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Nonlinear normal mode interactions in the SF6 molecule studied
with the aid of density functional theory

G. Chechin,* D. Ryabov, and S. Shcherbinin
Research Institute of Physics, Southern Federal University, 194 Stachki Avenue, Rostov-on-Don 344090, Russia

(Received 6 March 2015; published 8 July 2015)

Some exact interactions between vibrational modes in systems with discrete symmetry can be described by
the theory of the bushes of nonlinear normal modes (NNMs) [G. M. Chechin and V. P. Sakhnenko, Phys. D
(Amsterdam, Neth.) 117, 43 (1998)]. Each bush represents a dynamical object conserving the energy of the
initial excitation. The existence of bushes of NNMs is ensured by some group-theoretical selection rules. In
G. M. Chechin et al. [Int. J. Nonlinear Mech. 38, 1451 (2003)], existence and stability of the bushes of vibrational
modes in the simple octahedral model of mass points interacting via Lennard-Jones potential were investigated.
In the present paper, we study these dynamical objects by the density functional theory in the SF6 molecule,
which possesses the same symmetry and structure. We have fully confirmed the results previously obtained in
the framework of the group-theoretical approach and have found some properties of the bushes of NNMs.
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I. INTRODUCTION

We consider nonlinear vibrations in Hamiltonian systems.
Conventional, or linear normal, modes (LNMs) are exact
solutions of dynamical equations in the harmonic approxi-
mation [1]. This approximation means that potential energy of
the considered system is decomposed into multidimensional
Taylor series, and only quadratic terms are taken into account
for obtaining Newton classical equations. LNMs cease to be
exact solutions when we involve not only quadratic, but also
some anharmonic, terms. If the latter terms are sufficiently
small, then it is possible to speak about interactions between
LNMs. In many physical problems, such interactions and the
role of different anharmonic terms are studied. Taking into
account the smallness of these terms, we can construct some
approximate solutions for the considered nonlinear problem.
As an example, let us refer to studying the various types of the
phonon-phonon interactions in crystal physics [2].

In this connection one can ask the following: Are there
some exact solutions of nonlinear dynamical equations beyond
harmonic approximation?

Let us consider a nonlinear system whose potential energy
contains, besides quadratic terms (therefore, the system ad-
mits the harmonic approximation), some anharmonic terms
preceded by a common factor γ . This parameter determines
the strength of nonlinearity of the system. Lyapunov proved
[3] that each LNM can be continued in γ to obtain an exact
periodic solution of the nonlinear system. He also gave a
procedure to construct this exact solution up to an arbitrary
degree of the parameter γ . As a result, one can find the set
of N Lyapunov nonlinear normal modes (NNMs), where N

is the dimension of the system. Unfortunately, the procedure
of Lyapunov NNM construction is very cumbersome, and we
can obtain solutions only up to a small degree of the parameter
γ . Moreover, this procedure usually converges only for very
small values γ . These factors prevent the use of Lyapunov
modes in many physical problems.
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Another notion of NNMs was introduced by Rosenberg [4]
(see also [5]).1 These modes can exist for large values of the
parameter γ and even for the essentially nonlinear systems
whose potential energy does not contain any quadratic terms
(such systems do not admit the harmonic approximation). The
number of NNMs by Rosenberg, if they exist, can be less or
even greater than the full number of the system’s degrees of
freedom.

Unfortunately, Rosenberg modes can exist only in very
specific nonlinear systems. Let us consider this point in
more detail for an N -degrees-of-freedom mechanical system.
According to definition, in the dynamical regime described by
a given Rosenberg mode, all degrees of freedom, xi(t), vibrate
as follows:

xi(t) = aif (t), i = 1, . . . ,N. (1)

Thus, all xi(t) at any moment t are proportional to the same
time-dependent function f (t) (ai are constant coefficients).
Actually, this means a separation of space and time variables.2

Substitution of the ansatz (1) into differential equations of
the dynamical system leads to the set of (N − 1) algebraic
equations for obtaining amplitudes ai and to one differential
equation which determines time-periodic function f (t). The
latter equation is called “governing.”

Rosenberg found several classes of mechanical systems for
which Eq. (1) is fulfilled. The most important class is formed
by systems whose potential energy is a homogeneous function,
of arbitrary degree, of all its arguments.

In [7,8], we have shown that the existence of Rosenberg
NNMs can be a direct consequence of a certain discrete
symmetry of the considered physical system. We refer to
such modes as symmetry-determined NNMs (SD-NNMs).
Hereafter, only this type of Rosenberg modes is considered.3

1It seems that the first consideration of such dynamic regimes was
made in [6] for the conservative system with two degrees of freedom.

2The LNMs also satisfy Eq. (1) with f (t) = a cos(ωt + φ0), where
a, φ0, and ω are amplitudes, initial phase, and frequency, respectively.

3Note that some group-theoretical methods for studying nonlinear
dynamical regimes were proposed in [9,10], while the systematic
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In [7,8], we have also introduced the concept of bushes of
NNMs for dynamical systems described by arbitrary group G0

of discrete symmetry. Every bush possesses a certain symmetry
group G which is a subgroup of the group G0 (G ⊂ G0) and
represents an exact solution of nonlinear dynamical equations.
As a consequence, the energy of initial excitation of a given
bush turns out to be trapped in this dynamical object until
it loses its stability (then the bush transforms into another
bush of lower symmetry and larger dimension). Every bush
whose dimension m is greater than unity (m > 1) describes
a quasiperiodic dynamical regime which is determined by
m governing differential equations. In this sense, one can
consider the Rosenberg mode as a one-dimensional bush.

The specific group-theoretical methods for constructing
bushes of NNMs were developed in [7,8,11]. It is essential that
because of symmetry-related causes only a finite number of
the bushes of each dimension can exist in the physical system
with a given symmetry group G0. For example, it was found
[12–14] that for monoatomic chain with even interparticle
interactions and periodic boundary conditions (such as Fermi-
Pasta-Ulam-β chain or electrical chain, considered in [15])
only five SD-NNMs can exist (depending on the number
of particles in the chain). All bushes of low dimensions for
many mechanical structures with various types of translational
and point symmetry were found in [7,8,16,17]. In particular,
in [16], all SD-NNMs (one-dimensional bushes) were found
for all possible mechanical structures with any of 230 space
symmetry groups.

Note that construction of bushes can be done without any
information about the type of interparticle interactions in the
given physical system. One must know only its symmetry
group and the geometrical structure.

Searching for the complete set of modes entering the bush
with a given symmetry, we deal with its geometrical aspect.
This problem can be solved with the aid of group-theoretical
method only. On the other hand, we deal with the dynamical
aspect of the bush when we study the time evolution of its
modes and the bush stability. In this stage of bush study,
we must know specific interactions between particles of the
physical system.

In [17], we have studied geometrical and dynamical
properties of one-, two-, and three-dimensional bushes in a
simple octahedral mechanical system, which is depicted in
Fig. 1. It represents a regular octahedron with equal point
masses at the vertices and with another point mass in its
center. It was found that 18 bushes of vibrational modes
can exist in the case when the central particle is immovable.
Among these bushes there are one-dimensional (1D), 2D, and
3D bushes with point symmetry groups Oh, D4h, and C4v ,
respectively. These bushes were studied in [17] not only as
geometrical objects, but also as dynamical objects supposing
that interparticle interactions in the considered system are
described by arbitrary pair potential, U (r), in particular, by
the Lennard-Jones potential

U (r) = A

r12
− B

r6
. (2)

theory of such regimes in the systems with discrete symmetry groups
was developed in [7,8] (see also [11]).

FIG. 1. Octahedral molecule.

Naturally, one can ask the following: “Are there some
physical systems whose nonlinear dynamics can be described
by the above simple mechanical model?” The more general
question can be formulated as follows: “Can the concept of
bushes of NNMs and the methods of their study be valid for
nonlinear dynamics of real physical systems?”

First of all, let us note that there are some molecules,
whose equilibrium state corresponds to the mechanical model
in Fig. 1. As an example, we choose the molecule SF6.
The experimental investigation of nonlinear vibrations of
such molecules represents great difficulties (see, for example,
review paper [18] devoted to study interactions between
normal modes in simple molecules).

On the other hand, the ab initio calculations based on the
density functional theory (DFT) [19–21] proved to be very ef-
fective and rather correct for studying molecules and crystals.
Indeed, DFT makes it possible to determine the geometrical
structures of many microscopic objects up to 1% accuracy [21].
Therefore, it is very interesting to study nonlinear dynamics
in the framework of DFT methods. In our recent paper [22],
we successfully realized such a program for studying discrete
breathers in graphane. We found there that DFT leads to
cardinally different results for vibrations with large amplitudes
than the methods of molecular dynamics based on the concept
of mass points interacting via a widely used phenomeno-
logical pair potential. Indeed, the mass-point models cannot
describe the complicated process of the polarization of the
atomic shell during essentially nonlinear vibration. In [23],
the Brenner potential [24] was used for studying discrete
breathers and the nonmonotonic connection ν(A) between
breather amplitude A and its frequency ν was obtained (it
shows two changes between soft and hard nonlinearity). In
contrast, with the aid of the ABINIT package [25], we have
obtained the monotonic function ν(A), which demonstrates
that only soft nonlinearity takes place for gap breathers
in graphane.

In this paper, we study nonlinear dynamics of SF6 by DFT
methods realized in the ABINIT code [25]. Our goal is to verify
the adequacy of the theory of bushes of NNMs for rather
realistic physical model of SF6 molecule based on the density
functional approach.

This problem can be split into two specific issues:
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(1) verification of the adequacy of group-theoretical meth-
ods based on the apparatus of irreducible representations of
the symmetry groups;

(2) verification of possibility to use classic-mechanical
models of mass points interacting via some phenomenological
potentials instead of the quantum-mechanical models that take
into account the polarization of electron shells in process of
the large-amplitude atomic vibrations.

In the present work, we discuss only the first of the above
two issues. The second one requires a more detailed study.
Indeed, to address this issue for a physical system, in particular
for the SF6 molecule, it is necessary to find the appropriate
interatomic potentials and to choose the optimal values of
the corresponding phenomenological parameters. Such study,
being very cumbersome, is beyond the scope of this work (it
will be published elsewhere).

The paper is organized as follows. In Sec. II, the geometrical
aspects of nonlinear vibrations of SF6 corresponding to
the bushes with point symmetry groups Oh, D4h, C4v are
discussed. Section III is devoted to ab initio calculations of the
dynamics of the above bushes. In Sec. IV, we comment on the
validity of the bushes of the NNMs in real nonlinear systems
(using SF6 molecule as an example) and discuss further
possible investigations of nonlinear dynamics of physical
systems in the framework of DFT.

II. GROUP-THEORETICAL ANALYSIS OF NONLINEAR
VIBRATIONS IN SF6

Group-theoretical analysis of nonlinear vibrations of the
structure presented in Fig. 1 was already fulfilled in Ref. [17].
Here we reproduce some results of that work which are
necessary for the further discussion.

In any vibrational regime, the nuclei of the atoms, consisting
the SF6 molecule, displace from the equilibrium positions
depicted in Fig. 1 and we can speak about a displacement
pattern at any fixed moment t . For every NNM, as well as for
LNM, this pattern possesses a certain point symmetry group.
In the conventional phonon-spectrum analysis (this is the case
of small vibrations), the above patterns are determined by
eigenvectors of the matrix of force constants.

The Wigner theorem [26] concerns group-theoretical clas-
sification of the LNMs. According to this theorem, the modes
are classified by irreducible representations (irreps) of the
symmetry group G0 of the system in equilibrium. In this
way, we can introduce the basis � = {φ j |j = 1, . . . ,N} in
the space of all possible atomic displacements, constituted by
the complete set of basis vectors of the irreps entering into the
mechanical representation of the considered system. There-
fore, any vibrational regime X(t) = {x1(t),x2(t), . . . ,xn(t)} in
this system can be decomposed into the above basis with
coefficients depending on time t :

X(t) =
N∑

j=1

cj (t)φ j ≡ (C(t),�). (3)

In this equation, each term cj (t)φj can be considered as NNM
according to the definition (1). Indeed, the vector multiplier φ j

determines the displacement pattern of all atoms, i.e., the space
structure of NNM, while cj (t) determines the time evolution

of the mode. However, for brevity, we often use the term NNM
(or vibrational mode) individually for φ j , as well as for cj (t).

The basis vectors φ j correspond to different irreps �n of
the group G0 and, therefore, the displacement vector X(t)
in (3) can be written as the sum of contributions associated
with individual representations of the equilibrium symmetry
group G0:

X(t) =
∑

(Cn(t),�[�n]). (4)

Here �[�n] is the set of basis vectors of the irrep �n.
According to Wigner theorem, the small vibrations of the

molecule associated with the different irreducible represen-
tations �n are independent from each other. It means that if
one excites (by using the appropriate initial conditions when
solving linear differential equations) a dynamical regime X(t)
corresponding to a given irrep �n, this regime can never
lead to an excitation of the modes belonging to another
irreps in the decomposition (4). Therefore, one can ask the
following: “What will happen if we consider large and,
therefore, nonlinear vibrations of the molecule?” The theory
of the bushes of NNMs starts from this question.

The answer was given in Ref. [7] (see also [11], devoted
to discussion of the bush theory). It turns out that there exist
certain selection rules for excitation transfer from one mode
to another. These rules originate from some group-theoretical
restrictions which can be written as a certain system of linear
algebraic equations [7]. In particular, one can deduce from
this system that excitation from the mode with the given
symmetry group G can transfer only to those NNMs whose
own symmetry is higher or equal to G. The above selection
rules lead to possibility for existence of bushes of NNMs.

Each bush represents a set of NNMs that conserves the
energy of initial excitation until it loses stability because of
the phenomenon similar to the parametric resonance with
some modes outside a given bush. This phenomenon occurs if
amplitudes of some bush modes attain sufficiently large values
(see details in [11,13]).

Every bush possesses its own symmetry that is determined
by intersection of all symmetry groups of its modes. As
already mentioned, when the given bush loses stability, it
transforms into another bush with lower symmetry and with
higher dimension.

In the geometric sense, every bush represents an invariant
manifold of the considered dynamical system. This manifold
can be found with the aid of the symmetry-related principles
only (note that detection of invariant manifolds without group-
theoretical methods, in general, is a highly nontrivial problem).
The manifold, corresponding to a given bush, appears as a
sum of contributions from individual irreducible representa-
tions of the symmetry group G0 of the dynamical system.
Moreover, having different transformational properties, these
contributions may describe different physical characteristics.
In the present work, only bushes of vibrational modes are
considered, but one can speak about NNMs of other physical
nature (for example, magnetic modes) belonging to the same
bush. Discussing the dynamical aspects of the bush theory, we
examine time evolution of nonlinear modes entering the given
bush and corresponding to different irreducible representations
of the group G0.
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TABLE I. Displacement patterns of the NNMs in SF6 molecule.

Irrep NNM Pattern

�1 φ1
1√
6
(0,0, −1| −1,0,0|0, −1,0|1,0,0|0,1,0|0,0,1|)

�5 φ2
1√
12

(0,0,2| −1,0,0|0, −1,0|1,0,0|0,1,0|0,0,−2|)
�10 φ3

1√
12

(0,0,−2|0,0,1|0,0,1|0,0,1|0,0,1|0,0, −2|)

Let us consider the simplest bushes for nonlinear vibrations
of SF6 molecule using some results obtained in [17]. In the
equilibrium state, depicted in Fig. 1, the molecule SF6 pos-
sesses point symmetry group G0 = Oh. All vibrational modes
for this molecule, classified by irreps of the group Oh, can be
found in Table 3 in [17] [three translational modes must be ex-
cluded since the central atom (S) is supposed to be immovable].

For the present consideration, we need explicit forms of the
displacement patterns of NNMs φ1, φ2, φ3, corresponding
to 1D irrep �1, 2D irrep �5, and 3D irreps �10. These
displacement patterns are given in Table I.

In this table, for each fluorine atom, according to the
numbering in Fig. 1, we point out three coordinates x,y,z,
which determine displacement of the nucleus of this atom
from the equilibrium position. One can see from Table I that
the molecule shape in the vibrational regime, corresponding
to the mode φ1, represents, at any moment t , the regular
octahedron. Its size vibrates in time, becoming larger or
lesser in comparison with the octahedron corresponding to
the equilibrium state. This NNM is called the “breathing”
mode. It represents a 1D bush with symmetry group Oh. The
symmetry group of the breathing mode, Oh, is higher than
that of each other vibrational mode and, therefore, according
to the above-mentioned selection rules, the excitation from
this mode cannot transfer to other modes. Therefore, the
involving mode will vibrate for arbitrarily long time without
bringing into the dynamical regime any other vibrational
modes. In other words, if we decompose X(t) for the
breathing mode in accordance with the Eq. (3), we obtain
that the right-hand side of this equation is reduced to one

term only:

X(t) = c1(t)φ1 ≡ a(t)φ1. (5)

Here we have renamed the time-dependent coefficient c1(t)
as a(t).

This means that breathing mode represents an exact solution
to the nonlinear differential equations describing the dynamics
of our mechanical system for any type of interatomic interac-
tions. The explicit form of the differential equation for the
time-dependent coefficient a(t) can be found if one substitutes
Eq. (5) into the full original system of 3×6 = 18 nonlinear
equations (remember that the central atom is immovable)
taking into account the specific type of interatomic forces.
In this way, we reveal that the above system of 18 equations
is reduced to only one differential equation for a(t). Let us
emphasize that a(t) indeed depends on interatomic forces,
while the displacement pattern does not depend on these forces
and can be found with the aid of the group-theoretical method
only (see Table I).

Thus, the breathing mode represents 1D bush with symme-
try group Oh and we denote it by symbol B[Oh]. In [17], one
can find an explicit form of the differential equation for a(t)
in the case of arbitrary pair interatomic potential U (r), as well
as for Lennard-Jones potential.

Another situation appears when we excite the mode φ2

by displacing fluorine atoms according to its pattern given in
Table I. The own point symmetry of this mode is described
by the point group G2 = D4h that is a subgroup of the
equilibrium state symmetry group G0 = Oh (D4h ⊂ Oh).
The displacement pattern associated with φ2 represents an
octahedron with a square base, formed by atoms 2, 3, 4, 5 (see
Fig. 1) and the atoms 1, 6 situated on the Z axis and displaced
by the same distance from their equilibrium positions from the
octahedron base. In Fig. 2, we depict the above displacements
of all six F atoms by arrows. In contrast to the case of excitation
of the breathing mode, in the present case, the mode φ2 cannot
exist independently of all other modes. Indeed, its excitation
leads to excitation of the breathing mode φ1, whose symmetry
group G1 = Oh is higher than the symmetry group G2 = D4h.
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FIG. 2. Displacement patterns for modes φ1 (a), φ2 (b), and φ3 (c).
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This conclusion is a result of the group-theoretical analysis
only. Thus, we obtain the 2D bush B[D4h] with the point group
G2 = D4h. From the general decomposition (3), we obtain for
this case

X(t) = c2(t)φ2 + c1(t)φ1 ≡ b(t)φ2 + a(t)φ1. (6)

Here we have renamed c1(t) and c2(t) as a(t) and b(t),
respectively.

Substitution of the ansatz (6) into 18 original nonlinear
equations confirms that all these equations are transformed
into two differential equations with respect to the unknown
coefficients a(t) and b(t). These two time-dependent functions
fully describe the dynamics of the 2D bush B[D4h].4 It
describes quasiperiodic vibrations with two basic frequencies
ω1 and ω2 corresponding to the modes a(t)φ1 and b(t)φ2

(because of nonlinearity of the considered system, in the
Fourier spectrum of such vibrational regime, one can observe
not only the frequencies ω1, ω2, but also their different integer
linear combination).

Let us emphasize once more that no other modes present
in the decomposition (3); i.e., Eq. (6) represents an exact
solution of the original nonlinear equations whose coefficients
c1(t) = a(t) and c2(t) = b(t) can be obtained as solutions
of two governing differential equations depending on the
specific interatomic interactions. In [17], we presented the
explicit expressions of these governing equations for the case
of arbitrary pair potential U (r) and, in particular, for the
Lennard-Jones potential.

Let us note that in the vibrational regime described by the
bush B[D4h] the atom configuration represents the octahedron
with a square base and with atoms 1 and 6 displaced by the
same distance in opposite directions (this is a consequence
of the presence in the group D4h horizontal mirror plane
determined by the base of the octahedron).

The mode φ3 (see Table I), being excited at the initial instant
t = t0, generates a 3D bush B[C4v] whose full symmetry
coincides with the group G3 = C4v of the mode φ3.

The modes whose symmetry determines the symmetry of
the whole bush we call “root modes,” while other modes
which turn out to be excited automatically as a result of
the root mode excitation we call “secondary modes.” Let us
note that, in general, the situation can be more complicated.
Indeed, even for the original group G0 = Oh there exist bushes
whose excitation is possible only by exciting simultaneously
several modes with different symmetry groups. In this case the
symmetry of the whole bush is determined by the intersection
of the above symmetry groups. All nontrivial bushes of
different dimensions (up to dimension equal to 8) were
presented in [17].

In contrast to the group G2 = D4h, the horizontal mirror
plane is absent in the group G3 = C4v . As a consequence,
displacements of the fluorine atoms 1 and 6 need not to be equal
in magnitude and, therefore, the octahedron corresponding to
the bush B[C4v] possesses different heights dropped from the
atoms 1 and 6 to the octahedron base formed by the atoms 2,
3, 4, 5.

4Note that a(t) in Eq. (6) is not in any relation with a(t) from Eq. (5).

Thus, we obtain the 3D bush B[C4v] to which the following
decomposition of X(t) corresponds:

X(t) = c1(t)φ1 + c2(t)φ2 + c3(t)φ3

≡ a(t)φ1 + b(t)φ2 + c(t)φ3. (7)

Here we have renamed the coefficients c1(t), c2(t), c3(t) as
a(t), b(t), c(t), respectively. Substitution of the ansatz (7) into
the original 18 nonlinear differential equations leads to three
governing equations (all other original equations turn out to be
equivalent to these governing equations) whose explicit forms,
for the case of pair potential U (r), are given in [17].

For all above-discussed bushes, the symmetry of the
vibrational state conserves, as well as the complete set of
the bush modes, while amplitudes of these modes [described
by coefficients ci(t) in Eqs. (5), (6), and (7)] evaluate in time.

We have considered three simplest bushes B[Oh], B[D4h],
B[C4v] in the SF6 molecule in the framework of the group-
theoretical approach. The existence of these bushes was
confirmed by straightforward numerical experiments using
Lennard-Jones and Morse potentials. However, there is a
principle question: “Can these bushes exist in real physical
systems?” Indeed, during nonlinear vibrations of real atoms
their electron shells polarized and it is not obvious that
we can describe the complex physical process of such
polarization (characterized by many degrees of freedom) by
simple mechanical mass-point models with pair potential
interactions. There is a necessity to verify the validity of
the concept of bushes of NNMs and our group-theoretical
methods, aimed at constructing bushes, using real physical
experiments. Unfortunately, such direct experiments, to the
best of our knowledge, cannot be fulfilled with the aid of the
present experimental technique. However, we can use ab initio
simulations based on the DFT for checking and deepening the
theory of the bushes of NNMs.

III. STUDYING BUSHES OF NONLINEAR NORMAL
MODES IN THE SF6 MOLECULE WITH THE AID

OF THE DENSITY FUNCTIONAL THEORY

The DFT is based on the very nontrivial theorem proved
by Kohn and Hohenberg in [19]. Indeed, they proved that a
many-particles wave function ψ(r1,r2,r3, . . . ,rN ), depending
on 3N arguments and satisfying the stationary Schrödinger
equation for a quantum system with N electrons, can be
exactly expressed via the function of total electron density,
ρ(r), depending on only three arguments, r = (x,y,z). The
function ρ(r) provides a minimum to a certain functional,
J [ρ(r)], whose explicit form is not known yet, but one can
be sure that it exists in principle. Some approximations were
developed for this functional which turn out to be effective and
rather accurate.

In our work, we have used the ABINIT code developed
in [25], which realizes computational methods of DFT. This
software package provides many useful facilities for ab initio
calculations of the structure and different physical properties
of molecules, crystals, and nanoclusters.

Studying nonlinear vibrations of the SF6 molecule, we have
used the Born-Oppenheimer approximation for separating
movement of heavy nuclei and light electrons, as well as the
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local density approximation (LDA) and the pseudopotential
approach to single out core and outer electrons of the atoms of
the SF6 molecule.

Quantum-mechanical equations by Kohn and Sham [20] are
used in the ABINIT code for describing dynamics of electrons,
while classical equations are solved for nuclei with forces
generated by electron shells at any time step. For solving Kohn-
Sham equations, the basis of plane waves was used with max-
imal energy determined by cutoff energy Ecutoff = 40 Hartree.

Obviously, one can apply more complicated approxi-
mations such as generalized gradient approximation, etc.
However, this paper is not aimed at calculations of physical
properties which can be verified by real experiments (at the
present time, we do not know such experiments). We aimed
at confirming the general theory of the bushes of NNMs in
the systems with discrete symmetry using the molecule SF6 as
a simple example. In fact, description of this molecule in the
framework of the DFT with some pertinent approximations
represents a mathematical model sufficiently closed to the real
physical system.

Let us discuss some numerical results on verification of the
bush theory.

A. The one-dimensional bush B[Oh]

First of all, we have calculated the equilibrium configu-
ration of the SF6 molecule and have found that the edge of
the regular octahedron is a0 = 2.9828 bohr. This value seems
to be rather accurate since the experimental value is equal to
2.9554 bohr.

At the next step, we excite vibrations of fluorine atoms
by displacing their nuclei by some values, according to
the displacement pattern of the breathing mode φ1, which
represents the bush B[Oh] in Table I [see also Fig. 2(a)].
In other words, we choose the initial shape of the regular
octahedron, which can be determined by the edge a, larger
[a(0) > a0] or smaller [a(0) < a0] than the equilibrium size
a0. Then we release the system, i.e., permit the molecule to
evolve freely. In Fig. 3, we present the edge a(t) as a function
of time for some initial values a(0). From this figure one can
see periodic vibrations which turn out to be stable, at least up to
the time for which we have observed this dynamical process.
The decomposition (3) of the corresponding vector X(t) =
[x1(t),x2(t), . . . ,x18(t)] does not reveal (up to the numerical
accuracy) any contribution of other modes besides the initially
excited breathing mode φ1. This is in full agreement with the
group-theoretical analysis in the previous section.

In Fig. 4, we depict the function ν(A), where ν is the
frequency of the breathing mode and A is its amplitude. As
one can see from Fig. 4 the soft nonlinearity is realized in the
breathing mode of SF6 molecule.

B. Two-dimensional bush B[D4h]

This bush can be excited by assigning certain values to its
both modes at t = 0: a2(0) = μ, a1(0) = ν with zero initial
velocities [ȧ1(0) = 0,ȧ2(0) = 0]. This bush can appear only
if a2(0) �= 0 (otherwise the 1D bush B[Oh] will be excited).
Indeed, the symmetry of φ2 is lower than that of φ1 and,
therefore, namely the mode φ2 turns out to be the root mode
for the 2D bush B[D4h].

FIG. 3. Vibrations of the bush B[Oh] with different amplitudes.
Note that the scale on the vertical axis is different for the cases (a),
(b), and (c). In all figures, the atomic displacement are given in bohrs,
while time t is given in the atomic units (a.u.).

The most interesting way for the excitation of the bush
B[D4h] is the case μ �= 0, ν = 0. In this way, we excite only
the root mode φ2 and have to see the excitation of the secondary
mode φ1, because of the “force interaction” [11] with the mode
φ2, while all other vibrational modes of SF6 molecule must
not be excited.

In Fig. 5, we present results of such excitation of the bush
B[D4h]. From this figure one can see that the amplitude a1(t) ≡
a(t) of the mode φ1, being zero at t = 0, is gradually involved
into the vibrational process. Then, with time evolution, we
see how a1(t) acts on a2(t) and vice versa, or the interaction
between modes φ1 and φ2.

Figure 6 illustrates the dependence of max
t

|a1(t)| on

max
t

|a2(t)|. Such dependence turns out to be important if we

want to study the excitation of the secondary mode a1(t)φ1

with the aid of the perturbation theory.
Every bush can be treated as a closed Hamiltonian system.

In the present case of the bush D4h, we have such a
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FIG. 4. Dependence of the frequency ν of the breathing mode on
its amplitude A.

system described by two dynamical variables: a1(t) = a(t)
and a2(t) = b(t). In [8,11], we study the “classes of dynamical
universality” of the bushes. This concept appears naturally if
one studies the decomposition of potential energy of different
bushes into multidimensional Taylor series. Indeed, it turns out
that many bushes in different physical systems, and even in the
same system, possess identical forms of the potential energy
decomposition up to a certain degree. Because of this reason it
is interesting to analyze decomposition of the potential energy
of the bush B[D4h]. This can be done as follows.

Let us choose a certain grid in the space of two variables
μ and ν. Each node of this grid determines the values of
dynamical variables a(t) and b(t) of the bush B[D4h] at t = 0.
The linear combination of the mode vectors φ1, φ2 with the
coefficients μij , νij , corresponding to the chosen (i,j ) node,
determines a certain displacement pattern of the fluorine atoms

Xij (0) = μijφ1 + νijφ2 (8)

and, therefore, a definite initial configuration of the SF6

molecule.
On the other hand, using ABINIT code we can find the

potential energy uij of this configuration [for each node
this program finds the electron density corresponding to the
positions of the fluorine atoms determined by (8)]. Then one
can construct the potential energy U (a,b) as a polynomial of
a fixed degree in variables a,b:

U (a,b) =
∑

m,n

γmna
mbn. (9)

We determine coefficients γmn by the least squares method.
As a result, the following potential energy U (a,b) of the bush
B[D4h] was obtained:

U (a,b) = 0.134 18b2 + 0.192 69a2 − 0.203 82ab2

+ 0.042 20b3 − 0.095 07a3 − 0.048 13ab3

+ 0.123 96a2b2+0.030 85b4 + 0.030 13a4. (10)

FIG. 5. Dynamics of the bush B[D4h] with small (a), medium (b)
and large (c) amplitudes of the root mode b(t).

Here we point out only those terms of U (a,b) which are
permitted by the symmetry group D4h; i.e., Eq. (10) represents
decomposition of U (a,b) into the first polynomial invariants
[11] of the group G = D4h.

Constructing U (a,b) with the aid of the least squares
method, we have also calculated polynomial terms which are
not permitted by group D4h to verify that they are rather small
(about 10−3–10−4).

Note that the similar expression for U (a,b) we have already
obtained in [17] applying the Taylor expansion of the exact
potential energy for octahedral mechanical structure whose
particles interact via the Lennard-Jones potential.

Now we can write Newton equations for the 2D system
corresponding to the bush B[D4h]:

ä + 0.385 38a = 0.285 21a2 + 0.203 82b2 − 0.247 91ab2

− 0.120 51a3 + 0.048 13b3,

b̈ + 0.268 35b = b(−0.126 58b + 0.407 63a − 0.123 40b2

− 0.247 91a2 + 0.144 40ab). (11)
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FIG. 6. Dependence of max |a1(t)| on max |a2(t)|.

From these equations, one can see “inequality of rights”
of the root and secondary modes. Indeed, if we excite
at t = 0 only secondary mode a(t) by appropriate initial
conditions [a(0) �= 0, ȧ(0) = b(0) = ḃ(0) = 0], it will vibrate
for an arbitrarily long time according to the equation ä +
0.385 38a = 0.285 21a2 − 0.120 51a3, while the root mode
remains unexcited: b(t) ≡ 0. In the contrary case, where only
root mode b(t) is excited by the initial conditions [b(0) �= 0,
ḃ(0) = a(0) = ȧ(0) = 0], the secondary mode, a(t), cannot
be equal to zero, because there are “external” forces propor-
tional to b2(t) and b3(t) in the right-hand side of the first
equation (11).

According to the bush theory (see [11]), this fact is a
straightforward consequence of the difference in symmetries
of the modes a(t)φ1 and b(t)φ2, which are Oh and D4h,
respectively (the group D4h is the subgroup of the group Oh).

Solving Eqs. (11) numerically with the aid of fourth order
Runge-Kutta method, we obtain some examples of the bush
D4h dynamics. Such an example is presented in Fig. 7. One
ought to compare this figure with the similar Fig. 5, which
has been obtained by the ABINIT code. The comparison shows

FIG. 7. (Color online) Approximate dynamics of the bush B[D4h].

that Eqs. (11), describing dynamics of the bush B[D4h] as an
autonomous 2D system, turn out to be rather correct for the
considered vibrational amplitudes.

C. Three-dimensional bush B[C4v]

According to Eq. (7), the 3D bush B[C4v] can be written in
the form

X(t)[C4v] = a(t)φ1 + b(t)φ2 + c(t)φ3. (12)

Here φ1, φ2, φ3 are the vibrational modes from Table I which
determine the special displacement patterns of the fluorine
atoms of the molecule SF6, while a(t), b(t), c(t) are time-
dependent functions describing bush evolution in time.

As discussed in Sec. II, the symmetry groups of the modes
φ1, φ2, φ3 are Oh, D4h, C4v , respectively. The following group-
subgroup relation between these point groups exists:

Oh ⊃ D4h ⊃ C4v. (13)

Thus, the mode φ3 has the lowest symmetry group among three
modes of the bush C4v and, therefore, it turns out to be the root
mode of this bush. The point group of the whole bush B[C4v]
coincides with that of the mode φ3. The modes φ2 and φ1 are
secondary modes of the considered bush, and according to the
bush theory [11] they must be automatically involved into the
vibrational process as a consequence of the initial excitation
of the root mode φ3.

To verify this prediction, we have fulfilled simulation of
SF6 molecule vibrations with the aid of ABINIT code. Results
of these simulations are represented in Fig. 8 for three different
values of the initial amplitudes c(0) of the root mode φ3

(two other initial amplitudes, as well as velocities of all three
modes of the bush B[C4v] are assumed to be zero). This figure
illustrates the excitation of the secondary modes φ2 and φ3

because of their interactions with the root mode φ3.
Using the least square method, as it was described for the

bush B[D4h], we have obtained the following polynomial
expression for the potential energy U (a,b,c) of the bush
B[C4v] as the function of three variables a,b,c:

U (a,b,c) = 0.192 80a2 + 0.150 57c2 + 0.132 54b2

+ 0.211 80bc2 − 0.231 03ac2 − 0.223 87ab2

+ 0.043 95b3−0.087 08a3 + 0.027 717 949 03c4

+0.165 22b2c2 + 0.031 86b4 − 0.2562abc2

− 0.050 31ab3 + 0.133 36a2c2

+ 0.135 81a2b2 + 0.025 75a4. (14)

Note that only polynomial invariants of the group G3 =
C4v give large contributions to U (a,b,c) (all other polynomial
terms obtained by the direct least squares method turn out to
be rather small).

It is very interesting to note that, according to the theorems
proved in [11], group-subgroup relation (13) provides the
special structure of the bush B[C4v] dynamical equations.
Indeed, the potential energy U (a,b,c) contains invariants
which are linear in secondary modes, while they contain some
degrees of root mode. We see such invariants in Eq. (14):

c2a,c2b. (15)
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FIG. 8. (Color online) Dynamics of the bush B[C4v] with small
(a), medium (b) and large (c) amplitudes of the root mode c(t).

The Newton dynamical equations for the bush B[C4v] as a
closed Hamilton system can be written as follows:

ä + 0.3856a = 0.261 25a2 + 0.223 87b2 + 0.231 03c2

− 0.103 01a3 + 0.050 31b3 − 0.271 63ab2

− 0.266 72ac2 + 0.256bc2,

b̈ + 0.265 08b = −0.131 84b2 − 0.211 80c2 + 0.447 75ab

− 0.127 43b3 − 0.271 63a2b + 0.150 93ab2

+ 0.256ac2 − 0.330 45bc2,

c̈ + 0.301 14c = c(0.462 05a − 0.423 61b − 0.110 87c2

− 0.266 72a2+0.512ab − 0.330 45b2). (16)

The invariants (15) produce in the right-hand side of
Eqs. (16) forces which act from the root mode c(t) on the
secondary modes a(t) and b(t). Namely, these forces form the
bush as a unique dynamical object. The full set of its modes
conserves in time, while their amplitudes a(t), b(t), c(t) do
change.

D. Nonlinearity in SF6 dynamics

In this paper, essentially nonlinear vibrations of the SF6

molecule are considered. Unfortunately, we do not know
any experimental data that allow a direct comparison with
our results. However, in the case of oscillations with small
amplitudes, these results should be consistent with those
of the LNM analysis. Let us discuss this point in more
detail.

Obtained in the harmonic approximation, LNMs represent
sinusoidal oscillations whose frequencies do not depend on
their amplitudes, and all such modes are independent of each
other. This means that if only one LNM was excited in the
considered system, then it will exist for arbitrarily long time
without excitation of any other normal mode.

Results of our ab initio simulations demonstrate a violation
of these properties for oscillations with large amplitudes. It can
be seen from Fig. 3 that oscillations of the mode a(t)φ1 with
symmetry group Oh are not strictly sinusoidal. The frequency
ν of this mode depends on its amplitude A, and we depict the
dependence ν(A) in Fig. 4. For small amplitudes the frequency
changes slightly, while for large amplitudes the considerable
decreasing of ν(A) with increasing of the amplitude takes
place. Therefore, a(t)φ1 vibrations demonstrate a soft type
of nonlinearity. In the limit A → 0, the frequency of the
discussed mode tends approximately to 710 cm−1. This value
may be compared with the frequencies 718 cm−1 [27] and
723.5 cm−1 [28] for the mode ν1[Ag], which were found
with the aid of the DMOL3 code and with the experimental
value 772.27 cm−1. Possible reasons for the discrepancy
between the above-given values of ν1[Ag] will be analyzed
elsewhere. In this paper, we focus only on confirmation of
the general bush theory of nonlinear vibrations in physical
systems with discrete symmetry using the SF6 molecule as
a simple example. According to this theory, in the case of
large amplitudes, we should observe a very definite interaction
between normal modes, which were negligible for the small-
amplitude vibrations.

In Fig. 5, we see the interaction between the vibrational
modes b(t)φ2 and a(t)φ1, whose symmetries are D4h and Oh,
respectively. Indeed, at the initial instant t = 0 only mode
b(t)φ2 (root mode) was excited. However, the excitation from
this mode is gradually transferred to the mode a(t)φ1 which
is the secondary mode [its symmetry is higher than that of
the mode b(t)φ2]. The interaction between the above modes
is very important since the amplitude of the secondary mode
reaches 30%, and even more, as compared with that of the root
mode. Moreover, dynamics of the secondary mode is radically
different from the simple sinusoidal oscillations, and this
difference becomes more visible with increasing amplitude
of the root mode.

The main point is that excitation from the root mode is
transferred to only one of all other modes and exactly to the
mode which must be excited in accordance with the bush
theory (excitation can be transferred only to the modes with
higher or equal symmetry).

In our case, the secondary mode a(t)φ1 is associated
with the 2D irrep with conventional optics symbol Eg .
We have obtained the frequency ν[D4h] of this mode for
small-amplitude vibrations with 9% error according to its
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experimental value, while the root-mode frequency ν[Oh] was
calculated with 8% error. However, it is interesting to note that
the ratio ν[Oh] \ ν[D4h] found in our calculations is equal to
1.2, and this value almost exactly coincides with that obtained
from the experimental data.

All above-discussed manifestations of nonlinearity in dy-
namics of the 2D bush B[D4h] can be also found in time-
evolution of the 3D bush B[C4v], whose dynamics is shown
in Fig. 8. From this figure one can see that two secondary
modes a(t)φ1 and b(t)φ2 (only these modes) are involved into
vibrational regime due to the interaction with the root mode
c(t)φ3 associated with the 3D irrep F 1

u .
According to [28], the infrared absorption spectrum of SF6

is composed of two bands whose maxima are located at ν3 =
938 cm−1 and ν4 = 567 cm−1. Both of these normal modes
are triple degenerate since they belong to the irrep F 1

u . Our
rough estimate of c(t)φ3-mode frequency in the case of small-
amplitude vibrations gives ν[C4v] = 530 cm−1, which allows
us to identify this frequency with ν4.

Figures 5 and 8 clearly show that the bush with dimension
m > 1 represents a quasiperiodic dynamical object because it
is a superposition of modes with different frequencies.

In conclusion, let us note that only one mode, c(t)φ3,
belonging to the 3D irrep F 1

u contributes to the bush B[C4v].
What would happen if we initially excite another mode of the
irrep F 1

u ? It is easy to understand that the result of this action
will be the emergence of another bush which turns out to be
dynamically equivalent to the bush B[C4v]. Such bushes we
call “dynamical domains” of one and the same bush, in full
accordance with the corresponding term of the theory of phase
transitions in crystals.

In the case of the irrep F 1
u there exist three dynamical

domains of the bush B[C4v] which differ only in directions
of the atomic vibrations. The axis of symmetry of the above-
examined bush B[C4v] coincides with the coordinate axis Z,

while the axes of symmetry of two other its domains coincide
with X and Y coordinate axes.

IV. CONCLUSION

The main goal of this paper was to verify the validity of
the group-theoretical results obtained by the theory of bushes
of NNMs in physical systems with discrete symmetry using
as an example the SF6 molecule. We have also investigated
some properties of one-, two-, and three-mode exact nonlinear
vibrational regimes (bushes of NNMs) in this molecule with
the aid of ab initio simulations based on the density function
theory. For these calculations we have used the ABINIT

code [25].
Some problems concerning the above bushes in SF6

molecule turn out to be beyond the scope of the present paper.
They will be studied in further works. Some of these problems
are

(1) stability of the bushes of NNMs in the SF6 molecule
which were obtained by the ABINIT code;

(2) the method for exciting these bushes by external fields;
(3) the possibility to describe large nonlinear vibrations in

SF6 in the framework of mass-point models whose particles
interact via pair phenomenological potentials;

(4) the possibility of applying the theory of bushes of
NNMs for studying some structural phase transitions whose
nature relates to the vibration of octahedron clusters in
perovskitelike crystals.
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