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Soliton trapping in a disordered lattice
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In recent years, the competition between randomness and nonlinearity was extensively explored. In the present
paper, the dynamics of solitons of the Ablowitz-Ladik model in the presence of a random potential is studied. In
the absence of the random potential, it is an integrable model and the solitons are stable. As a result of the random
potential, this stability is destroyed. In a certain regime, for short times, particlelike dynamics with constant
mass is found; in another regime, particlelike dynamics with varying mass takes place. In particular, an effective
potential is found that predicts correctly changes in the direction of motion of the soliton. This potential is a
scaling function of time and strength of the potential, leading to a relation between the first time when the soliton
changes direction and the strength of the random potential.
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I. INTRODUCTION

Solitons are one of the most remarkable manifestations of
nonlinearity. They are found for continuous systems for the
nonlinear Schrödinger equation (NLSE) in one dimension [1].
On the lattice, mobile solitons are found for the model
introduced by Ablowitz and Ladik (AL) [2], while for the
ordinary NLSE on a lattice, a mobile soliton is only an
approximate concept. Disorder tends to affect and typically
destroy solitons both on a lattice and in the continuum. In the
present work, this will be studied for a one-dimensional (1D)
lattice in the framework of the AL model.

For the continuous system, early numerical work of
Bronski [3] indicates that a NLSE soliton becomes trapped
in the random media when its kinetic energy decreases
sufficiently and is of comparable size to the background
potential. Akkermans et al. [4] show numerically that a soliton
bounces back and forth between high potential barriers in
attractive Bose-Einstein condensates in the framework of the
Gross-Pitaevskii equation with strong disorder. In addition,
like the Anderson localization of linear waves in random
media, some authors relate the localization of solitons in a
disordered environment to Anderson localization [5,6].

In the absence of a random potential, the AL model is

i
∂ψn

∂t
= −(ψn−1 + ψn+1)(1 + |ψn|2), (1)

where ψn is the wave function on site n at time t . The AL
model is an integrable discrete version of the continuous
NLSE, while the discrete version of the ordinary NLSE is
nonintegrable. This relates the AL model to many physical
systems, for instance in the nonlinear waveguide arrays [7,8]
and discrete molecular chains [9,10]. The integrability of the
AL model is manifested by the existence of a mobile soliton
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solution [11,12],

ψn(t) = sinh(μ)

cosh[μ(n − x)]
exp[ik(n − x) + iα], (2)

where the time-dependent parameters x and α can be expressed
as

ẋ = 2
sinh(μ)

μ
sin(k), (3a)

α̇ = 2

[
cosh(μ) cos(k) + k

μ
sinh(μ) sin(k)

]
. (3b)

From (2) we see that 1
μ

characterizes the width of the soliton
and x is its center. On the other hand, the AL equation has two
conserved quantities, the first of which can be defined as the
mass of the soliton solution [11–13],

Ms =
∞∑

n=−∞
ln(1 + |ψn|2), (4)

while the second can be defined as the momentum of the
motion [11–13],

P = i

∞∑
n=−∞

(ψnψ
∗
n+1 − ψ∗

nψn+1), (5)

where ∗ denotes the complex conjugation. For the soliton
solution (2), we can calculate that (see also the Appendix
of [11])

Ms = 2μ (6)

and

P = Msẋ = 4 sinh(μ) sin(k). (7)

Therefore, Ms can indeed be considered as the mass of the
soliton.

In the present work, we will study solitons for the AL model
with a random potential defined by

i
∂ψn

∂t
= −(ψn−1 + ψn+1)(1 + |ψn|2) + εnψn, (8)

1539-3755/2015/92(1)/012901(11) 012901-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.012901


ZHI-YUAN SUN, SHMUEL FISHMAN, AND AVY SOFFER PHYSICAL REVIEW E 92, 012901 (2015)

where εn are independent random variables uniformly dis-
tributed in the interval [−W

2 ,W
2 ]. This is the disordered version

of (1). The disordered NLSE,

i
∂ψn

∂t
= −(ψn−1 + ψn+1) + εnψn + β|ψn|2ψn, (9)

is a paradigm for the exploration of the competition between
the effects of disorder that are tending to localize, and those
of nonlinearity that are tending to enhance spreading (for a
review, see [14]). Most of the work on (9) addressed this
conceptional problem. It was motivated by the exploration
of transport in optical waveguides, where a component of the
electric field plays the role of the wave function [8], and by
the dynamics of cold atoms in disordered potentials [15]. The
hope is that many qualitative results obtained in the framework
of (8) will hold also for (9). In the exploration of (8), we can
take advantage of the fact that in the absence of disorder, (8)
reduces to (1), which is integrable.

For the continuous version, two early reviews [16,17] have
addressed the propagation of solitons in disordered systems; in
the works by Bronski [3,18] and Garnier [19], they show two
regimes for the NLSE soliton propagation. In one regime, the
soliton mass decays while its velocity approaches a constant;
in the other regime, the soliton mass approaches a constant
while its velocity decays very slowly. Garnier further applied
a perturbation theory of the inverse scattering transform
to confirm that two similar regimes are found for the AL
solitons with on-site random potential (in the limit of zero
randomness) [20]. Which regime is relevant depends on the
value of the initial mass of the AL soliton. For large μ, the
mass approaches a constant, while for small μ, the velocity
approaches a constant.

However, we will show numerically, for the weak random-
ness, that the large soliton will be trapped before its velocity
decreases to zero. Additionally, we will find a regime in which
the AL soliton has the possibility to be accelerated on average
by the specific randomness. We will also characterize the
regime in which the soliton can be trapped by the disorder using
a particle approach, i.e., where the soliton can be considered
as a particle.

The outline of the paper is as follows. In Sec. II, the
dynamics is classified by the initial value of the soliton mass.
In Sec. III, a regime where the soliton can be considered as a
particle is studied; in Sec. IV, a scaling dependence of the time
when the soliton is trapped is found to scale with the strength
of the random potential W . The results are summarized in
Sec. V.

II. SOLITON PROPAGATION IN A DISORDERED LATTICE

In this section, we will study the solution of Eq. (8) numerically
and semianalytically in order to develop an intuitive picture of
the soliton dynamics. The initial soliton is the one found for a
chain without disorder, given by (2), with

x = 0, ẋ > 0, (10a)

Ms(t = 0) = 2μ0, (10b)

μ0 = μ(t = 0). (10c)

The numerical solution is obtained propagating the soliton
by Eq. (8). To save computer resources, we use a coordinate
system moving with the center of mass of the soliton,
consisting of N sites centered on the soliton. The computation
is performed using a fourth-order Runge-Kutta-type algo-
rithm in time and an absorbing-wave boundary condition. In
Appendix C, the validity of the method for the parameters used
is verified. We define the following quantities:

Soliton mass,

M (N)
s =

N∑
n

ln(1 + |ψn|2), (11)

center-of-mass coordinate,

x(N) =
N∑
n

n ln(1 + |ψn|2)/M (N)
s , (12)

and the second moment,

m
(N)
2 =

N∑
n

(n − x(N))2 ln(1 + |ψn|2), (13)

while the soliton velocity is

v = �x(N)/�t, (14)

where �x(N) is the change of x(N) during the time interval �t

(here we use �t = 0.001). In addition, two parameters that
characterize the soliton are introduced in the simulation: one
is the amplitude of the soliton,

As = max
n

|ψn|2, (15)

while the other is the soliton width, defined as the minimum
Nw satisfying

(Nw−1)/2∑
−(Nw−1)/2

ln(1 + |ψn|2)/M (N)
s � 1 − δ, (16)

where δ = 0.01 [note that in the simulation, we first find the
peak position of the soliton, and then (16) is calculated with
this position as the center].

There are basically three regimes characterized by the initial
value of μ:

(A) μ0 � 1, (17a)

(B) μ0 ≈ 1, (17b)

(C) μ0 � 1. (17c)

A. The regime μ0 � 1

We choose an AL soliton with μ0 = 3, which has more
than 99% mass concentrating in three lattice sites (Nw = 3).
The reason for picking up a soliton of such narrow width
is based on the fact that it is compact enough to admit
a low level of mass radiation due to randomness. Such
low-level radiation is necessary for observing possible soliton
acceleration in our numerical simulation. The initial velocity
of the soliton is chosen as ẋ(t = 0) = 1, and one specific
realization of the random potential with W = 0.1 is used. Note
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that 0.04 � W � 0.1 can be seen as the weak randomness
in our discussion. However, if randomness is very weak, the
soliton dynamics may not be distinguished from that in the
limit of zero randomness as in [20].

Assuming the random potential is a perturbation, the approxi-
mate equations for the various parameters in this potential can
be derived following the work of Cai et al. [11]. The resulting
equations derived in Appendix A are

μ̇ = 0, (18a)

ẋ = 2 sinh(μ)

μ
sin(k), (18b)

k̇ = − sinh2(μ)
+∞∑

n=−∞

εn tanh[μ(n − x)]

cosh[μ(n + 1 − x)] cosh[μ(n − 1 − x)]
, (18c)

α̇ = 2

[
cosh(μ) cos(k) + k

μ
sinh(μ) sin(k)

]
+ sinh2(μ)

+∞∑
n=−∞

εn(n − x) tanh[μ(n − x)]

cosh[μ(n + 1 − x)] cosh[μ(n − 1 − x)]

− sinh(μ) cosh(μ)
+∞∑

n=−∞

εn

cosh[μ(n + 1 − x)] cosh[μ(n − 1 − x)]
. (18d)

Equations (18) are integrated numerically with the initial
conditions (10). The algorithm used is the fourth-order Runge-
Kutta with �t = 0.001, and the summations are truncated to
a finite window around the center of mass of the soliton.
The values of the parameters μ, k, x, and α are inserted
in (2). We refer to this solution as the semianalytical solution.
We compare this solution with the numerical integration
of Eq. (8) (referred to as the numerical solution), and the
results are presented in Fig. 1. In Fig. 1(a), we compare
the center-of-mass coordinate x of (2) and (12) found in
the semianalytical calculation with the numerical solution. It
is found that on average, the velocity of the semianalytical
solution is somewhat larger than that found numerically. In
Fig. 1(b), the velocity of the center of mass and the second
moment are presented. The plots for the velocity are zoomed
in Figs. 1(c)–1(e), and the soliton profiles are shown in
Fig. 1(f). We note that for t < 100 there is excellent agreement
between the numerical and the semianalytical results. At
time t > 100, the second moment increases rapidly, therefore
the approximation (18) is not justified anymore, and a large
deviation between the two solutions is shown.

B. The regime μ0 ≈ 1

As a representative example in this regime, we study a soliton
with μ0 = 1, moving in one realization of the random potential
with W = 0.1. We solve numerically Eq. (8) with the initial
condition (10). In this case, the initial width of the soliton is
seven sites (Nw = 7). The results are presented in Fig. 2. We
find that the center of mass x moves monotonically to the right
until time t = Tc, when oscillations start [see Fig. 2(a)]. From
Fig. 2(b), we see that the velocity decreases monotonically
for t < Tc and oscillates for t > Tc. The period of these
oscillations decreases with time. From Fig. 2(c) we see that the
mass decreases with time and in the first stage this decrease is
rapid, therefore the approximation (18) fails. Finally, the mass
approaches a nonvanishing constant. Figure 2(d) presents the
soliton profiles. The interesting phenomenon we find is the
trapping of the soliton for t > Tc as a result of randomness.
Such trapping is a general soliton behavior, and it is not specific

to any realization of randomness, as we tested explicitly. In
Fig. 2(e), we show the averaged soliton velocity v(av) and mass
M (av)

s over 12 realizations of the random potential. The general
features are similar to those found for specific realizations, but
the oscillations in Fig. 2(b) are washed out by the averaging.
The particle aspect of this dynamics in this regime will be
discussed in the next section.

C. The regime μ0 � 1

In this regime, the soliton has a larger width, and it is easier
to lose its mass through radiation. With a limit of zero
randomness, Garnier [20] shows that the soliton propagates
with its mass decreasing to zero and its velocity decreasing
to a nonvanishing constant. In fact, the radiation induces a
remarkable deformation on the soliton profile after some time
of propagation if the randomness is not weak enough. In Fig. 3,
we present an example with μ0 = 0.5 [where the initial width
of the soliton is 11 sites (Nw = 11)] and W = 0.1. The initial
condition is (10). From Fig. 3(a) we see that the soliton spreads
and radiates its mass over 300 sites in the time t = 1000. From
Figs. 3(b) and 3(c) we conclude that the mass and velocity
decrease. Such a decrease of velocity includes some short
time intervals where the velocity oscillates approximately
near a constant. Similar time intervals have been observed
in the work of Franzosi et al. [21], as they studied the mobile
discrete breathers propagating on very weak backgrounds in
the framework of a discrete NLSE. Their time intervals appear
to be much longer, with weaker velocity oscillations, since
their background perturbation is very weak. Similar qualitative
behavior was found for different realizations of the random
potential. Moreover, Fig. 3(d) shows the averaged soliton
velocity and mass over 12 realizations of random potentials.
We have not observed the trapping behavior in this regime,
especially before the soliton undergoes a large deformation.

III. PARTICLE APPROACH FOR SOLITON TRAPPING
IN A DISORDERED AL LATTICE

In this section, we will study the following question: Can an AL
soliton in a weak random potential be considered as particle?
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FIG. 1. (Color online) AL soliton acceleration by one specific realization of the random potential [μ0 = 3, v(t = 0) = 1, and W = 0.1].
(a) Comparison of the center of mass between the semianalytical (solid green line) and numerical (dashed red line) results. (b) Comparison
of the semianalytical (lower solid green line) and numerical (lower dashed red line) velocities, and the second moment m2 (upper solid blue
line). (c)–(e) Zoomed views of the velocity comparison in three different time intervals. (f) The soliton profiles at t = 0 (dashed blue line) and
t = 1000 (solid red line). Note that the site coordinate is fixed on the center of mass.

We will focus on the soliton trapping in the second regime
where μ0 ≈ 1, and we will try to give a particle description of
the trapping behavior. We start from the momentum (5), and

we assume it is still the momentum for the model (8) when the
random potential is weak. Taking a derivative on both sides
of Eq. (5) with respect to t , and substituting Eq. (8) into the
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FIG. 2. (Color online) AL soliton trapping by one realization of the random potential [μ0 = 1, v(t = 0) = 1, and W = 0.1]. (a) Center of
mass x [Eq. (12)] as a function of time t . (b) The soliton velocity v [Eq. (14)] as a function of time t . (c) The mass Ms [Eq. (11)] as a function of
time t . (d) The soliton profiles at t = 0 (dashed blue line) and t = 3000 (solid red line). (e) v(av) and M (av)

s as a function of time t (the averaging
is performed over 12 realizations).
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FIG. 3. (Color online) AL soliton propagation in one realization of the random potential [μ0 = 0.5, v(t = 0) = 1, and W = 0.1]. (a) The
soliton profiles at t = 0 (dashed blue line) and t = 1000 (solid red line). (b) The mass Ms [Eq. (11)] as a function of time t . (c) The soliton
velocity v [Eq. (14)] as a function of time t . (d) v(av) and M (av)

s as a function of time t (the averaging is performed over 12 realizations).

result, we can obtain

dP

dt
= 2

+∞∑
n=−∞

Re(ψnψ
∗
n+1)(εn − εn+1), (19)

where Re means the real part. For derivation, see Appendix B.
With the assumption that the soliton is particlelike, Eq. (19)
can be viewed as the variation rate of its momentum. On the
other hand, dP/dt from (7) can also be written as

dP

dt
= dMs

dt
v + Ms

d2x

dt2
. (20)

Notice that, due to the mass radiation, the term dMs/dt

in Eq. (20) cannot be neglected, especially before soliton
trapping. Therefore, we can write the randomness-generated
force in two ways. One is directly

F1 = Ms

d2x

dt2
, (21)

and the other one can be derived using (19) and (20)

F2 = 2
+∞∑

n=−∞
Re(ψnψ

∗
n+1)(εn − εn+1) − dMs

dt
v. (22)

The test of the particlelike picture is performed by comparing
the forces F1 and F2 presented in Fig. 4. Excellent agreement
is found. These results strongly support the description of
solitons as particles. In this picture with the force F2 we
associate work done on the soliton that decreases its kinetic
energy with an effective potential,

U (t) = U0 −
∫ t

t0

F2v dt ′, (23)

where U0 is a parameter that can be viewed as the initial
energy to be determined as the constant that leads the mean
of U , over the time interval of trapping in simulations, to be
zero, i.e., U0 = 〈∫

t>Tc
F2v dt〉. With the same data, we plot

both of this effective potential U (t) and soliton velocity in
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FIG. 4. (Color online) (a) Comparison of the two forces F1 [Eq. (21)] (solid blue line) and F2 [Eq. (22)] (dashed red line) with the soliton
parameters and random potential the same as those in Figs. 2(a) and 2(b). (b)–(d) Zoomed views of panel (a) for three different time intervals.
(e) The effective potential U (solid red line) and soliton velocity v (dotted green line) after the soliton’s first reflection (Tc ≈ 1100).

Fig. 4(e). It shows that the first reflection (Tc ≈ 1100), with
the soliton velocity changing its sign, occurs at a peak position
of the effective potential. Also other changes in the direction
of motion of the soliton take place at maxima of U (t), as can
be seen from Fig. 4(e). This is a direct result of (23) since

dU (t)

dt
= −vF2, (24)

therefore dU (t)
dt

= 0 implies either F2 = 0 or v = 0.

We note that for t > Tc, the soliton is trapped and oscillates
in space. This is localization that can be described completely
classically, as it results from a potential. Therefore, it differs
from the Anderson localization of solitons claimed in earlier
works [6,22,23]. Sacha et al. [6,23] studied a quasi-one-
dimensional bright matter-wave soliton in a spatially correlated
disordered potential. They find that the soliton shape is hardly
affected when the potential is weak and smooth, but the
quantum motion of the soliton’s center of mass displays
Anderson localization. A similar investigation on dark solitons
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FIG. 5. (Color online) (a) Tc as function of W . The random potentials are constructed of one realization of random numbers in [−1,1],
multiplied by different strength W/2. (b) Linear fit of the data (logarithm forms of variables) in (a). (c) U (av) as a function of t and W (the lines
from left to right correspond to W from 0.10 to 0.06). (d) U (av) as a function of the scaling variable tW 2.

was performed by Mochol et al. [22]. Our case is completely
classical. It consists of two stages: one is for t < Tc, where
the soliton propagates losing its mass and kinetic energy,
however the kinetic energy is still much larger than the random
potential (as we checked explicitly); the other one is for t > Tc,
where the soliton is trapped and localized by the randomness,
with its kinetic energy comparable to the random potential.
Both stages can be described using a particle with varying
mass moving in an effective random potential, as shown in
Sec. III.

IV. SCALING OF THE TRAPPING TIME Tc

In this section, we demonstrate that there exists a scaling
relation between the time Tc when the trapping starts and
the random potential strength W . In Figs. 5(a) and 5(b), Tc is

plotted as a function of W . It is found that

Tc ∼ W−η, (25)

with η = 2.32 ± 0.41. For each W ∈ [0.06,0.1], we average
the function U (t) of (23) over six different realizations to
derive U (av)(t), and we plot it up to the minimum value of Tc

of six realizations in Fig. 5(c). From Fig. 5(d), we see that U (av)

is related to W and t via the combination tW 2. This suggests
the scaling relation

U (av) ≈ 
(tW 2), (26)

where 
 is the scaling function. If trapping starts at the same
value of 
, one finds

Tc ∝ W−2. (27)

Here we want to make some comments on Tc. In the
calculation of (25), we use one realization of random numbers
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and σx (red stars) as functions of W (linear fit of the logarithm
of variables). The averaging is carried out over 250 realizations of
the random potential. The initial soliton parameters are μ0 = 1 and
v(t = 0) = 1.

uniformly distributed in [−1,1], but multiplied by the strength
W/2, as the random potential. Since the change of Tc is
obvious for small variations of W [see Figs. 5(a) and 5(b)],
it can generally reflect the scaling relation. In the following,
we will use multiple realizations of random potentials, in the
statistical sense, to briefly study the trapping of solitons in the
regime t > Tc.

The time Tc can be viewed as a time when the soliton
enters the trapping regime, and it should relate to the classical
localization. We define the following quantity x̃ for any
realization of the random potential:

x̃ = 1

T∞ − Tc

∫ T∞

Tc

x(t)dt, (28)

where T∞ is the upper boundary of time in numerical
simulation. Therefore, for each W , we can derive the statistical
averaging T (av)

c = 〈Tc〉 and x(av) = 〈̃x〉, as well as its standard
derivation σx = [〈(̃x − x(av))2〉]1/2, where 〈·〉 is the averaging
over realizations of the random potential. These averaged
parameters provide information about the localization of
solitons. We carried out the average over 250 realizations of
random potentials for each W , with the results shown in Fig. 6,
and we found that these parameters scale with W as

T (av)
c ∼ W−η1 , η1 = 2.46 ± 0.04, (29a)

x(av) ∼ W−η2 , η2 = 2.27 ± 0.04, (29b)

σx ∼ W−η3 , η3 = 1.84 ± 0.20, (29c)

T∞ = 104 was used.

From the scaling coefficients, one may conclude that Tc is
closely related to x̃ rather than to σx . This is reasonable, since
in fact the trapping time Tc is when the soliton’s kinetic energy
decreases to the same magnitude as the random potential
energy (as we checked explicitly). The standard derivation,
on the other hand, reflects the variation of position for t > Tc.

For very weak disorder, W � 0.04, the scaling (27) seems
not to be valid. The soliton seems to lose its velocity while
keeping its mass nearly constant. In particular, Tc ≈ 105 for
W = 0.02.

V. SUMMARY AND CONCLUSIONS

The dynamics of solitons in random potentials was studied in
the framework of the Ablowitz-Ladik model [2]. In particular,
we explored the question of when a soliton can be considered
as a particle, and what the conditions are for the trapping of
solitons in a random potential. The behavior was classified
into three regimes specified by Eq. (17). In the regime μ0 � 1
for short times, approximation (18) holds. In particular, μ

changes in time, resulting in the change of the soliton width.
This destroys the semianalytic solution resulting from (18),
as is clear from Fig. 1. For μ0 � 1, the soliton spreads very
quickly and the potential picture is not appropriate.

The most interesting regime is when μ0 ≈ 1, where the
soliton is trapped and moves as a particle with varying mass.
The equality of F1 = F2 that is demonstrated in Fig. 4 is
strong evidence for the particle nature. The velocity changes
its direction at some maxima of the potential (23), as can
be seen from Fig. 4(e) and as expected from (24). A better
understanding of the potential U (t) and its relation to the
average of the random potential over the profile of the soliton
will be left for future studies. Finally, we found that Tc scales
with the strength of the random potential according to (26),
and the potential is a scaling function of the time and strength
of the random potential.
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APPENDIX A

Reference [11] shows that for an AL model with a
perturbation term,

i
∂ψn

∂t
= −(ψn−1 + ψn+1)(1 + |ψn|2) + Rn, (A1)
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the soliton parameters in (2) in the adiabatic approximation satisfy the following evolution equations:

μ̇ = sinh(μ)
+∞∑

n=−∞

cosh[μ(n − x)]Im(rn)

cosh[μ(n + 1 − x)] cosh[μ(n − 1 − x)]
, (A2a)

ẋ = 2 sinh(μ)

μ
sin(k) + sinh(μ)

μ

+∞∑
n=−∞

(n − x) cosh[μ(n − x)]Im(rn)

cosh[μ(n + 1 − x)] cosh[μ(n − 1 − x)]
, (A2b)

k̇ = − sinh(μ)
+∞∑

n=−∞

sinh[μ(n − x)]Re(rn)

cosh[μ(n + 1 − x)] cosh[μ(n − 1 − x)]
, (A2c)

α̇ = 2[cosh(μ) cos(k) + k

μ
sinh(μ) sin(k)] + sinh(μ)

+∞∑
n=−∞

(n − x) sinh[μ(n − x)]Re(rn)

cosh[μ(n + 1 − x)] cosh[μ(n − 1 − x)]
− cosh(μ)

×
+∞∑

n=−∞

cosh[μ(n − x)]Re(rn)

cosh[μ(n + 1 − x)] cosh[μ(n − 1 − x)]
+ k

sinh(μ)

μ

+∞∑
n=−∞

(n − x) cosh[μ(n − x)]Im(rn)

cosh[μ(n + 1 − x)] cosh[μ(n − 1 − x)]
, (A2d)
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FIG. 7. (Color online) Comparison of the typical results, as for parameters of Figs. 2 and 3, integrating on Eq. (8) by the fourth-order
Runge-Kutta method with different step sizes [�t = 10−3 (solid blue line) and �t = 10−4 (dotted green line)] and the Besse method with
�t = 10−3 (dashed red line). (a,b) μ0 = 1, v(t = 0) = 1, and W = 0.1 used in Fig. 2 with �t = 10−3; (c,d) μ0 = 0.5, v(t = 0) = 1, and
W = 0.1 used in Fig. 3 with �t = 10−3. The RK results of �t = 10−2 look similar.
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where rn = Rn exp[−ik(n − x) − iα]. For Eq. (8) with the
solution form (2), we have

rn = εn sinh(μ)

cosh[μ(n − x)]
. (A3)

Substituting (A3) into (A2), we obtain Eqs. (18).

APPENDIX B

In this Appendix, we will outline the derivation of Eq. (19).
Taking a derivative on both sides of Eq. (5) with respect to t ,
one obtains

dP

dt
= i

+∞∑
n=−∞

(
∂ψn

∂t
ψ∗

n+1 + ψn

∂ψ∗
n+1

∂t

− ∂ψ∗
n

∂t
ψn+1 − ψ∗

n

∂ψn+1

∂t

)
. (B1)

With the help of Eq. (8), we derive the following results:

∂ψn

∂t
= i[(ψn−1 + ψn+1)(1 + ψnψ

∗
n ) − εnψn], (B2a)

∂ψ∗
n

∂t
= −i[(ψ∗

n−1 + ψ∗
n+1)(1 + ψnψ

∗
n ) − εnψ

∗
n ], (B2b)

∂ψn+1

∂t
= i[(ψn + ψn+2)(1 + ψn+1ψ

∗
n+1) − εn+1ψn+1],

(B2c)

∂ψ∗
n+1

∂t
= −i[(ψ∗

n + ψ∗
n+2)(1 + ψn+1ψ

∗
n+1) − εn+1ψ

∗
n+1].

(B2d)

Substituting (B2) into (B1), after simplification, we obtain

dP

dt
=

+∞∑
n=−∞

[εn(ψnψ
∗
n+1 + ψ∗

nψn+1)

−εn+1(ψnψ
∗
n+1 + ψ∗

nψn+1)]

= 2
+∞∑

n=−∞
Re(ψnψ

∗
n+1)(εn − εn+1),

which is Eq. (19).

APPENDIX C

In this Appendix, we will discuss the numerical accuracy
of our numerical results. We used the fourth-order Runge-
Kutta (RK) method to integrate Eq. (8). Although some
lower-order but more efficient methods, such as the split-step
Fourier method, as well as higher-order methods, including
even the eighth-order RK method, have been cited in the
literature [12,25], we consider the fourth-order RK to have an
appropriate balance between accuracy and speed requirements.
It is important to note that we use a moving coordinate system
with its origin on the soliton, and we use absorbing boundary
conditions, which are appropriate for the problem studied here.

To test the numerical accuracy, we have performed the
following two procedures: first, we varied the step sizes
for the fourth-order RK method by orders of magnitude
(�t = 10−2−10−4), and we found the results did not change;
second, we employed a different integration scheme, a second-
order relaxation scheme developed by Besse [24,25], and we
found no significant changes for the soliton behaviors either.
Comparison of some typical results, by the fourth-order RK
method with different step sizes and by the Besse method, are
presented in Fig. 7. For these reasons, the numerical results
can be trusted.
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