
j (n + m), (4)

where {x(d)
i (0),x(d)

j (0)} ∈ C(d) ⊆ PS; x = θ or p.

The LFTCFs in Eq. (3) are obtained by the usual definition
of CFs [Eq. (2)], by fixing the trajectory length N in the
ensemble to a finite value and averaging over different CFs,
each calculated using trajectory pairs with initial conditions
within a specific PS cell C(d). Local, finite-time autocorrela-
tion (cross-correlation) functions are denoted by A(d)

x [C(d)
x ],

respectively. The appropriate choice of N is related to the PS
structure and it will be discussed in detail in the next section.
The index d is used to indicate the PS domain where the cell
C(d) belongs (see below). With Sd we notice the total number
of pairs of initial conditions used for the calculation of the

FIG. 1. (Color online) The mixed PS of the SM for k = 0.95. The
colored (gray) regions correspond to chaotic while the black regions
to regular dynamics. The lines indicate the locations of � (dashed) and
� (solid) invariant spanning curves. The red colored region defines
zone 1, as indexed by the numbers in the column at the right-hand
side of the plot, while the blue and the green colored regions define
zones 2 and 3, respectively (see discussion in Sec. III).

CFs. In Eq. (3), C(d) should necessarily belong only to one of
the two distinguishable domains covering the entire PS:

The chaotic domain (d = c), which contains all the PS
areas where local or global chaos is present. For k � kc,
the chaotic domain spans over the whole PS, excluding the
stability islands.

The regular domain (d = r), which contains all the areas
of the PS that are either stability islands or spanning curves
(periodic or quasiperiodic orbits).

As an example, in Fig. 1 we show the PS of the SM for k =
0.95. The chaotic domain corresponds to the colored regions
while the regular domain to the black ones.

Since the definition of the LFTCFs requires the averaging
over initial conditions in a specific PS-cell, one can naturally
ask about the dependence of the form of these CFs on the
specific location or size of the cell within a domain as
well as the length of the involved trajectories. This will be
thoroughly discussed in Sec. III. Obviously the LFTCFs allow
us to analyze the correlations in each dynamical component
(chaotic, regular) separately, taking also into account the
impact of the local PS structure. However, the cell choice
requires some care since one has to ensure that it belongs
entirely only to one of the two aforementioned domains.

III. NUMERICAL SIMULATIONS

For finite Sd , Eq. (3) provides us with an estimate of the
LFTCFs with initial conditions in the cell C(d). Of course the
result will in general depend on both the finite-time interval N

and the position of the cell C(d). For a regular domain (d = r)
the dominant frequencies define a characteristic time scale and
N can be chosen to be a multiple of the period corresponding
to the largest frequency peak in the related power spectrum.
In addition the regular motion does not generate diffusion
and therefore the evolution of the initial cell C(r) remains
localized in PS. Thus the validity of the terms “finite time”
and “local” used in Eq. (3) is straightforward for an ensemble
of trajectories with initial conditions in a regular cell.
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In contrary, the validity of these terms is less clear when
the cell of initial conditions lies within a chaotic domain
(d = c). To illuminate this issue we explore in more detail
the PS structure. For 0.55 < k < 0.85 local chaos appears
in the vicinity of the large regular island centered around
(π,0). For k ∈ [0.85,1.2] the PS is naturally divided into three
zones, which in practice are dynamically disconnected due
to the presence of invariant KAM spanning curves or their
remnants. In Fig. 1 we show these zones colored red (zone
1), blue (zone 2), and green (zone 3) for k = 0.95. Let � be
the last KAM spanning curve and its point-symmetric partner
separating zones 1 and 2 (dashed lines in Fig. 1) and � the
last spanning curve and its point symmetric partner separating
zones 2 and 3 (solid lines in Fig. 1). � is the golden ratio KAM
curve. At k ≈ 0.9164 the � and at k = kc the � KAM curves
are destroyed. For k � 0.91 the term “local” for the LFTCFs
refers to dynamics within a single zone while the “finite time”
is irrelevant since an ensemble of chaotic trajectories with
initial conditions within a zone remains there for very large
time scales (∼108 iterations). Although the chaotic component
of the PS becomes connected through the breaking of the
spanning curves, there is always strong stickiness on the
boundaries, and, as a result, the mean time needed for a
trajectory starting within each one of these zones to enter
in a neighboring zone is very large (∼104–108 iterations). In
fact, even at k = 1 where all spanning curves are broken, a
trajectory starting in the red zone needs at least 103 iterations
to enter in the blue zone, while a trajectory starting in the blue
zone needs at least ∼105 iterations to enter into the green zone.
To illustrate this in a more transparent way, we calculate the
cumulative distribution function FT (t) := Prob(T � t) of the
first passage time T for a chaotic trajectory to cross up to time
t , either the remnants of � starting from zone 1 or the remnants
of � starting from zone 2. In practice, to find FT (t) we start
with an ensemble of 105 trajectories in a selected zone (1 or
2) and we determine the number of trajectories having first
passage time T smaller than t normalizing by the total number
of trajectories in the ensemble.

In Fig. 2 we show FT (t) for the first passage time from zone
1 to zone 2 (red dashed line) as well as the first passage time
from zone 2 to zone 3 (blue solid line). As expected both curves
saturate at FT = 1 for t → ∞. We clearly observe the lower
cutoff at times t12,min ≈ 103 and t23,min ≈ 105, respectively. In
addition the corresponding mean times [defined by FT (〈t〉) =
1/2] are 〈t12〉 = 2.6 × 104 and 〈t23〉 = 2.8 × 106. Thus, as
dictated by the results shown in Fig. 2, there are well-defined
timescales that restrict the dynamics to a single zone. This
justifies the use of the terms “finite time” and “local” in the
correlation functions of Eq. (3) even for chaotic trajectories
with k larger but close enough to kc, so that the PS stratification
into zones, as demonstrated in Fig. 1, is still dynamically valid.
For a large ensemble of trajectories with initial conditions in
the red zone, choosing, for example, N ≈ 104 in Eq. (3) it is
guaranteed that the obtained correlation functions characterize
the local dynamics within this zone. A similar argument
applies also for analogous ensembles of trajectories with initial
conditions in the other two zones. The general conclusion
is that LFTCFs are especially useful for the description of
correlations at least in two cases: (i) when the PS of the
dynamical system is stratified into zones by invariant spanning

FIG. 2. (Color online) The cumulative distribution functions for
the probability of a chaotic trajectory to cross up to time t the second
to last spanning curve (red dashed line) starting from a PS cell in
the first zone (region 1 in Fig. 1) and the last spanning curve (blue
solid line) starting from a PS cell in the second zone (region 2 in
Fig. 1). Both functions are calculated using k = 1. The dotted line at
FT (t) = 1 is plotted to guide the eye.

curves and within each zone local chaos is fully developed
(0.85 < k < 0.91 for the SM) and (ii) close to the critical
point for a dynamical system exhibiting a transition from
local to global chaos (0.91 < k < 1.2 for the SM). Far beyond
the critical point (k � kc for the SM), when the chaotic sea
becomes almost homogeneous and dominating in PS while
the remnants of the regular dynamics shrink significantly, the
LFTCFs converge rapidly, i.e., for relatively small trajectory
length N , to the usual correlation functions in Eq. (2) and
become independent of the cell in the chaotic domain.

Since the delay time m should be much smaller than the
length of the trajectories involved in the calculation of the
LFTCFs we have to choose N as large as possible in order
to allow for a large variation of m. On the other hand, for
k � kc, N should be of the order of the minimum first passage
time in the corresponding zone. For a given N , in order to
ensure that the obtained numerical results are representative
of the limit Sd → ∞, we use as criterion the convergence
of 2 significant digits when increasing Sd by a factor of 10.
In addition the convergence with respect to the used length
of the trajectories in the ensemble is tested by increasing N

by a factor of 2. We found empirically that taking the values
Sd = 5 × 105 and N = 5 × 103 in the calculation of Eq. (3)
we achieve the required convergence. Thus, in the following
discussion, if not stated differently, we present results using
exclusively these parameter values for N and Sd .

A. Correlation functions in the regular domain

First we discuss the results for LFTCFs using initial
condition cells in the regular domain, which turn out to possess
some universal features. Cells within the regular domain
contain quasiperiodic and periodic orbits. The corresponding
LFTCFs perform oscillations around zero. Increasing Sd the
amplitude of the oscillations diminishes, tending to zero for
large m. This is due to the fact that the ensemble averaging
is over oscillating forms with slightly shifted frequencies,
which interfere destructively canceling each other. This effect
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FIG. 3. (Color online) Numerical demonstration of the cancellation of the correlations in the regular domain. Shown is A(r)
p of orbits in

a cell of size 0.5 × 0.5 within the stability island centered around (π,0) when (a) a single trajectory and (b) 105 trajectories are used in the
averaging. The C(r)

p s (not shown) have similar form. Analogous results are obtained also for the LFTCFs of the θ variable, for all C(d) within
the regular domain.

is demonstrated in Fig. 3, where we plot A(r)
p in (a) with

Sd = 1 and in (b) with Sd = 105. The C(r)
p in the same cell (not

shown here) converges also to an oscillatory form around zero,
decaying much faster (m ≈ 30) and having initially (m < 30) a
very small amplitude [O(10−3)] due to different normalization.

This is a typical behavior for all cells in the regular domain.
Since the LFTCFs in the regular domain oscillate always
around zero we will not consider them furthermore in the
following.

B. Autocorrelations in the chaotic domain

As already mentioned, the LFTCFs may depend on the spe-
cific location of the cell within the chaotic domain. We start our
analysis choosing as cell C(c) the square [0,0.25] × [0,0.25]

in the (θ,p) plane, which is in the immediate neighborhood of
the first-order unstable fixed point (0,0) of the SM. We first
calculate the LFTCFs in this cell and subsequently we explore
their dependence on the location or the size of the cell.

In Figs. 4(a) and 4(b) we present A(c)
x for k = 0.95 using the

phase space variables x = p [Fig. 4(a)] and x = θ [Fig. 4(b)],
respectively. Figures 4(c) and 4(d) show componentwise [p
(c), θ (d)] a typical trajectory of the SM in zone 1 of the
chaotic domain for this k value.

Let us first discuss the behavior of the A
(c)
θ , which is

mostly small fluctuations around zero. This is easily explained
by the form of the θ time series. For the considered k

values θ performs an oscillatory motion. Consequently, also
the corresponding A

(c)
θ for a single trajectory possesses an

oscillatory form. Averaging over different orbits will induce

FIG. 4. (Color online) Left subfigures depict the average A(c)
x for the cell [0,0.25] × [0,0.25] in x = p (a) and x = θ (b) variables for

k = 0.95. Right subfigures are typical time-series for p and θ with initial conditions in this cell. Subfigure (c) corresponds to pn and (d) to θn

versus n (number of iterations).
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FIG. 5. (Color online) (a) A(c)
p in the cell [0,0.25] × [0,0.25] for a wide range of k values plotted in linear scale. An ensemble of Sd = 5 × 105

orbits each of length N = 5 × 103 is used. (b) The same plot in semilog scale. The A(c)
p s are normalized to one at m = 0 by dividing the

autocorrelation function of each trajectory in the ensemble with the corresponding standard deviation.

cancellations since the different oscillatory orbits vary in
phase, amplitude, and frequency. This is actually the case for
all values of k, up to k ≈ 1.5, where the orbits become strongly
chaotic characterized by irregular fluctuations, independently
of the cell location in PS. Notice here that a similar behavior
(fluctuations around zero) is observed for C

(c)
θ s, and they also

will not be considered furthermore in the following. Thus our
subsequent analysis focuses only on the correlations of the
p-component.

In contrast with the A
(c)
θ , the autocorrelation of p, as

observed in Fig. 4(a), is not trivial and the form of the
corresponding trajectory [Fig. 4(c)] is qualitatively different.
To explore further the autocorrelations of p we calculated
A(c)

p for several values of the parameter k. The results are
summarized in Fig. 5. In all calculations we used initial
conditions in the cell [0,0.25] × [0,0.25].

In each case the convergence criteria are well satisfied.
Considering the behavior in the semilog scale shown in
Fig. 5(b), we observe an exponential decay trend for all values
of k ∈ [0.6,1.5]. Although the exponential behavior is evident,
there are fluctuations of the A(c)

p around the exponential
envelope. These fluctuations are not of statistical origin since

FIG. 6. (Color online) The inverse decay rates τ (k) of the A(c)
p s

(calculated using initial conditions in the PS cell [0,0.25] × [0,0.25])
shown versus k (black circles). The red solid line is an interpolating
sigmoidal curve to guide the eye. The vertical dotted line indicates
the location k = kc.

they persist by increasing the number of trajectories in the
ensemble by a factor of 102. In fact, they can be attributed to
the stickiness of the chaotic trajectories to the stable manifolds
of the set of unstable periodic orbits surrounding the stability
islands. The A(c)

p s decay to zero significantly faster for all
k > 1.2 reaching an almost instantaneous decay for k � 1.5.
The reason for this behavior will be discussed in depth in the
next section where an orbit analysis is presented. Despite the
oscillatory fluctuations of the A(c)

p s it is useful to perform a fit
using an exponential function,

fAC,p(m) = f0e
−m/τ (k), (5)

to determine the characteristic rate 1
τ (k) for the exponential

decay of the autocorrelations at different k values. The
resulting τ (k) is shown as a function of k in Fig. 6.

For k ∈ [0.6,kc] where local chaos is present, the decay
rates reside within a characteristic plateau, possessing an
approximately constant value of 1

650 . Above kc where the
transition from local to global chaos takes place, the decay
rates rapidly increase and τ (k) approaches zero for k ≈ 1.5.
In Sec. IV we will see that the form of the chaotic trajectories
changes significantly for k > 1.5 being characterized by
irregular fluctuations, while this is not the case for k < 1.5.
It will also become evident that the transition from local
to global chaos induces this change in the orbits’ structure,
leading to vanishing LFTCFs for k > 1.5.

Let us now turn to the dependence of the A(c)
p s on the cell’s

location within the chaotic domain. This is demonstrated in
Fig. 7, showing A(c)

p s calculated for different cell locations.
It is evident that the A(c)

p s depend on the zone where C(c)

is located. Furthermore, we have checked the dependence of
these results on the location of the cell C(c) within each zone.
We have found that the form of the A(c)

p does not change as we
move C(c) within a zone, provided that we avoid the mixing of
different PS domains (regular, chaotic). In addition, the A(c)

p

form in zones 2 and 3 is very similar.

C. Cross correlations in the chaotic domain

Proceeding along the same lines as for the case of the
autocorrelations, we analyze the localized finite-time cross-
correlation functions using as C(c) the cell [0,0.25] × [0,0.25].
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FIG. 7. (Color online) The A(c)
p s belonging to the different zones

of the chaotic domain at k = 0.95.

In Fig. 8 we present the C(c)
p with initial conditions in this cell

for various k values.
Like in the A(c)

p s case, the form of the C(c)
p s varies

continuously with k and for k � 1.5 the C(c)
p s approach zero

rapidly with increasing m [see Fig. 8(a)]. Despite similarities,
the structure of the C(c)

p s is quite different from that of the
A(c)

p s, as it becomes evident if we inspect the C(c)
p s in log-log

[Fig. 8(b)] and log-linear [Fig. 8(c)] scales. Notice that the
difference of approximately three orders of magnitude in
the initial values of C(c)

p and A(c)
p relies on the fact that

the cross-correlation function of each pair of orbits in the
corresponding ensemble is not normalized to one at m = 0 in
contrast to the autocorrelation functions (see caption of Fig. 8).

In Figs. 8(b) and 8(c) it is clearly seen that, neglecting small
amplitude fluctuations, the C(c)

p s show either a logarithmic or
a power-law behavior, thus they possess long-range character-
istics. In fact, for k < kc the C(c)

p s can be better described as
a logarithmic function of the delay m, while for kc < k < 1.5
they follow approximately a power-law. Since the long-range
character of the C(c)

p weakens as k increases beyond kc, it is
natural to ask the question whether it is related to the local
structure of the chaotic domain induced by the last KAM

FIG. 9. (Color online) The C(c)
p s calculated for k = 0.95 using

PS cells located in different zones of the chaotic domain. For zone
1 we use C(c) = [0,0.25] × [0,0.25], for zone 2 C(c) = [0.02,0.17] ×
[1.66,1.8], and for zone 3 C(c) = [4.82,5.03] × [3.57,3.68]. Each
cell is numbered with a violet-colored number. The blue lines above
cells 1 and 4 correspond to the fixed point’s (0,0) eigenvectors (see
end of Sec. IV). The blue line above cell 1 represents the unstable
eigenvector, whereas the blue line above cell 4 represents the stable
eigenvector.

spanning curves. Therefore, in the following we will try to
explain the emergence of long-range correlations by exploring
in detail the SM chaotic dynamics close to kc. In a recent study
[28], it has been shown that long-range cross correlations can
emerge in systems of noninteracting particles, each performing
the same intermittent dynamics. Thus, one could ask if any
kind of intermittent behavior within the chaotic domain of the
standard map for these k values is present (at least effectively)
and generates these long-range cross correlations.

Before we address the possibility of intermittency in the
SM, a study of the dependence of the form of the C(c)

p s on the
location of the cell C(c) is in order. Concentrating on the case
k = 0.95 we calculate as a first step the C(c)

p s using cells located
in the different zones of the chaotic domain as presented by
the different coloured regions in Fig. 1. The results of the
corresponding simulations are summarized in Fig. 9.

FIG. 8. (Color online) C(c)
p for an ensemble of 5 × 105 chaotic trajectories with initial conditions in C(c) = [0,0.25] × [0,0.25] (zone 1)

obtained using k = 0.8 (black line, squares), k = kc (orange line, circles), k = 1.2 (blue line, triangles) and k = 1.5 (green line, stars).
(a) Linear-linear, (b) linear-log, and (c) log-log scale. The cross-correlation function of each pair of trajectories in the ensemble is normalized
by dividing with the root of the product of the standard deviations of those trajectories.
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In Fig. 9 it clearly can be seen that the C(c)
p s in zones

2 and 3 have a quite similar form while the C(c)
p in zone 1

behaves differently. In the next section, this will be explained
by exploring the dynamics in the neighborhood of the first-
order unstable fixed point (0,0). As in the case of the A(c)

p s, the
results for C(c)

p s within each zone do not depend on the location
of the cell C(c). However, we observe a very slow convergence
when C(c) is located in the position “4” within zone 1 (see
Fig. 9). This strange behavior will also be discussed at the end
of the next section. Notice that in the case of zone 2, since
the chaotic sea is very thin, one has to use particularly small
cells for the calculation of the C(c)

p s. Due to the fact that the
C(c)

p s in zones 2 and 3 are asymptotically constant while the
C(c)

p in zone 1 has an algebraically decaying profile, we will
focus in the next section exclusively on the emergence of cross
correlations in the latter zone.

IV. INTERMITTENCY AND ORBIT ANALYSIS

Intermittency is characterized by long intervals of regular
motion (laminar phase) of the trajectories, interrupted by
chaotic bursts [30]. At a first glance there is no connection of
the Eq. (1) describing the evolution in the SM with the normal
form of intermittent dynamics [1]. Therefore, it is not expected
to find intermittent characteristics in the first iterate of the SM.
On the other hand, an effective dynamics of the p variable
could generate such a behavior possibly in higher iterates. In
order to inspect this hypothesis, a more in-depth analysis of
the trajectories in the parametric region k ∈ [0.6,1.5], where
the local to global chaos transition takes place, is required.
Furthermore, as we have shown in the previous section, the
long-range slowly decaying cross correlations that could be
associated with intermittent dynamics [28] occur exclusively
in SM trajectories evolving within zone 1 of the PS. Thus, in
the following we will focus on dynamical characteristics of
the chaotic trajectories in this PS region for k � kc.

In this range of k values the p component of all trajectories
in the chaotic region of zone 1 follows the behavior shown in
Figs. 10(a)–10(c). For k beyond 1.5 this structure is essentially
destroyed, becoming gradually a completely irregular time-
series of random fluctuations. A closer look at Figs. 10(a)–
10(c) reveals that the time series of p has a very intriguing
structure. Considering as “down” the p values below π and
as “up” the p values above it, we observe [see Figs. 10(a)
and 10(b)] that the p time series consists of parts in which it is
consecutively jumping up and down and parts in which it stays
either only up or only down for a large number of iterations.
This resembles roughly an intermittent time series where the
laminar phase corresponds to intervals for which the p values
are only up or only down, while the chaotic bursts correspond
to intervals with successive up-down (or vice-versa) jumps
of p.

Zooming in at smaller time scales [Fig. 10(c)] we observe
that the p time series consists of many subintervals each
containing 4 to 7 points (with p values all above or all below π )
forming an almost triangular structure. This property is typical
for any p time series in zone 1 of the chaotic domain and it
also does not depend on the time interval we zoom into. As
demonstrated in Fig. 11, it originates from the unstable fixed
points of order 4, 5, 6, and 7 of the SM. These are densely
embedded in zone 1 and their manifolds affect the trajectories
leading to the triangular structure formation. The emergence
of the latter requires the synergy of the already-mentioned
unstable fixed points and a spanning curve (or its remnants)
acting as a separatrix, which keeps p confined in zone 1.

To illustrate this, it is useful to consider the trace of the
triangular structure in PS. Starting from the neighborhood of
the PS point at (0,0) the trajectory approaches the neighbor-
hood of the PS point (2π,0) in 4 to 7 iterations forming the
triangular structure in the p time series. After reaching (2π,0)
the trajectory either returns to the neighborhood of (0,0) in the
next iteration, extending the duration of the laminar phase, or it
jumps to the neighborhood of (2π,2π ) signaling the beginning

FIG. 10. (Color online) Time-series of the variables p (a, b, c) and θ (d, e, f) of the standard map, for a typical orbit within the chaotic
domain, for k = 0.95 and initial conditions (0.1,0.2) (n is the number of iterations). Shown are (a, d) the first 104 iterations, (b, e) a zoom-in
in the region [0,103], and (c, f) a zoom-in in the region [400,500] of this orbit.
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FIG. 11. (Color online) A typical trajectory [pn shown in (a), θn shown in (b)] for k = 1.8 and initial conditions (0.2,0.1) (n counts the
number of iterations). In the zoom-in of the pn component, shown in (c), it is clearly seen that the triangular substructure in the time series of p

is not sustained and a laminar phase (as defined in Sec. IV) does not exist. In (d) we also show for completeness a zoom-in of the θn component.

of a “chaotic burst.” The same process can also take place
for trajectories involving the neighborhoods of the PS points
(2π,2π ) and (0,2π ), which are the point-symmetric partners
of (0,0) and (2π,0). During the chaotic burst interval of the p

time series, the variable θ performs an oscillation from 0 to 2π

and back (full cycle). When the p time series is in a laminar
phase then the θ time series consists of half cycles either from
2π to 0 (“up” laminar phase of p) or from 0 to 2π (“down”
laminar phase of p). This behavior is clearly displayed in
Fig. 10(f).

For k > kc the last spanning curve is destroyed. Therefore,
p is not bounded anymore, and the triangular structure is
gradually degraded. However, for k values up to 1.5 the
remnants of the separatrix still keep for long time intervals
the p trajectory trapped in zone 1 and, therefore, although
slightly deformed, the triangular structure is preserved. As a
consequence the corresponding C(c)

p s can exhibit long-range
correlations for delay times comparable with the time scale
needed for the p trajectory to escape from zone 1. For example,
at k = 1.2 although the separatrix is destroyed, orbits with
initial conditions in the neighborhood of (0,0) and length about
N = 104 still exhibit the triangular structure without any sig-
nificant change. However, orbits with N = 106 have escaped
through the traps created by the residues of the separatrix
and they follow an irregular (chaotic) motion for large time
intervals. This behavior is typical for all p time series when
k > kc. Furthermore, the structure of a typical PS trajectory
changes completely for k > 1.5, as shown in Fig. 12. Zooming
in we observe that the time series is completely irregular in
both θ and p without any structure, which could lead to a
nontrivial behavior of the LFTCFs. This confirms the results
presented in the previous section for k values in this range.

The previous discussion suggests representing the p time
series by defining a suitable symbolic dynamics: every
triangular unit consisting from 4 to 7 values of p below π

is mapped to “0” and every triangular unit consisting from 4
to 7 values of p above π is mapped to “1.” Obviously the
opposite choice makes no difference. With this representation
of the orbit we can easily define the laminar phase as a string of
consecutive 1s or 0s, i.e., 11111111..., and the chaotic bursts
as strings that have alternating 1s and 0s, i.e., 10101010....
Calculating the C(c)

p s with the symbolic time series yields
identical results to those in the previous section, scaled in
time by a constant factor of ≈0.2 since every 4–7 points of
the original trajectory are mapped to one point in the symbolic
time-series.

FIG. 12. (Color online) Fixed points of the standard map for k =
1.0 found by the method introduced in Ref. [31].
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FIG. 13. (Color online) Laminar length distributions P (λ) for
various values of k, shown in log-log scale. We used 5 × 105

trajectories with initial conditions in the cell [0,0.25] × [0,0.25] and
verified the independence of the cell location in zone 1.

It is now straightforward to calculate the lengths λ of
the laminar phases and to obtain the laminar length dis-
tributions. We used ensembles of 5 × 105 trajectories of
length N = 1.5 × 104 with initial conditions in the cell
[0,0.25] × [0,0.25], for each k value. The results are presented
in Fig. 13. We checked convergence by increasing the number
of trajectories in the ensemble by a factor of 10. The result
coincides within three significant digits with that presented
in Fig. 13. Remarkably enough it turns out that the laminar
length distribution as defined above possesses some kind of
universality. To verify this we recalculated this distribution
by changing the size and the location of the cell of initial
conditions in the chaotic domain of zone 1 and we found, for
given k, the same result within a two significant digits accuracy.

The distributions shown in Fig. 13 follow approximately
power laws for k ∈ [0.6,kc]. Especially at k = kc the laminar
length distribution is very close to a power law. Beyond
kc the distributions resemble a power law but this form
quickly dissolves, already having deviations at k = 1.2. For
k > 1.5 the laminar lengths as well as the associated symbolic
dynamics lose their meaning, as the orbits no longer possesses
the aforementioned triangular structure.

The fact that for k close to kc the laminar length distributions
resemble a power law is connected directly with intermittency.
Such a relation is well established [1] in the literature. In
Ref. [28] this property was used for a system of nonin-
teracting particles, each obeying independently intermittent
dynamics of Pomeau-Manneville type [30] in one dimension,
to demonstrate the emergence of long-range (power-law) cross
correlations among the particles despite the fact that they
do not interact with each other. This unexpected result was
explained considering a set of different trajectories with fixed
length L (corresponding to trajectories of different particles)
and employing a symbolic code for their representation using
the symbol “0” for a trajectory point in the laminar phase
and the symbol “1” for a trajectory point in the irregular
(chaotic) phase. The resulting long-range cross correlations
were attributed to the formation of a fractal set from all symbols
“1” in the ensemble of the particle trajectories whenever the
mean laminar length 〈λ〉 of the underlying laminar length

distribution diverges. This is the case when the exponent in
the laminar length distribution is in the interval (−2, − 1) (for
exponents in [0, − 1] there is no normalizable laminar length
distribution). Coming back to the system considered here and
applying a power-law fit of the form

fP (λ) = βλα (6)

to the laminar length distribution at k = kc, we find α =
−1.85. This implies that the average laminar length is

〈λ〉 =
∫ ∞

2
fP (λ)λdλ =

∫ ∞

2
λ−0.85dλ → ∞, (7)

fulfilling the requirements for the emergence of long-range
cross correlations according to Ref. [28].

Two final comments are in order. As stated in Sec. III C,
in the calculation of the C(c)

p within zone 1 we observed a
very slow convergence when the cell of initial conditions C(c)

was chosen in the neighborhood of (2π,0) (cell with index “4”
in Fig. 9). Here we will argue that this slow convergence is
related to the presence of the stable manifold of the first-order
fixed point in this cell. To illustrate this it is useful to derive
the corresponding stable and unstable eigenvectors in terms of
the nonlinearity parameter k:

unstable :

(−k+√
(4+k)k
2

1

)
stable :

( −1

−k+√
(4+k)k
2

)
. (8)

For k ≈ 1 these eigenvectors are:

unstable :

(
0.62

1

)
stable :

( −1

0.62

)
. (9)

Their direction is shown by the blue lines in Fig. 9. Ac-
cording to this figure the cell with index “1” contains the
unstable manifold of (0,0) while the cell “4” contains the
stable manifold. Although we were not able to determine
the exact mechanism that induces the aforementioned slow
convergence, we numerically proved that the stable manifold
is the origin of this effect. To this end we calculated the C(c)

p

for the time-reversed dynamics (which transform the stable
manifold to an unstable one) of the SM:

θn+1 = θn − pn,

pn+1 = pn − k sin θn+1,
(10)

using initial conditions in the cell “4.” The obtained C
(c)
L,p

turned out to be identical to that using forward in time
dynamics and initial conditions in the cell “1.” This clearly
verifies our previous argumentation.

The last issue to be discussed concerns the understanding
of the qualitatively different behavior of the A(c)

p s and C(c)
p s

for k values around kc. For this purpose let us consider more
carefully the definition of the LFTCFs in Eq. (3). The sum∑

i,j∈C(c) in Eq. (3) implies a summation over initial conditions
i, j either with i = j (autocorrelations) or with i �= j (cross
correlations), where x

(c)
i (0), x

(c)
j (0) lie in the PS cell C(c).

Focusing on the case i �= j and assuming that ergodicity is
valid within a single PS zone, we could consider the chaotic
trajectory j as equivalent to the trajectory i shifted forward
in time by nr,i iterations, where nr,i is the recurrence time in
C(c) for the trajectory i. Then we could approximately write
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x
(c)
j (n + m) ≈ x

(c)
i (n + nr,i + m) and the sum over initial

conditions occurring in the definition of the C(c)
p s could be

written as

∑
i,j∈C(d)

=
∑

i

∑
nr,i

p(nr,i), (11)

where p(nr,i) is the distribution of the recurrence times in
C(c). Thus, the averaging over different trajectory pairs is
equivalent to an averaging over single trajectories like in the
autocorrelation case, performing a random additional time
shift following the recurrence time distribution and summing
over all possible shifts. When the cell is located in the
immediate neighborhood of the unstable fixed point (0,0) the
distribution p(nr,i) can be approximated by the laminar length
distribution attaining a power-law form. If the cell C(c) is
small, the distribution p(nr,i) becomes a good approximation
independent of i and one can use the notation nr for nr,i . Then
the LFTCF in Eq. (3) can be written as

C(c)
x (m) = lim

Sd→∞
1

Sd

∑
i

∑
nr

p(nr )

×
[

1

N − m

N−m−1∑
n=0

x
(c)
i (n)x(c)

i (n + nr + m)

− 1

(N − m)2

N−m−1∑
n=0

x
(c)
i (n)

N−m−1∑
n=0

x
(c)
i (n+ nr + m)

]
.

(12)

The term in the brackets is the autocorrelation function for
the trajectory xi(n) evaluated at the delay time nr + m. As we
have shown in Sec. III B the A(c)

p s in zone 1 follow, for given
k, an exponential form. The corresponding characteristic
exponent τ (k) is defined as an ensemble property. Calculating
the autocorrelation functions for individual trajectories
forming the ensemble, we find that they can be approximated
also by exponential functions of the delay m, however, with
an exponent τi(k), which depends on the initial conditions of
the trajectory i. Thus, after performing the summation over i

we can approximate C(c)
p in zone 1 as

C(c)
p (m) ≈ lim

Sd→∞
1

Sd

∑
i

∑
nr

p(nr )e− nr +m
τi , (13)

where p(nr ) ∼ nα
r with α ≈ −1.85 as dictated by the laminar

length distribution. The sum over nr can be performed

leading to

C(c)
p (m) ≈ qN

∑
i

τ 1+α
i e

− m
τi , (14)

with qN a normalization factor. The sum in Eq. (14),
as a weighted infinite sum of exponentials, leads to the
approximate power-law form of the C(c)

p .

V. CONCLUDING REMARKS

We have introduced localized finite-time correlation func-
tions as a suitable tool to explore the evolution of dynamical
systems with mixed phase space. These correlation functions
are sensitive to local phase space structures, quantifying the
impact of stickiness due to phase-space traps on the emergence
of correlations in an ensemble of chaotic trajectories. Using as
a prototype model of the standard map we calculated these
localized finite-time auto- and cross-correlation functions
focusing on values of the nonlinearity parameter k in the
regime of the local-to-global chaos transition. There the
phase space is dynamically divided into three zones and
the form of the aforementioned correlation functions differs
in each zone. Specifically, in zone 1 (which includes the
first-order unstable fixed point) the autocorrelations show an
exponentially decaying trend for a range of k values around
the critical kc ≈ 0.971635..., while the cross correlations
develop power-law tails signaling their long-range character.
Around the transition point the dynamics of the standard map
attains intermittent characteristics that can be revealed after a
suitable symbolic dynamics is introduced. The pathway from
this intermittent dynamics to the emergence of long-range
cross correlation is similar to the one introduced recently
in Ref. [28] for 1D dissipative maps of Pomeau-Manneville
type. Our results demonstrate that intermittency can effectively
appear as a synergy of complicated phase-space networks
involving overlaps of unstable and stable manifolds of fixed
points as well as partial confinement due to remnants of
destroyed invariant spanning curves. Such a network may
in general be established in a low-dimensional dynamical
system close to the critical point associated with the transition
from local to global chaos. Furthermore it is confirmed that
strong intermittency (even as effective dynamics) can generate
long-range cross correlations between chaotic trajectories as
an ensemble property. This scenario can be easily transferred
to the emergence of long-range cross correlations between
noninteracting particles as explained also in Ref. [28] and
may provide a useful manipulation tool for inducing collective
behavior in noninteracting systems.
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