
PHYSICAL REVIEW E 92, 012903 (2015)
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The quenching of oscillations in interacting systems leads to several unwanted situations, which necessitate
a suitable remedy to overcome the quenching. In this connection, this work addresses a mechanism that can
resurrect oscillations in a typical situation. Through both numerical and analytical studies, we show that the
candidate which is capable of resurrecting oscillations is nothing but the feedback, the one which is profoundly
used in dynamical control and in biotherapies. Even in the case of a rather general system, we demonstrate
analytically the applicability of the technique over one of the oscillation quenched states called amplitude death
states. We also discuss some of the features of this mechanism such as adaptability of the technique with the
feedback of only a few of the oscillators.
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I. INTRODUCTION

The interaction among oscillators in a system not only leads
them into a cooperative dynamics, but also often quenches their
oscillations. There are two dynamically different oscillation
quenching phenomena which are termed as amplitude death
(AD) and oscillation death (OD) [1,2]. In AD, the amplitude
of oscillation quenches to zero, whereas OD is caused by
quenching in the frequency of oscillation [1]. It is also defined
that AD occurs via the stabilization of a homogeneous steady
state (HSS) while OD occurs via the stabilization of an
inhomogeneous steady state [2–4]. The mechanisms under-
lying these two quenching phenomena have been identified
recently and the results show that the parametric mismatch [3],
dynamic [5,6], time delay [7–9], and nonlinear couplings [10]
underly AD, while OD occurs mainly because of the symmetry
breaking coupling in the system [2]. Recently, diverse routes
of transition from the AD to OD have also been reported
[3,11,12].

Experimental and theoretical studies show definitive ev-
idence of oscillation quenching in realistic systems ranging
from biological [13,14], chemical [15,16], electronic [17], and
laser [18] systems to climate [19] systems. Such oscillation
quenching in many cases leads to undesirable situations. In the
interaction between neuronal dynamics and brain metabolism,
the decrease in cerebral metabolic rate, coupled with the
stabilizing properties of adenosine triphosphate (ATP) gated
potassium channels, leads to a burst suppression in the EEG
pattern which symbolizes inactivated brain [20]. This type
of suppression results in hypothermia, coma, and Ohtahara
syndrome, a type of early infantile encephalopathy and is also
observed during deep levels of anesthesia. The suppression of
normal sinus rhythm of pacemaker cells causes cardiac arrest
[21].

Owing to the fatal consequences due to oscillation sup-
pression, interesting efforts have been undertaken to retrieve
and resurrect oscillations of the system [22,23]. In [22], the
oscillation death in diffusively coupled oscillators has been
found to be eliminated through a spatial disorder in the form of
parametric mismatch and in Ref. [23] processing delay is used
to revoke oscillations successfully in delay coupled systems.

Regarding the above mentioned issues, in this article,
we demonstrate that the problem can also be well resolved
by providing a suitable feedback in the system. The latter
can be found to be present in most of the natural systems,
including neural networks [24], genetic networks [25], vision
systems [26], etc. The vital role of feedback in controlling
the dynamics of the given system and the control over
synchronization [27–30] are already known, which can be seen
in a variety of fields ranging from electronics [31], biology,
to quantum information [32,33]. For example, the feedback
control of deep brain simulation has been found to be the most
effective treatment for chronic neural diseases such as essential
tremor, dystonia, and Parkinson’s disease [34,35]. Also, the
feedback generated by the voltage-gated ion channels in neural
cells is found to be crucial in generating neural signals [36].

In this article, we show the applicability of the feedback
technique in resurrecting oscillations in a wide range of
systems. We show both numerically and analytically that
the addition of feedback destabilizes the stable attractors
which results in a wiping out of the oscillation quenching
and inducing a resurrection of oscillations. In addition, by
considering a rather general system, we prove analytically the
above destabilizing nature over the AD state.

Further, it will be more important to develop an adaptable
mechanism thereby improving the ones available in the litera-
ture at present. This is because, for example to use the available
parametric mismatch method, one needs to tune the internal
parameters of the system, while the processing delay also
depends on the underlying process of the system where that
process may be unknown in many situations so as to hinder
the efficiency. In contrast, the feedback method suggested here
can be given more easily which is already in practice under
different contexts such as in deep brain simulation [34,35].

In addition to the above adaptable nature of feedback,
with the aid of numerical and analytical studies, we show the
important fact that this method does not impose a restriction
that the output of all the oscillators need to be fed back. From
the output of only a few of the system oscillators, we show
that in typical systems the resurrection of oscillations can be
achieved easily.
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The structure of the paper is as follows. In Sec. II, we present
the general form of the system that we consider. In Sec. III,
we illustrate the role of feedback on two important oscillation
quenching scenarios, namely, the symmetry breaking coupling
and the parametric mismatch in a system of diffusively coupled
Stuart-Landau oscillators, through numerical analysis. In
Sec. IV, we present suitable analytical support of the numerical
results based on an appropriate linear stability analysis. In
Sec. V, we illustrate the role of the considered feedback
in indirectly coupled or dynamically coupled Stuart-Landau
oscillators. A realistic chemical oscillator model, namely the
Brusselator model, is considered in Sec. VI. We have also
proved the applicability of the technique in more general
situations over amplitude death states in Appendix A. In
addition, in the Appendix B we illustrate our method with
different coupling schemes and with different models such as
van der Pol oscillator, Rösseler system, and so on. Appendix C
includes the details in obtaining the boundary curves of the AD
region which were given in Sec. IV. A summary of our results
and conclusions are presented in Sec. VII.

II. GENERAL MODEL

Consider a system of coupled dynamical systems

ẇi = fi(wi) + ε

N∑
j=1

Lij H(wj ) + ηg[u(t)],

i = 1,2, . . . ,N (1)

where fi : Rd → Rd characterizes the dynamics of the isolated
ith system, wi ∈ Rd is a d dimensional state vector of the
system i, Lij is the d × d coupling matrix of the network,
(ε,η) ∈ R are, respectively, the uniform coupling and feedback
strengths, H : Rd → Rd is a coupling function, and g[u(t)] :
Rd → Rd is the feedback term which can be written as
g[u(t)] = Qu(t). Here, Q is simply a d × d constant matrix
and u(t) ∈ Rd characterizes the feedback and it depends
on the state vectors of the system. Such a dependence
of u(t) on the state vectors of the system may be linear
[example: u(t) = ∑N

k=1 akwk] or nonlinear [example: u(t) =∑N
k=1 ak(wk

T wk)qwk], where ak’s represent weight factors
which can take values from 0 to 1 and q is a suitable number.
In our following study, we consider the form of u(t) as
u(t) = ∑N

k=1 akwk .
In Appendix A, we have considered rather general forms

for fi and Lij and have shown analytically that the trivial AD
state which appears in the system could be wiped out through
the strengthening of η so as to resurrect oscillations.

III. DIFFUSIVELY COUPLED SYSTEM:
NUMERICAL ANALYSIS

A. Symmetry breaking coupling

To start with, we use the paradigmatic model known
as the coupled Stuart-Landau oscillators for the purpose of
illustration for the advocated feedback method. It is well
known that the dynamical equation defining the Stuart-Landau
oscillator can be obtained from a general ordinary differential
equation near a Hopf bifurcation point [37,38]. As the Hopf

bifurcation arises widely in the literature, the Stuart-Landau
oscillator helps to model a variety of systems in different areas
ranging from biology [39–41] to lasers [42,43] and is also used
in the reaction-diffusion process [37,44]. This model is often
used in neural networks to model spiking neurons [39–41].
The first reason for using the model in neural networks is that
the periodically spiking neurons have an exponentially stable
limit cycle attractor, and secondly the real part of the complex
amplitude of the Stuart-Landau oscillator can describe the
membrane voltage in the neurons and the imaginary part can
be related to the recovery variable embedding the effects of
the other variables of physiological neuron models [45]. Thus,
in the literature we can find the use of this model in studying
the effects of synchronization and desynchronization in neural
networks [38,41,46–49] and also various collective dynamical
states, including chimeras [50–52]. In our study, we also
include other useful models such as the van der Pol oscillator,
Rössler system, and Brusselator model. The corresponding
results are briefly indicated in Appendix B and Sec. VI.

Now, we first consider a system of coupled Stuart-Landau
oscillators which are characterized by

fi(wi) =
(

xi − ωiyi − r2
i xi

yi + ωixi − r2
i yi

)
, H(wj) = wj,

Lij = 1

N

(−Nδij + 1 0
0 0

)
, u(t) =

N∑
k=1

akwk,

g[u(t)] = Qu(t), Q = I
N

, (2)

where r2
i = x2

i + y2
i , wi = [xi yi]T , δij is the Kronecker delta

(δij = 0 if i �= j and δij = 1 if i = j ), and I represents
the identity matrix, in Eq. (2). Here, the diffusive coupling
acts only on the first half of the evolution equations (x
variable alone) which breaks the rotational symmetry [22] and
consequently induces oscillation death in the system.

To elucidate clearly the role of feedback in (2), we
first consider the case N = 2, with ω1 = ω2 = ω. In the
case ε = 0, η = 0, we note that the individual systems
in (2) show limit cycle oscillations with |ri | = 1. The in-
troduction and strengthening of diffusive coupling (ε �= 0)
stabilizes the symmetric pair of nontrivial equilibrium points
(x∗

1 ,y∗
1 ,x∗

2 ,y∗
2 ) = (a∗

i ,b
∗
i , − a∗

i , − b∗
i ), where i = 1,2, a∗

1,2 =
cb∗

1,2, b∗
1,2 = ±

√
1+ωc
1+c2 , and c = −ε+

√
(ε2 − 4ω2)

2ω
, through a

subcritical Hopf bifurcation [3] which gives rise to OD.
With the introduction of feedback η �= 0, these nontrivial
equilibrium points soon lose their stability via a supercritical
Hopf bifurcation. In our study, we introduced such a feedback
in two ways: (i) ak = 1 and (ii) ak = δk1, k = 1,2 (again here
δ denotes the Kronecker delta). First by setting ak = 1, for
different values of ε we traced the Hopf bifurcation points
and these points are collectively shown as the HB curve-1 in
Fig. 1(a). The region lying under this curve is an OD region
(denoted by OD-1) and the parametric region above this curve
is free from OD and corresponds to oscillatory states (OS).
Similarly for ak = δk1, k = 1,2, the OD region (OD-2 which
includes OD-1 also) and the curve of Hopf bifurcation points
(HB curve-2) have been shown in Fig. 1(a), which show that
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FIG. 1. (Color online) (a) Suppression in OD regions of the
system (2) with respect to the introduced two different forms of
feedback (i) ak = 1 and (ii) ak = δk1, k = 1,2, for the choice N = 2
and ω = 2.0. (b) For two choices of ε, ε = 10.0 and ε = 13.0, the
change in the HB point by the increment of P (which appears in the
expression of ak) with N = 100 in (2). Inset in (b) projects the OD
and oscillatory (OS) regions in the (ε,η) space for P = N . (c)–(e)
Temporal behaviors of the system in the OS, OD, and revoked OS
state, respectively, for the values of (ε,η) = (9.0,0), (14.0,0), and
(14.0,0.4). The color bar in (c), (d), and (e) gives information on the
value of yi corresponding to different colors.

the uniform distribution of ak as in (i) helps to redeem from
the OD state sooner than in the case (ii).

By extending the constituents of the network to N = 100,
we have verified that this technique can work as well with
larger N . Further, we have checked whether the feedback
needs contributions from all the constituents of the network.
This is vital as in a practical situation we cannot assure or
impose all the constituents to contribute to the feedback. Thus,
we have distributed ak’s as ak = ∑P

j=1 δkj , k = 1,2, . . . ,N ,
where P determines the number of contributing components
of the network. By varying P , we have drawn the HB curves
separating the OD state with the OS state for two different
values of ε, ε = 10.0 and 13.0, in Fig. 1(b). Interestingly,
these curves demonstrate clearly that the contribution from
even a single oscillator is sufficient to revoke oscillations in
the network. Secondly, the critical value of η (HB point) above
which the OS state arises gets decreased sharply with that of P .
These facts prove that this technique can work well regardless
of the number of oscillators present in the network and the
number of them which contributes towards the feedback. For
simplicity, we chose P = N in the following studies.

The inset of Fig. 1(b) depicts the information about OD
and OS regions with N = 100 oscillators. Correspondingly,
in Figs. 1(c), 1(d), and 1(e), we have captured the temporal
behaviors of the system (in the y variables) for different sets

of (ε,η), for a finite time interval after leaving out sufficiently
large transients. The first one [Fig. 1(c)] shows the temporal
behavior at an OS state of the system when η = 0 and ε = 9.0,
where the value of ε is not sufficient to induce OD. Now
increasing ε to 14.0 (while keeping η = 0), the subsequent
figure [Fig. 1(d)] shows the quenching of this oscillation. Now,
switching η on, the temporal behavior in Fig. 1(e) shows the
resurrected oscillations for η = 0.4.

B. Effect of parametric mismatch

Rubchinsky and Sushchik [22] have introduced a disorder
in the form of parametric mismatch which revokes oscillations
in (2). On the other hand, just like symmetry breaking which
is predominant in inducing OD, the parametric mismatch is
also a key candidate that induces AD in the system. Recently,
Koseska et al. in [3,53,54] have shown that an increase in this
inhomogeneity not only induces AD but also OD, whereas
the feedback mechanism that we consider here does not show
such a behavior in the system. This feature provides a definitive
advantage over parametric mismatch.

Now, we augment the system with a parametric mismatch.
For the mismatch in the parameter ω, ω1

ω2
= � = 5, in the above

coupled Stuart-Landau oscillators (1) and (2) with N = 2, we
find the existence of both AD (ε = 6.0) and OD (ε = 10.0)
while η = 0. Now, from these death states the transitions
towards OS state by η are demonstrated in Figs. 2(a) and 2(b),
which show the destabilization of both the AD and OD states

FIG. 2. (Color online) The transition from AD (a) or OD (b) state
to OS state via Hopf bifurcation with respect to η in the system (2)
endowed with a parametric mismatch of � = 5.0, ω2 = 2.0, and
N = 2. (c) The reduction of AD regions in the (�,ε) space with
the increase of η and by keeping ω2 = 2 and N = 2. (d), (e) The
emergence of OS state from AD and OD states in N = 100 case
for � = 5.0 and ω2 = 2.0 which is obtained for two different sets
of initial conditions. AD region in (e) is also in conformity with the
analytical results presented in Sec. IV.
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via supercritical Hopf bifurcations. Further, the role of η over
� and ε is more clearly demonstrated in Fig. 2(c), where
the colored islands denote the AD regions for the values
of η = 0.0, 0.3, 1.0, and 1.8. One can check that similar
phenomenon occurs to OD regions also which we do not depict
here explicitly.

Now, considering the case of N = 100 globally coupled
oscillators with ωi = 10.0 for i = 1,2, . . . ,50 and ωi = 2.0 for
i = 51,52, . . . ,100 in (2), we have demonstrated the reduction
in the AD and OD regions in Figs. 2(d) and 2(e). The above two
figures are plotted for two different sets of initial conditions.
Among them, the AD region in Fig. 2(e) is the analytically
relevant region which has been obtained in the next section.

In the next section, the above obtained numerical results
on the system (2) are verified through analytical results
wherever possible. Also, we illustrate the applicability of
the technique to several situations in Appendix B, where we
considered (i) repulsive link: Stuart-Landau (SL) oscillator,
(ii) conjugate coupling: SL oscillator, (iii) repulsive link: van
der Pol oscillator, (iv) directly and indirectly coupled Rössler
system, and (v) other chaotic oscillators (Sprott and Lorenz
systems).

IV. ANALYTICAL CONFIRMATION OF SUPPRESSION
OF DEATH STATES

In this section, we present relevant analytical confirmations
of the numerical results corresponding to the system (2) for the
cases with and without parametric mismatch discussed earlier
in Sec. III. In addition, through the obtained analytical results,
we show the effectiveness of the technique with the feedback
contribution coming from a small number of oscillators in the
network.

A. Without parametric mismatch: N = 2 case

In the absence of any parametric mismatch, as pointed out
earlier, the system in (2) has a trivial equilibrium point E0:
(0,0,0,0) and two pairs of nontrivial equilibrium points as

Ei : (x∗
1 ,y∗

1 ,x∗
2 ,y∗

2 ) = (a∗
i ,b

∗
i ,−a∗

i ,−b∗
i ), i = 1,2,3,4

where

a∗
1,2 = cb∗

1,2, b∗
1,2 = ±

√
1 + ωc

1 + c2
,

a∗
3,4 = db∗

3,4, b∗
3,4 = ±

√
1 + ωd

1 + d2
, (3)

where c = −ε+
√

(ε2−4ω2)
2ω

and d = −ε−
√

(ε2−4ω2)
2ω

. The linear
stability of these fixed points is determined by the eigenvalues
of the Jacobian matrix

J=

⎛⎜⎜⎜⎝
A1 −ω−2x∗

1y∗
1

ε
2+ η

2 0

ω−2x∗
1y∗

1 B1 0 η

2
ε
2+ η

2 0 A2 −ω−2x∗
2y∗

2

0 η

2 ω − 2x∗
2y∗

2 B2

⎞⎟⎟⎟⎠,

(4)

where Ai = 1 − 3x∗
i

2−y∗
i

2− ε
2+ η

2 , Bi = 1 − x∗
i

2−3y∗
i

2+ η

2 ,
i = 1,2. While η = 0, the eigenvalues of J corresponding to

the trivial equilibrium point E0 are

μ
(0)
1,2 = 1

2 (2 − ε ±
√

ε2 − 4ω2), μ
(0)
3,4 = 1 ± iω. (5)

The eigenvalues corresponding to the equilibrium points E1

and E2 are given by

μ
(j )
1 = −

√
ε2 − 4ω2, μ

(j )
2 = (ε − 2) −

√
ε2 − 4ω2,

μ
(j )
3,4 = [(ε − 1) −

√
ε2 − 4ω2] ±

√
C1, j = 1,2 (6)

where

C1 = −2(ε − 1) + √
ε2 − 4ω2[

√
ε2 − 4ω2 − (ε − 2)]

2
. (7)

Similarly, E3 and E4 have the set of eigenvalues

μ
(j )
1 =

√
ε2 − 4ω2, μ

(j )
2 = (ε − 2) +

√
ε2 − 4ω2,

μ
(j )
3,4 = [(ε − 1) +

√
ε2 − 4ω2] ±

√
C2, j = 3,4 (8)

where

C2 = −2(ε − 1) + √
ε2 − 4ω2[

√
ε2 − 4ω2 + (ε − 2)]

2
. (9)

From Eqs. (5)–(9) we can note that among the five equilibrium
points, E1 and E2 are found to have all their eigenvalues
satisfying the condition Re[μ] < 0 for the parametric range

ε > (1+4ω2)
2 while ω >

√
1
3 , 1+4ω2

2 < ε < 2
3 (2 − 2

3

√
1 − 3ω2),

while 1
2 < ω <

√
1
3 and ε > 2

3 (2 + 2
3

√
1 − 3ω2) while ω <

√
1
3

and thus they are stable in this range. On the other hand,
the other equilibrium points E0, E3, and E4 can never
become stable for any choice of parametric values. Thus, the
stabilization of E1 and E2 essentially gives rise to oscillation
death in the system.

Now, we introduce the feedback in such a way that a1 and
a2 of u(t) in (2) take the values a1 = 1 and a2 = 1. With such
a choice, we find that the stability determining eigenvalues
corresponding to the equilibrium points changes as

μ̃
(j )
1,2 = μ

(j )
1,2 and μ̃

(j )
3,4 = μ

(j )
3,4 + η, j = 0,1,2,3,4. (10)

The above equation shows that an increase in η can destabilize
the equilibrium points E1 and E2 through a Hopf bifurcation. In
the cases where ω � 1, for all values of ε the Hopf bifurcation
occurs at

η = (1 − ε) +
√

ε2 − 4ω2, (11)

whereas in the case of ω < 1, if ε > (2ω2−2ω+1)
1−ω

, the Hopf
bifurcation occurs at

η = (1 − ε) +
√

ε2 − 4ω2 −
√

C1, (12)

where C1 is given in (7). If ε < (2ω2−2ω+1)
1−ω

, the Hopf bifurcation
occurs as in (11). The other equilibrium points E0, E3, and E4

are found to remain unstable. For the case of ω = 2.0, the
curve of Hopf bifurcation points (η = 1 − ε + √

ε2 − 4ω2)
separating the death regimes with the oscillatory regimes is
shown in Fig. 3(a) which matches exactly with the one obtained
numerically [HB curve-1 in Fig. 1(a)]. The analytical treatment
of the other case corresponding to the HB curve-2 can also be
investigated in a similar manner, although the results cannot
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FIG. 3. (Color online) Without parametric mismatch case: (a)
Analytical results of the OD regions in (ε,η) space for N = 2
oscillators in system (2) with ω1 = ω2 = 2.0. With parametric
mismatch case: (b) AD regions of system (2) for � = 4, ω2 = 2, and
a1 = a2 = 1 bounded by the curves defined in (15). (c) Analytically
obtained boundaries of AD regions in (�, ε) for different values
of η (=0,0.3,1.0,1.8), where a1 = a2 = 1. (d) HB curves for the
three different cases (i) a1 = a2 = 1, (ii) a1 = 1, a2 = 0, and (iii)
a1 = 0, a2 = 1 for � = 4 and ω2 = 2.0.

be written in such a transparent manner. So, we do not present
the details here.

B. With parametric mismatch: N = 2 case

Next, with the introduction of a parametric mismatch in
the system (2), we prove the validity of the technique for
the trivial AD state analytically for the N = 2 case. As
mentioned earlier in Sec. III B, an increase in the value of
the parametric mismatch parameter � causes the stabilization
of the trivial equilibrium point (0,0,0,0) and thus introduces
AD in the system. To destabilize the latter, we first introduce
the feedback in such a way that g[u(t)] = 1

2 u(t), where
u(t) = a1w1 + a2w2.

As before, through a linear stability analysis of the
system (2) with parametric mismatch included, we look for
the stable regions of the equilibrium point (0,0,0,0), which
can be studied from the characteristic equation of the linear
eigenvalue problem of the system as

μ4 + A3μ
3 + A2μ

2 + A1μ + A0 = 0. (13)

The coefficients A3, A2, A1, and A0 in the above equation
are given by

A3 = ε − 4 − ãη,

A2 = 1
4 ã2η2 + ãη(3 − ε) + (

6 − 3ε + ω2
1 + ω2

2

)
,

A1 = A11η
2 + A12η + A13,

A0 = A01η
2 + A02η + A03,

where

A11 = 1

4
(ε − 2)ã2,

A12 = (2ε − 3)ã − (
ω2

1a2 + ω2
2a1

)
,

A13 = (3ε − 4) + 1

2
(ε − 4)

(
ω2

1 + ω2
2

)
,

A01 = 1

4
[(1 − ε)ã2 + (ω1a2 + ω2a1)2],

A02 = 1

4

{
[4(1 − ε) + εω1ω2]ã − (ε − 4)

(
ω2

1a2 + ω2
2a1

)}
,

A03 = (
1 + ω2

1

)(
1 + ω2

2

) − ε

2

(
2 + ω2

1 + ω2
2

)
. (14)

Here, ã = a1 + a2. Since the characteristic equation for the
eigenvalues is quartic in nature, we use the well known Routh-
Hurwitz (R-H) criteria [55] to obtain the stable AD regions
of the system. By doing so, we find that the AD regions are
bounded by the curves

A0 = 0 or η =
−A02 ±

√
A2

02 − 4A01A03

2A01
,

A3A2A1 − A2
1 − A2

3A0 = 0. (15)

The details of obtaining the boundary curves from the R-H
criteria are presented in Appendix C, and the AD region
bounded by the curves (15) has been shown in Fig. 3(b) for
a1 = 1 and a2 = 1. Figure 3(c), which portrays the boundaries
of the AD regions in the (�,ε) space, clearly shows that
the analytical results match nicely with that of the numerical
results given in Fig. 2(c).

Next, by varying the nature of oscillators contributing
towards feedback we have plotted Fig. 3(d), where we
considered three cases (i) a1 = 1, a2 = 1 (both the oscillators
contributing), (ii) a1 = 1, a2 = 0 (only the high frequency
oscillator contributing), and (iii) a1 = 0, a2 = 1 (only the low
frequency oscillator contributing). The analytically obtained
Hopf bifurcation curves for all the above three cases have
been presented in Fig. 3(d). From the figure, we can note that
for the first two cases (i) and (ii) the OS state gets revoked
from the AD state for even small values of η and the Hopf
bifurcation curves of these two cases are closer to each other.
But, in the case where the low frequency oscillator alone
is contributing, we find that comparatively higher values of
η are needed to revoke oscillations. This shows that for a
quicker resurrection of oscillations, the feedback from the high
frequency oscillator is preferable. However, the resurrection
of oscillations is possible even if one of the oscillators is
contributing towards the feedback.

C. With parametric mismatch: N = 100 case

Next, we extend our studies on the revocation of oscillations
from the AD state for the case of N = 100 oscillators, where
the parametric mismatch in the system is introduced in such
a way that the system has two groups of oscillators. The first
group contains N1 oscillators with ωi = ω1, i = 1,2, . . . ,N1,
and the second group has N2 oscillators with ωi = ω2,
i = 1,2, . . . ,N2, with ω1 > ω2 and N1 + N2 = N . Also, we
consider that among the N1 oscillators in the first group only
the output of a subgroup of p1 oscillators is fed back, in other
words, the ak’s of u(t) in (2) take the values as

ak = 1 for k = 1,2, . . . ,p1,

ak = 0 for k = p1 + 1, p1 + 2, . . . ,N1. (16)
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FIG. 4. (Color online) Temporal behaviors of the system (2)
with N = 100 oscillators in the OS, OD, and revoked OS states,
respectively, for the values of (ε,η) = (4.0,0.0), (7.0,0.0), and
(7.0,3.0). Here, we have taken N1 = 50, N2 = 50, p1 = 20, p2 = 25,
ω2 = 2.0, and ω1 = 10.0. The color bars in (a), (b), and (c) represent
the values of the variables yi .

Similarly, in the second group of N2 oscillators only the output
of p2 oscillators is fed back or

ak = 1 for k = N1 + 1, N1 + 2, . . . ,N1 + p2,

ak = 0 for k = N1 + p2 + 1, N1 + p2 + 2, . . . ,N2. (17)

The total number of oscillators contributing towards feedback
is Np = p1 + p2.

The results corresponding to N1 = N2 = 50 oscillators pre-
sented earlier in Sec. III B clearly demonstrate the appearance
of AD state in the system. The temporal behaviors of the
system in the original OS state, AD state, and revoked OS
state are shown in Fig. 4, which shows the coherent nature
among the oscillators in the first and second groups. Next, to
study the case of the N = 100 oscillators analytically, we first
try to reduce the problem to a simpler level.

Due to the existence of coherence among the oscillators
in the first and second groups, we represent the state of the
oscillators in the first group by z1 and the state of the oscillators
in the second group by z2:

fi(zi) =
(

Xi − ωiYi − R2
i Xi

Yi + ωiXi − R2
i Yi

)
, H(zj) = zj,

Lij =
(

(−2δij + 1)(1 − p) 0

0 0

)
, u(t) =

2∑
k=1

akzk,

g[u(t)] = Qu(t), Q = I, (18)

where zi = [Xi Yi]T and R2
i = X2

i + Y 2
i , i = 1,2. The co-

efficients in the feedback take the form a1 = αp and a2 =
β(1 − p), where p = N1

N
, which is the ratio of oscillators

present in the first group, and 1 − p = N2
N

is the ratio of
oscillators present in the second group. α and β are the ratio of
the oscillators contributing towards feedback from the first and
second groups, respectively. Thus, α = p1

N1
and β = p2

N2
, where

p1 and p2 are, respectively, the number of oscillators in the
first and second groups that are contributing towards feedback.
The stability of the system (18) around the equilibrium point
(0,0,0,0) can be studied similar to the previous case and one
can obtain the characteristic equation for the eigenvalues of
the above system (18) as

μ4 + B3μ
3 + B2μ

2 + B1μ + B0 = 0. (19)

The coefficients in the above equation are given by

B3 = (ε − 4) − 2P̃ η,

B2 = P̃ 2η2 − 2(ε − 3)P̃ η + (6 − 3ε) + ω2
1 + ω2

2,

B1 = B11η
2 + B12η + B13,

B0 = B01η
2 + B02η + B03,

where

B11 = (ε − 2)P̃ 2,

B12 = 2β(1 − p)(−3 + 2ε − ω2
1) + 2αp

(−3 + 2ε − ω2
2

)
,

B13 = (3ε + 2) − 2
(
ω2

1 + ω2
2

) + ε
[
pω2

1 + (1 − p)ω2
2

]
,

B01 = (1 − ε)P̃ 2 + [pαω2 + (1 − p)βω1]2,

B02 = 2P̃ (1 − ε) + 2
[
β(1 − p)ω2

1 + pαω2
2

]
+ εp(1 − p)(ω1 − ω2)(βω1 − αω2),

B03 = (
1 + ω2

1

)(
1 + ω2

2

) − ε
[
1 + pω2

1 + (1 − p)ω2
2

]
, (20)

where P̃ = (pα + (1 − p)β). As in the previous case, using
the R-H criteria we determine the AD regions of the system.
Consequently, we find that the AD regions are bounded by the
curves defined by

B0 = 0 or η =
−B02 ±

√
B2

02 − 4B01B03

2B01

and

B3B2B1 − B2
1 − B2

3B0 = 0. (21)

Next, using the above relations we find the AD regions in the
different cases of the system. We consider here only two cases:
(1) N1 = N2, (2) N1 �= N2.

Case 1: N1 = N2 = 50. In this case, the population of
the high frequency oscillators (N1) and the population of the
low frequency oscillators (N2) are equal (note that ω1 > ω2).
First, we check the consistency of the obtained analytical
results with the numerical results. For N1 = N2 = 50, we
have plotted the boundaries of the AD regions obtained
from analytical and numerical studies for different values
of p1 and p2 in Fig. 5(a). [Note that for p1 = N1 = 50
and p2 = N2 = 50, the numerical results have been given
in Fig. 2(e) of Sec. III B.] The latter shows the consistency
between the numerical and analytical results.

Now, we look at the preferential feedback configuration for
quicker resurrection of oscillations. For the purpose, we fix
the total number of oscillators contributing towards feedback
as Np = 45 and vary the number of oscillators contributing
from the first group (p1) and from the second group (p2).
Figure 5(b) shows the boundaries of the AD regions for
different values of p1 (also p2 = Np − p1), where we can
observe that on increasing the contributions from the high
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FIG. 5. (Color online) (a) Shows the numerical (continuous line)
and analytical (dotted line) results on the boundaries of AD regions in
(ε,η) space for the values of (p1,p2)= (50,50), (20,25), and (10,15).
(b) Shows the curves of ηc for various combinations of (p1,p2) with
fixed Np = p1 + p2 = 45 and ε = 7.0. (c) Fixing p1 = 50 or p2 =
50, the values of ηc for different values of p2 or p1 are plotted with
ε = 7.0. (d) Shows the value of ηc for different values of p1 and p2 for
ε = 7, where the values of ηc are represented by the color function.
In the above figures, we make the choice N1 = N2 = 50, ω1 = 10.0,
and ω2 = 2.0.

frequency oscillators (or p1), the resurrection of oscillations
occur for lower values of η. Again, in Fig. 5(c), we first
fixed p1 = 50 and plotted the critical value of η needed for
resurrection of oscillations (ηc) for different values of p2.
Similarly, we fixed p2 = 50 and plotted ηc for different values
of p1 in the same Fig. 5(c). From the figure, we find that a
considerable decrease in the value of ηc occurs only when p1

is varied. The above results show that a feedback from the
high frequency oscillators is more preferable for a quicker
resurrection of oscillations. They are also evident from the
Fig. 5(d), where ηc is represented by a color function. In the
figure, one can find that the rate of change in the value of ηc is
larger along the p1 direction.

Case 2: N1 �= N2. Just as the technique shows preference
over the feedback of high frequency oscillators, it shows
dependence over the population in the two groups of oscil-
lators. To illustrate the above, we considered two situations (i)
N1 > N2 and (ii) N1 < N2. Figure 6(a) has been plotted for
the case (i) where N1 = 60 and N2 = 40. Similarly, Fig. 6(b)
corresponds to the case (ii) where N1 = 40 and N2 = 60. The
values of ηc for different values of p1 and p2 are presented in
Fig. 6. Comparing Figs. 6(a) with 6(b), we find that the values
of ηc are larger in the case of N1 < N2 than that in the case
N1 > N2. Thus, in the case where lower frequency oscillators
are highly populated than the high frequency oscillators, we
require stronger feedback to revoke oscillations.

V. DYNAMICALLY COUPLED SYSTEMS

Following the studies on directly coupled systems, we turn
to check the validity of the proposed scheme to indirectly
coupled oscillatory systems. For this purpose, we consider a

FIG. 6. (Color online) The critical values of ηc for different
values of (p1,p2) for the case (a) N1 > N2 (N1 = 60, N2 = 40), (b)
N1 < N2 (N1 = 40, N2 = 60), with ω1 = 10.0 and ω2 = 2.0.

collective system coupled to a dynamic environment, where
the combined set of dynamical equations is characterized by

fi(wi) =

⎛⎜⎝xi − ωyi − r2
i xi

yi + ωxi − r2
i yi

−vi

⎞⎟⎠,

H(wj) = wj, Lij =

⎛⎜⎝ −δij 0 δij

0 0 0
(1−δij )

Nε
0 0

⎞⎟⎠,

g[u(t)] = Qu(t), Q = 1

N

⎛⎝1 0 0
0 1 0
0 0 0

⎞⎠. (22)

Here, the state of the system along with the environment
is defined by the state vector wi = [xi yi vi]T , where
the variables xi and yi correspond to the system and vi

represent the environment. While η = 0, the increase in
ε causes a stabilization of the trivial equilibrium point
(x∗

i ,y∗
i ,v∗

i ) = (0,0,0) and a further increase in ε stabilizes a
pair of nontrivial equilibrium points defined by (x∗

i ,y∗
i ,v∗

i ) =
[(−1)ia∗,(−1)ib∗,(−1)ic∗], where a∗ = kb∗, b∗ = ±

√
1+ωk
1+k2 ,

c∗ = − a∗
2 , and k = 1

4ω
(−3ε + √

9ε2 − 16ω2) via pitchfork
bifurcation [11].

The introduction of the feedback η �= 0 destabilizes both
the AD and OD states via Hopf bifurcation. Such a reduction
in the territories of AD and OD states is illustrated in the (ε,η)
space in Fig. 7(a). The curve made up of the Hopf bifurcation
points separates out the AD and OD regions with the OS
region.

By extending N to 100, Fig. 7(b) depicts the AD and OD
regions of the system. When η = 0, the AD state which arises
by increasing ε is found to disappear with an increase of ε.
But, for larger ε, we find the appearance of the OD state. Now,
by switching η on, both the AD and OD states are shown
to be wiped out simultaneously. The temporal behaviors of
the system in the AD state and the resurrected oscillatory
state which arise through the enhancement of η are shown in
Figs. 7(c) and 7(d). Similarly, Figs. 7(e) and 7(f) show the
behavior of the system at the OD state and the resurrection of
oscillations by an increase in η.
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FIG. 7. (Color online) (a) The OD and AD regions in the (ε,η)
space corresponding to the system (22) with N = 2 and ω = 3.0.
(b) The reduction in the AD and OD regions in the system with
N = 100 coupled oscillators in the (ε,η) space for ω = 3.0. (c)–(f)
The corresponding temporal behavior of the system (22) of N = 100
oscillators in the AD, OD, and the revoked oscillatory state.

VI. COUPLED BRUSSELATOR OSCILLATORS

In this section, we consider an interesting coupled chemical
oscillator modeled by the Brusselator model [56]. We consider
the case where two identical cells are coupled. In such a case,

FIG. 8. (a) The existence of stable limit cycle oscillations in the
isolated Brusselator oscillator (23) for A = 2 and B = 10. (b) The
occurrence of OD through the coupling of the system for ε = 0.5 and
η = 0. (c) The resurrection of oscillations by introducing feedback
η = 1.

the functions in Eq. (1) describing the system are given by

fi(wi) =
(

−(B + 1)xi + x2
i yi + A

Bxi − x2
i yi

)
, H(wj) = wj,

Lij =
(−2δij + 1 0

0 −2δij + 1

)
, u(t) =

2∑
k=1

akwk,

g[u(t)] = Qu(t), Q = I
2
. (23)

In the absence of the coupling, the system shows sta-
ble limit cycle oscillations which have been illustrated in
Fig. 8(a). By introducing the coupling, the system tends to
an inhomogeneous steady state [56]. For example, for A = 2,
B = 10, and ε = 0.5, the system tends to an inhomogeneous
steady state which has been illustrated in Fig. 8(b). In such a
realistic example, by introducing the feedback, we found that
the oscillations are revoked by increasing η and it has been
illustrated in Fig. 8(c).

VII. CONCLUSION

From a knowledge of the role of feedback in controlling
the dynamics and the coherent activities of the system such
as synchronization [27–29], we have here analyzed whether it
can control oscillation quenching tendencies. For this purpose,
we have demonstrated the effect of feedback over quenching
induced by parametric mismatch and symmetry breaking (the
key candidates for inducing AD and OD), indirect coupling and
for some more cases (given in Appendix B), through numerical
as well through analytical studies wherever possible.

Further, through analytical studies on AD state of a
more general system (Appendix A), we found the general
applicability of the mechanism where the feedback resurrects
oscillations from the AD state. In the case of OD, a proper
and suitable form of linear feedback would be helpful to
resurrect oscillations or one can also explore the role of
nonlinear feedback in such nontrivial OD states. From the
results obtained for different cases, we find that the trivial
AD state is found to be destabilized through Hopf bifurcation,
whereas the nontrivial OD states are found to be destabilized
even through saddle-node type bifurcation (see Appendix B).

In addition to the adaptability of the technique in practical
situations, we have illustrated here one more important feature
of the technique, namely, that it does not put any restriction
over the number of oscillators contributing towards feedback.
Even with the feedback from a small number of oscillators,
we can break the death states of the system and thus provide
an attractive methodology in practical situations. Considering
a two population network, the contribution from the high
frequency oscillators is found to be more preferable compared
to the feedback from the low frequency oscillators.
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APPENDIX A: DESTABILIZATION
OF AD IN A GENERAL MODEL

In this appendix, we show the applicability of the feedback
technique over the AD state of a general two coupled system.
For this purpose, we assume N = 2 and the general forms
for fi , H, and Lij in Eq. (1), where fi can be chosen as a
polynomial in wi :

fi(wi) =
(

Fi(xi,yi) + aixi + biyi

Gi(xi,yi) + cixi + diyi

)
,

wi =
(

xi

yi

)
, i = 1,2. (A1)

In the above, Fi and Gi are nonlinear functions in xi and yi

and the constants ai , bi , ci , and di are system parameters. The
function H(wj ) can be written as

H(wj ) = wj + H̃(wj ), (A2)

where H̃ is a nonlinear function in wj that introduces nonlinear
coupling in the system. The coupling matrix Lij can be taken as

Lij =
(

k1 − k̃2 k2

βk2 αk1 − βk̃2

)
, (A3)

where k1 = (−2δij + 1), k̃2 = ε̃
ε
δij , and k2 = ε̃

ε
(−δij + 1).

The systems are coupled through both direct and conjugate
variables, where k1 introduces direct coupling, k2 and k̃2

introduce conjugate coupling. ε̃, α, and β are coupling
strengths. The system has a trivial equilibrium point at
(0,0,0,0), which may become stable due to the parametric
mismatch in the system or due to the coupling in the system.
For example, in [11] the conjugate coupling in the system
induces AD even when the oscillators are identical. The
feedback can be given as u(t) = ∑N

k=1 wk , where one can
also add nonlinear terms in the feedback, if needed:

g[u(t)] = I
2 u(t). (A4)

First, considering the case of coupled identical oscillators
ai = a, bi = b, ci = c, and di = d (i = 1,2), the linearization
around the trivial equilibrium point (0,0,0,0) can be done. The
eigenvalues corresponding to the case can be obtained easily
[note that the nonlinear terms in (A1) and (A2) do not play
any role in the linearized equation for the trivial equilibrium
point]. The obtained eigenvalues corresponding to the case are
of the form

μ1,2 = μ̃1,2 + η, (A5)

μ3,4 = μ̃3,4. (A6)

In the above, μ̃1,2 and μ̃3,4 are eigenvalues corresponding to
the trivial equilibrium point of the system when the feedback
is absent (η = 0). They are given by

μ̃1,2 = 1
2 [a + d − (1 + β)ε̃]

± 1
2

√
[a − d+(β − 1)ε̃]2+4(βε̃ + c)(b+ε̃), (A7)

μ̃3,4 = 1
2 [a + d − 2(1 + α)ε − (1 + β)ε̃]

±
√

[a − d + 2(α−1)ε+(β − 1)ε̃]2 + 4C̃, (A8)

where

C̃ = (c − βε̃)(b − ε̃). (A9)

Depending on the values of the system and coupling
parameters, the real part of the eigenvalues μ1,2 and μ3,4

in (A5) and (A6) are positive or negative while η = 0. When
all the eigenvalues in (A5) and (A6) have negative real parts,
the stabilization of the equilibrium point gives rise to AD in the
system. From Eq. (A5), we notice that the increase in η causes
the eigenvalues μ1,2 to be more positive. Thus, a destabilization
of the equilibrium point (0,0,0,0) occurs or it wipes off AD. If
the equilibrium point was unstable while η = 0, the increase
in η never stabilizes the equilibrium point. Thus, the above
analysis makes clear the role of η in destabilizing the attractor
at (0,0,0,0).

We can observe a similar effect even in the case where
parametric mismatch is present (the case where a1 �= a2,
b1 �= b2, c1 �= c2, and d1 �= d2) in the system. The eigen-
values of the system can be obtained by solving the
equation

μ4 + A3μ
3 + A2μ

2 + A1μ + A0 = 0, (A10)

where A3 = −(a1 + a2) − (d1 + d2) + 2ε(1 + α) + 2ε̃(1 +
β) − 2η. As A2, A1, A0 are not simple in their form, we do
not present them here. Although the eigenvalues μ obtained
from (A10) are not of the simple form, the stability of the
equilibrium point (0,0,0,0) in the different parametric regions
can be found through the Routh-Hurwitz (R-H) criteria. From
the R-H criteria, an equilibrium point is said to be stable
only when all the conditions given below are satisfied by the
coefficients in the eigenvalue equation (A10). The R-H criteria
are given as

Ai > 0, i = 0,1,2,3

A3A2 − A1 > 0, (A11)

A3A2A1 − A2
1 − A2

3A0 > 0.

If the coefficients in the characteristic eigenvalue equa-
tion (A10) fail to satisfy any one of the conditions given
above, the equilibrium point becomes unstable. In this as-
pect, we consider one of the simpler conditions in (A11),
namely, A3 > 0. The condition A3 > 0 is broken when η >
1
2 [−(a1+a2) − (d1 + d2) + 2ε(1+α) + 2ε̃(1+β)], thus this
clearly shows that an increase in η destabilizes the equilibrium
point (0,0,0,0). Further, more clear analytical illustration on
the role of η in the parameter mismatched system is given in
Secs. IV B and IV C with Stuart-Landau model as an example.

As the above type of proof for the nontrivial OD state
is too cumbersome, we have illustrated the role of feedback
over the state with more examples in the body of the paper
as well in Appendix B both numerically and analytically (in
some cases). From the above illustrations, one can also notice
that in the case of AD, the nonlinear feedback terms cannot
play any role (as they lose their significance in the linearized
limit) and do not provide any control over it, whereas in the
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case of OD, the nonlinear feedback also can provide a control
over it.

APPENDIX B: ADDITIONAL EXAMPLES

1. Repulsive link

We consider the case of two Stuart-Landau oscillators
coupled diffusively with a repulsive link (N = 2), as studied
in [57]. The functions characterizing this equation have the
forms

fi(wi) =
(

xi − ωyi − r2
i xi

yi + ωxi − r2
i yi

)
, H(wj ) = wj ,

Lij =
(

(1 − 2δij )δi1 0
0 −δi2

)
, g[u(t)] = I

2
u(t). (B1)

The eigenvalues corresponding to the trivial equilibrium
point (0,0,0,0) of the system are

μ = 1
2 (2 − ε + η)

±
√

(ε2 + η2 − 4ω2) ± 2
√

ε2η2 + 4(ε2 − η2)ω2. (B2)

We demonstrate the destabilization of this AD state as well as
the OD state corresponding to the system (B1) with respect to
the feedback in Fig. 9(a), where we can find that an increase
in η causes the reduction in AD and OD regions of the system.
The transition route followed by the system, as it transits
to oscillatory state, is shown in Figs. 9(b) and 9(c). These
figures show that the oscillations are resurrecting from the AD
state via Hopf bifurcation as in the previous cases, whereas
the resurrection of oscillations from OD state occurs through
saddle-node bifurcation.

Recently, AD and OD in the same system with large number
of oscillators (N ) coupled globally has been seen in [58],

FIG. 9. (Color online) (a) Reduction in OD and AD regions of
the system (B1) with η for ω = 3.0. (b), (c) Show the corresponding
transition routes from AD and OD states to OS state. (d) The
emergence of OS regions in the system (B3) with the increase of
η for N = 200, ω = 3.0, and p = 120 in (B3).

FIG. 10. (Color online) Temporal behavior of the system (B1) in
the (a) AD state for (ε,η) = (3.0,0.0), (b) the revoked OS state for
(ε,η) = (3.0,3.0), (c) OD state for (ε,η) = (4.5,0.0), and (d) the
revoked OS state for (ε,η) = (4.5,12.5).

whose equation is defined by

H(wj ) = wj , g[u(t)] = I
N

u(t),

Lij =
( 1

N
(1 − Nδij ) 0

0 − 1
2

[∑p

m=1 δim(δij + δjN )
]).

(B3)

Even with N = 200 oscillators in system (B3), we have shown
the reduction in AD and OD regions of the system in Fig. 9(d).
The temporal behavior of the system for different values of ε

and η is shown in Figs. 10(a)–10(d).

2. Conjugate coupling

Next, we consider the case of N = 2 oscillators coupled
through a conjugate coupling described by

H(wj ) = wj , Lij =
(

0 0
1 − δij 0

)
, g[u(t)] = I

2
u(t).

(B4)

This system has a trivial equilibrium point at e0: (0,0,0,0)
and has pairs of nontrivial equilibrium points for ε > ω,

e1,2: (a∗
1 ,b

∗
1, − a∗

1 , − b∗
1), where a∗

1 = ±
√

1−ωc
1+c2 , b∗

1 = −ca∗
1

and e3,4: (a∗
2 ,b

∗
2, − a∗

2 , − b∗
2), where a∗

2 = ±
√

1−ωc
1+c2 , b∗

2 = ca∗
2

in which c =
√

ε−ω
ω

. The trivial equilibrium point e0 has the

eigenvalues

μ1,2 = (1 + η) ± i
√

ω(ω + ε),

μ3,4 = 1 ± i
√

ω(ω − ε). (B5)

For η = 0, the equilibrium point e0 is unstable for all values of
ε and for ε = ω a saddle-node type bifurcation occurs which
stabilizes e1 and e2 as shown in Fig. 11(a). For η �= 0, the
eigenvalues corresponding to the equilibrium point e0 are still
unstable, and thus the system is still free of AD. Then, the
equilibrium points e1 and e2 are also destabilized through
Hopf bifurcations which are demonstrated in Fig. 11(b). Then,
the OD regions of the system in the (ε,η) space is shown in
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FIG. 11. (Color online) (a) The quenching of oscillations through saddle-node bifurcation (SNB) while η = 0 in the case of conjugate
coupling. (b) The destabilization of the OD state with the introduction of feedback via Hopf bifurcation (HB). (c) The reduction in the OD
regions of the system in the (ε,η) space for ω = 5.0.

Fig. 11(c), which clearly demonstrates the destabilization of
OD with the introduction of feedback.

3. Repulsive link: van der Pol oscillator

Next, we illustrate the role of feedback in the case two
van der Pol oscillators coupled diffusively through a repulsive
link. The corresponding dynamical equations are defined
through [12]

fi(wi) =
(

yi

b
(
1 − x2

i

)
yi − xi

)
, H(wj ) = wj ,

Lij =
(−δi1 0

0 1 − 2δij

)
, g[u(t)] = Qu(t),

Q = 1
2

(
1 0
0 0

)
. (B6)

The AD and OD regions of the system in the (ε,η) space
are given in Fig. 12 which show the reduction in the AD
and OD regions with respect to η. The transition from AD
to oscillatory state occurs through a Hopf bifurcation. On the
other hand, considering the transition from OD to oscillatory
state, the OD state is transformed to AD through inverse
pitchfork bifurcation and the oscillatory state arises from the
AD state through Hopf bifurcation. This shows that the role of
the feedback in setting oscillations back in the system is not
restricted to any particular oscillator. In the next example, we
show that the feedback can destabilize oscillation quenching
scenario even in chaotic oscillators.

FIG. 12. (Color online) (a) Shows the AD, OD, and OS regions
of the system (B6) with respect to ε and η for b = 0.5. (b) The
transition route from OD state to OS state via AD state.

4. Direct and indirect coupling in Rössler system

We consider the case of the N = 2 coupled chaotic Rössler
system [59] defined by

fi(wi) =
⎛⎝ −yi − zi

xi + ayi

b + zi(xi − c)

⎞⎠, H(wj ) = wj ,

Lij =
⎛⎝(1 − 2δij ) + μ

N
v
xj

0 0
0 0 0
0 0 0

⎞⎠, g[u(t)] = I
2

u(t),

v̇ = −kv − μ

2

N∑
j=1

xj . (B7)

Here, the oscillators are coupled directly by diffusive
type coupling and are also coupled indirectly to an en-
vironment defined by the variable v. This system (B7)
has only nonzero equilibrium points which include e1,2:
(x∗

i ,y∗
i ,z∗

i ,v
∗) = (x∗, −x∗

a+η
, −b

(x∗+η−c) , − μx∗
k

), where x∗ =
[− (η−c)

2 ± 1
2

√
(η − c)2 − 4b(a+η)

1+(η− μ2

k
)(a+η)

]. For the parametric

choice a = 0.1, b = 0.1, c = 18, and k = 1, the equilibrium
point e2 is stable. The OD regions corresponding to the above
equilibrium points are given in Figs. 13(a) and 13(b) with
respect to the direct coupling strength (ε) and with respect
to the indirect coupling strength (μ), respectively. The above

FIG. 13. (Color online) Reduction in OD regions of the sys-
tem (B7) (a) in the (μ,η) space for ε = 1.0, (b) in the (ε,η) space for
μ = 1.0. In both the figures, we fixed a = 0.1, b = 0.1, c = 18.0,
and k = 1.0.
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FIG. 14. (Color online) Reduction in the AD and OD regions
with respect to η in the case of (a) the Sprott system (B8) for a = 0.225
and (b) the Lorenz system (B9) for σ = 10, γ = 28, and b = 2.67.

figures clearly show that the feedback is applicable even for
the case of chaotic oscillators.

5. Other chaotic oscillators

To illustrate further the role of feedback in chaotic oscil-
lators, we consider the N = 2 coupled Sprott and Lorentz
oscillators which are defined, respectively, by (i) two coupled
Sprott systems with repulsive link [57],

fi(wi) =
⎛⎝ −ayi

xi + zi

xi + y2
i − zi

⎞⎠, H(wj ) = wj ,

(B8)

Lij =
⎛⎝(1 − 2δij )δj2 0 0

0 −δi1 0
0 0 0

⎞⎠, g[u(t)] = I
2

u(t),

and (ii) diffusive coupling among two Lorenz oscillators [2]

fi(wi) =
⎛⎝ σ (yi − xi)

γ xi − yi − xizi

xiyi − bzi

⎞⎠, H(wj ) = wj ,

Lij =
⎛⎝ 0 0 0

0 0 0
(1 − 2δij ) 0 0

⎞⎠, g[u(t)] = 1

2
u(t). (B9)

The AD and OD regions corresponding to the coupled Sprott
and Lorenz systems [(B8) and (B9)] are given in Fig. 14,
which again confirms that the feedback wipes out AD and OD
in the system.

APPENDIX C: AD REGION IN PARAMETRICALLY
MISMATCHED SYSTEM (2)

The coefficients in the characteristic eigenvalue equa-
tion (13) are given by

A3 = ε − 4 − ãη,

A2 = 1
4 ã2η2 + ãη(3 − ε) + (

6 − 3ε + ω2
1 + ω2

2

)
,

A1 = A11η
2 + A12η + A13,

A0 = A01η
2 + A02η + A03,

where

A11 = 1

4
(ε − 2)ã2,

A12 = (2ε − 3)ã − (
ω2

1a2 + ω2
2a1

)
,

A13 = (3ε − 4) + 1

2
(ε − 4)

(
ω2

1 + ω2
2

)
,

A01 = 1

4
[(1 − ε)ã2 + (ω1a2 + ω2a1)2],

A02 = 1

4

{
[4(1 − ε) + εω1ω2]ã − (ε − 4)

(
ω2

1a2 + ω2
2a1

)}
,

A03 = (
1 + ω2

1

)(
1 + ω2

2

) − ε

2

(
2 + ω2

1 + ω2
2

)
. (C1)

Here, ã = a1 + a2. The eigenvalue equation in (13) can be
solved directly to get the stable regions of the steady state
(0,0,0,0). On the other hand, we can use the R-H criteria to
have a closer look at the stable regions of the system (2).
According the R-H criteria, the stable region corresponds to
the region in which

(i) Ai > 0, i = 3,2,1,0

(ii) A3A2 − A1 > 0, (C2)

(iii) A3A2A1 − A2
1 − A2

3A0 > 0.

Now, we consider the above criteria one by one and obtain
the required stable region of the steady state.

(i)a A3 > 0. This condition will be satisfied when

η <
ε − 4

ã
. (C3)

This simple condition promises that above the value of η =
ε−4
ã

, the trivial equilibrium point can never be stable and thus
oscillation can be revoked by an increase in the value of η.
The region in the (ε,η) space in which the above condition is
satisfied is denoted by I in Fig. 15.

(i)b A2 > 0. When ε2 − 3ε + 3 − ω2
1 − ω2

2 < 0, if the
condition (A2 > 0) is satisfied for η = 0 then it will be satisfied
for all values of η. If the condition A2 > 0 is not satisfied while

FIG. 15. (Color online) The region in which the conditions given
in (C2) are satisfied is depicted in the above figure. The light-blue
shaded region (I) which lies under the light-blue curve (curve-1)
corresponds to A3 > 0, the region under the pink curve (curve-2)
which is denoted by region (II) corresponds to A1 > 0, green
shaded region (III) corresponds to A0 > 0. The regions satisfying
the conditions (ii) and (iii) in (C2) are the gray shaded region (IV)
(the region under curve-4) and red shaded region (V) (the region
under curve-5), separately. The other condition A2 > 0 is satisfied
everywhere in the considered region of (ε,η). The region in which all
the conditions in (C2) are satisfied is denoted by blue shaded region
(VI) (the region under curve-6).
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η = 0, then the condition will not be satisfied for any value of
η. When ε2 − 3ε + 3 − ω2

1 − ω2
2 > 0, the condition A2 > 0

will be satisfied only for the values of η given by

η >
2

ã

[
ε − 3 +

√
ε2 − 3ε + 3 − ω2

1 − ω2
2

]
,

η <
2

ã

[
ε − 3 −

√
ε2 − 3ε + 3 − ω2

1 − ω2
2

]
. (C4)

This condition A2 > 0 is satisfied in the whole region
considered in Fig. 15.

(i)c A1 > 0. When A2
12 − 4A11A13 < 0, if the condition is

satisfied for η = 0 then it will continue to be satisfied for all
values of η, if the condition is not satisfied for η = 0, by the
variation of η also the condition remains to be unsatisfied.
When A2

12 − 4A11A13 > 0, it will be satisfied only for the
values of η given by

η >
−A12 +

√
A2

12 − 4A11A13

2A11
,

η <
−A12 −

√
A2

12 − 4A11A13

2A11
. (C5)

The region of (ε,η) in which the above condition is satisfied is
denoted by region (II) which lies under pink curve (or curve-2)
in Fig. 15.

(i)d A0 > 0. Similar to the previous conditions,
if A2

02 − 4A01A03 > 0, the condition will be satisfied

when

η >
−A02 +

√
A2

02 − 4A01A03

2A01
,

η <
−A02 −

√
A2

02 − 4A01A03

2A01
. (C6)

Otherwise, it will be satisfied for all values of η only if the
condition is satisfied for η = 0. The region in which the above
condition is satisfied is shown in Fig. 15 as region III.

(ii) A3A2 − A1 > 0. We can find that A3A2 − A1 is a cubic
polynomial in η, and the region in which the above condition is
satisfied is given by gray shaded region (IV). The real roots of
η satisfying the equation A3A2 − A1 = 0 form the boundary
of the region.

(iii) A3A2A1 − A2
1 − A2

3A0 > 0. The region satisfying this
condition is shown by red shaded region (V), whose boundary
is the solution of the quintic equation A3A2A1 − A2

1 −
A2

3A0 = 0.
From Fig. 15, we can find that the region satisfying all the

criteria given in (C2) is the region bounded between the curves

A0 = 0 or η =
−A02 ±

√
A2

02 − 4A01A03

2A01

and

A3A2A1 − A2
1 − A2

3A0 = 0. (C7)

The region is denoted by blue shaded region VI in Fig. 15.
In this region, the equilibrium point (0,0,0,0) is found to be
stable or AD occurs in the region.
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154101 (2014).
[53] A. Koseska, E. Volkov, and J. Kurths, Europhys. Lett. 85, 28002

(2009).
[54] A. Koseska, E. Volkov, and J. Kurths, Chaos 20, 023132 (2010).
[55] M. Lakshmanan and S. Rajasekar, Nonlinear Dynamics: Inte-

grability, Chaos and Patterns (Springer, Berlin, 2003).
[56] K. Bar-Eli, Phys. D (Amsterdam) 14, 242 (1985).
[57] C. R. Hens, O. I. Olusola, P. Pal, and S. K. Dana, Phys. Rev. E

88, 034902 (2013).
[58] M. Nandan, C. R. Hens, P. Pal, and S. K. Dana, Chaos 24,

043103 (2014).
[59] V. Resmi, G. Ambika, and R. E. Amritkar, Phys. Rev. E 84,

046212 (2011).

012903-14

http://dx.doi.org/10.1016/j.ijleo.2013.11.007
http://dx.doi.org/10.1016/j.ijleo.2013.11.007
http://dx.doi.org/10.1016/j.ijleo.2013.11.007
http://dx.doi.org/10.1016/j.ijleo.2013.11.007
http://dx.doi.org/10.1103/PhysRevA.78.062104
http://dx.doi.org/10.1103/PhysRevA.78.062104
http://dx.doi.org/10.1103/PhysRevA.78.062104
http://dx.doi.org/10.1103/PhysRevA.78.062104
http://dx.doi.org/10.1103/PhysRevA.62.022108
http://dx.doi.org/10.1103/PhysRevA.62.022108
http://dx.doi.org/10.1103/PhysRevA.62.022108
http://dx.doi.org/10.1103/PhysRevA.62.022108
http://dx.doi.org/10.1111/j.1749-6632.2012.06650.x
http://dx.doi.org/10.1111/j.1749-6632.2012.06650.x
http://dx.doi.org/10.1111/j.1749-6632.2012.06650.x
http://dx.doi.org/10.1111/j.1749-6632.2012.06650.x
http://dx.doi.org/10.1103/PhysRevE.81.025205
http://dx.doi.org/10.1103/PhysRevE.81.025205
http://dx.doi.org/10.1103/PhysRevE.81.025205
http://dx.doi.org/10.1103/PhysRevE.81.025205
http://dx.doi.org/10.1103/PhysRevLett.74.4075
http://dx.doi.org/10.1103/PhysRevLett.74.4075
http://dx.doi.org/10.1103/PhysRevLett.74.4075
http://dx.doi.org/10.1103/PhysRevLett.74.4075
http://dx.doi.org/10.1016/j.physa.2011.12.026
http://dx.doi.org/10.1016/j.physa.2011.12.026
http://dx.doi.org/10.1016/j.physa.2011.12.026
http://dx.doi.org/10.1016/j.physa.2011.12.026
http://dx.doi.org/10.1007/s10867-008-9081-4
http://dx.doi.org/10.1007/s10867-008-9081-4
http://dx.doi.org/10.1007/s10867-008-9081-4
http://dx.doi.org/10.1007/s10867-008-9081-4
http://dx.doi.org/10.1103/PhysRevE.83.046223
http://dx.doi.org/10.1103/PhysRevE.83.046223
http://dx.doi.org/10.1103/PhysRevE.83.046223
http://dx.doi.org/10.1103/PhysRevE.83.046223
http://dx.doi.org/10.1038/srep06650
http://dx.doi.org/10.1038/srep06650
http://dx.doi.org/10.1038/srep06650
http://dx.doi.org/10.1038/srep06650
http://dx.doi.org/10.1103/PhysRevE.75.011918
http://dx.doi.org/10.1103/PhysRevE.75.011918
http://dx.doi.org/10.1103/PhysRevE.75.011918
http://dx.doi.org/10.1103/PhysRevE.75.011918
http://dx.doi.org/10.1007/s00422-006-0066-8
http://dx.doi.org/10.1007/s00422-006-0066-8
http://dx.doi.org/10.1007/s00422-006-0066-8
http://dx.doi.org/10.1007/s00422-006-0066-8
http://dx.doi.org/10.1209/0295-5075/80/40002
http://dx.doi.org/10.1209/0295-5075/80/40002
http://dx.doi.org/10.1209/0295-5075/80/40002
http://dx.doi.org/10.1209/0295-5075/80/40002
http://dx.doi.org/10.1103/PhysRevLett.103.074101
http://dx.doi.org/10.1103/PhysRevLett.103.074101
http://dx.doi.org/10.1103/PhysRevLett.103.074101
http://dx.doi.org/10.1103/PhysRevLett.103.074101
http://dx.doi.org/10.1103/PhysRevLett.112.144101
http://dx.doi.org/10.1103/PhysRevLett.112.144101
http://dx.doi.org/10.1103/PhysRevLett.112.144101
http://dx.doi.org/10.1103/PhysRevLett.112.144101
http://dx.doi.org/10.1103/PhysRevLett.114.034101
http://dx.doi.org/10.1103/PhysRevLett.114.034101
http://dx.doi.org/10.1103/PhysRevLett.114.034101
http://dx.doi.org/10.1103/PhysRevLett.114.034101
http://dx.doi.org/10.1103/PhysRevLett.112.154101
http://dx.doi.org/10.1103/PhysRevLett.112.154101
http://dx.doi.org/10.1103/PhysRevLett.112.154101
http://dx.doi.org/10.1103/PhysRevLett.112.154101
http://dx.doi.org/10.1209/0295-5075/85/28002
http://dx.doi.org/10.1209/0295-5075/85/28002
http://dx.doi.org/10.1209/0295-5075/85/28002
http://dx.doi.org/10.1209/0295-5075/85/28002
http://dx.doi.org/10.1063/1.3456937
http://dx.doi.org/10.1063/1.3456937
http://dx.doi.org/10.1063/1.3456937
http://dx.doi.org/10.1063/1.3456937
http://dx.doi.org/10.1016/0167-2789(85)90182-4
http://dx.doi.org/10.1016/0167-2789(85)90182-4
http://dx.doi.org/10.1016/0167-2789(85)90182-4
http://dx.doi.org/10.1016/0167-2789(85)90182-4
http://dx.doi.org/10.1103/PhysRevE.88.034902
http://dx.doi.org/10.1103/PhysRevE.88.034902
http://dx.doi.org/10.1103/PhysRevE.88.034902
http://dx.doi.org/10.1103/PhysRevE.88.034902
http://dx.doi.org/10.1063/1.4897446
http://dx.doi.org/10.1063/1.4897446
http://dx.doi.org/10.1063/1.4897446
http://dx.doi.org/10.1063/1.4897446
http://dx.doi.org/10.1103/PhysRevE.84.046212
http://dx.doi.org/10.1103/PhysRevE.84.046212
http://dx.doi.org/10.1103/PhysRevE.84.046212
http://dx.doi.org/10.1103/PhysRevE.84.046212



