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A key ingredient in social contagion dynamics is reinforcement, as adopting a certain social behavior requires
verification of its credibility and legitimacy. Memory of nonredundant information plays an important role in
reinforcement, which so far has eluded theoretical analysis. We first propose a general social contagion model
with reinforcement derived from nonredundant information memory. Then, we develop a unified edge-based
compartmental theory to analyze this model, and a remarkable agreement with numerics is obtained on some
specific models. We use a spreading threshold model as a specific example to understand the memory effect, in
which each individual adopts a social behavior only when the cumulative pieces of information that the individual
received from his or her neighbors exceeds an adoption threshold. Through analysis and numerical simulations,
we find that the memory characteristic markedly affects the dynamics as quantified by the final adoption size.
Strikingly, we uncover a transition phenomenon in which the dependence of the final adoption size on some key
parameters, such as the transmission probability, can change from being discontinuous to being continuous. The
transition can be triggered by proper parameters and structural perturbations to the system, such as decreasing
individuals’ adoption threshold, increasing initial seed size, or enhancing the network heterogeneity.
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I. INTRODUCTION

Due to technological advances social networks are playing
an ever-increasing role in the modern society. In a social
network, nodes are individuals of the population, while links
represent the social ties or relations among individuals [1]. In
recent years, there is a growing interest in investigating the
phenomenon of behavior spreading on social networks, where
the behaviors range from adoption of an innovation [2] and
healthy activities [3] to microfinance [4]. This is essentially
the problem of social contagion. Ample experimental and
theoretical results indicated that, unlike biological contagions
in which successive contacts result in contagion with inde-
pendent probabilities, in a social contagion the probability
of infection depends on previous contacts. This is equivalent
to social affirmation or reinforcement effect, since multiple
confirmation of the credibility and legitimacy of the behavior
is always sought [5–9]. For an individual, who had two friends
adopting a particular behavior before a given time and whose
third friend newly adopts the behavior, whether he or she
adopts this behavior will take the three friends into account.

An early mathematical model to describe the dynamics
of social contagions is the threshold model [10,11] based on
Markovian process without memory, in which adoption of
behaviors depends only on the states of the current active
neighbors (i.e., individuals who have adopted the behavior),
and an individual adopts a behavior only when the current
number or the fraction of his or her active neighbors is
equal to or exceeds some adoption threshold. Analytically, the
fraction of individuals adopting the behavior eventually, can be
predicted using the percolation theory [11] for situations where
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the initial seed size is vanishingly small. One result is that, for
a fixed threshold, as the mean degree is increased, the final size
tends to grow continuously and then decrease discontinuously.
As the degree distribution becomes more heterogeneous, the
network is less vulnerable to social contagions, in sharp
contrast to the dynamics of epidemic spreading [12–15]. Pre-
vious research also revealed that, within the threshold model,
factors such as the initial seed size [16], clustering coeffi-
cient [17], community structure [18,19], multiplexity [20–22],
and temporal networks [23,24], all can affect the social
contagion process.

In real situations of social contagions, memory typically
plays an important role in the adoption and reinforcement
of behaviors, which includes full [3] or partial [6] memory of
the cumulative behavioral information (behavioral information
can be referred as information for short) that individuals
received from their neighbors. This memory effect makes
the dynamics of social contagions have non-Markovian char-
acteristic. To account for the memory effect, sophisticated
non-Markovian models were proposed [3,4,6,7,25–27]. In
some models, it was predicted that the final adoption size will
grow discontinuously [6,7,25], if the adoption probability for
an individual who receives more than one piece of information
is two times larger than the adoption probability for individuals
getting only one piece of information. In general, the memory
of cumulative information about the particular social behavior
can come from redundant [6,7] or nonredundant [11] informa-
tion transmission, where the former allows a pair of individuals
to transmit information successfully more than once but
for the latter, repetitive transmission is forbidden. In some
social contagion processes, such as risk migration and use of
unproven technologies [9], transmitting redundant information
between the same pair of individuals is unnecessary, since
each neighbor can guarantee the credibility and legitimacy of
the behavior but only to a certain extent [3]. However, such
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nonredundant information transmission characteristic of social
reinforcement have essentially been neglected in previous
studies [6,7].

A systematic study to understand the effects of nonredun-
dant information memory on social contagion dynamics is
thus called for. A general model needs to include different
situations of behavior adoption such as the dependence of
the adoption probability on nonredundant information [3]
or even on the structure diversity of such information [28].
Due to the non-Markovian nature of the memory charac-
teristic, to develop a general theory is challenging. Some
approximate approaches were devised, such as those based on
mean-field analysis [6], percolation theory [25], and renewal
process [29,30]. Since the non-Markovian property induces
strong dynamical correlations between any two connected
individuals, analytic predictions from these approaches tend to
deviate significantly from results from direct numerical sim-
ulations, especially when the underlying network is strongly
structurally heterogeneous [31].

In this paper, we articulate a general social contagion
model with social reinforcement derived from memory of
nonredundant information to address the general question of
how behaviors spread on networks in a more systematic and
complete way. In order to understand, quantitatively, the effects
of this kind of memory characteristic on social contagion
dynamics, we develop a unified edge-based compartmen-
tal theory. We base our study on the spreading threshold
model, focusing on the final behavior adoption size and its
dependence on the transmission probability under different
dynamical and topological parameter settings. We find that
the memory characteristic generally have a strong effect on
the final adoption size. Surprisingly, we uncover a crossover
between discontinuous and continuous variations in the final
adoption size. More specifically, the crossover phenomenon
can be induced by decreasing individuals’ adoption threshold,
increasing the initial seed size, or enhancing the structural
heterogeneity of the network. Our theoretical predictions agree
well with results from numerical simulations. We further
generalize our theory to treat distinct social contagion models
and network structures.

In Sec. II, we describe our general social contagion model
with reinforcement derived from memory of nonredundant
information on complex networks. In Sec. III, we detail our
edge-based compartmental theory and analysis. In Sec. IV,
we present results from extensive numerical computations
to validate our theory. In Sec. V, we extend our theoretical
framework to analyze alternative social contagion models,
demonstrating the generality of our theory. In Sec. VI, we
present conclusions and discussions.

II. A GENERAL SOCIAL CONTAGION MODEL

Our goal is to construct a general stochastic model for social
contagion dynamics, taking into account social reinforcement
through nonredundant information memory characteristic. In
this model, information refers to the behavioral information.
The nonredundant information memory has two features: (1)
nonredundant information transmission, i.e., repetitive infor-
mation transmission on every edge is forbidden, and thus also
can be called as single-transmission; (2) every individual can

remember the cumulative pieces of nonredundant information
that the individual received from his or her neighbors, which
makes the contagion processes non-Markovian.

Concretely, we consider a configuration network model [32]
of size N and degree distribution P (k), where nodes in
the network represent individuals. There is no degree-degree
correlations when the network is very large and sparse. At
any time, each individual can exist in one of the three
different states: susceptible, adopted, or recovered. In the
susceptible state, an individual does not adopt the social
behavior. In the adopted state, an individual adopts the
behavior and transmits the behavioral information to his or her
neighbors. In the recovered state, an individual loses interest
in the behavior and will not spread the information further.
This is thus a susceptible-adopted-recovered (SAR) model.
Although this proposed model has similar state definitions
with the epidemiology susceptible-infected-recovered (SIR)
model [12], the non-Markovian characteristic is absent in the
SIR model.

To initiate a social contagion, a fraction ρ0 of individuals
are uniformly randomly chosen to be in the adopted state
and the remaining majority of the individuals are in the
susceptible state. At each time step, behavioral information
propagates from each adopted individual to each neighbor
independently with transmission probability λ, a key parameter
of the underlying dynamical process. We assume an edge
that has transmitted the information successfully will never
transmit the same information again, i.e., nonredundant infor-
mation transmission. The nonredundant information spreading
process is illustrated schematically in Fig. 1(a). Based on
this setting, we introduce the memory effect of nonredundant
information in social reinforcement. In particular, assume that
a susceptible individual u of degree k already has m − 1 pieces
of information from distinct neighbors. Once u is successfully
informed of the social behavior by one of his or her adopted
neighbors, denoted as v, the cumulative number of pieces
of information that u has will increase by 1. With the m

cumulative pieces of information up to now (i.e., after exposing
to m pieces of nonredundant information), the probability
that the individual will be in the adopted state is π (k,m).
Note that u may subsequently get more than one piece of
information successfully in this time step, thus, he or she
will try to adopt the behavior when he or she gets every
new piece of information. In this case, if u gets the (n + 1)th
new information in this step, he orshe will adopt the behavior
with probability π (k,m + n). An illustration of the behavior
adoption process is presented in Fig. 1(b). Since π (k,m) < 1
in general, multiple information transmission is necessary
for u to move into the adopted state, thereby incorporating
the memory characteristic into the model. Generally, π (k,m)
is a monotonically increasing function of m for any given
degree k, which characterizes the reinforcement effect through
nonredundant information memory. If π (k,m) is a constant, no
such reinforcement effect exists. In this case, if the adopted
state is regarded as the infected state in epidemiology, our
model will reduce to the standard SIR model [12], where
social reinforcement effect and non-Markovian properties are
not present—a key difference between biological and social
contagions. Empirical researches indicate that the adopted
individuals may lose interest in the behavior [34], which is
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FIG. 1. (Color online) Illustration of the susceptible-adopted-
recovered (SAR) model on complex networks. (a) At time t , the
adopted individual 5 tries to transmit the behavioral information
(or simply information for short) to each susceptible neighbor
individual independently with probability λ. Note that individual 5
cannot transmit the information to individual 4, since he or she has
transmitted the information to individual 4 successfully before time t .
That is to say, the susceptible individual can only get the nonredundant
information from his or her neighbors. The solid blue lines denote
that the information has not transmitted through them successfully,
and the red dashed line denotes that the information has transmitted
through it previously. (b) Assuming that individual 1 has received a
new piece of information at time t , whether individual 1 adopts the
behavior is determined by the m cumulative pieces of information
he or she ever received from neighbors. The value of m can
be expressed as m = ∑t

d=1 md , where md is the pieces of information
that individual 1 received at time d . In such a situation, individual
1 has to remember the pieces of nonredundant information he or
she received from neighbors before time t . Thus, the so-called
nonredundant information memory is induced. Individual 1 becomes
adopted with probability π (k,m), where k is the degree of individual
1; otherwise, individual 1 remains in the susceptible state.

also concerned in the binary social dynamics [35,36]. At the
same time step, we thus assume that each adopted individ-
ual loses interest in transmitting the behavioral information
and becomes recovered with probability γ . The spreading
dynamics terminates once all adopted individuals have become
recovered.

By setting the parameters, our stochastic model can gen-
erate either Markovian or non-Markovian processes, thereby
including a number of existing models on social contagions as
different limiting cases. For example, if π (k,m) is a Heaviside
step function (i.e., if m is less than the adoption threshold Tu,
then π is zero; otherwise, π is unity), and setting λ = 1.0

and γ = 0.0, we obtain the Watts threshold model [11]. Once
the thresholds of individuals and network topology are fixed,
the cascade process in the Watts threshold model will be
deterministic, which is a trivial case of Markovian process. In
addition, by choosing the dynamical parameters properly, we
can map our model into some of the existing non-Markovian
models. For instance, fixing λ = 1.0 and letting π (k,m) be
a function of exactly one of the two quantities (i.e., adopted
and susceptible individuals), we recover the synergy spreading
model [33]. Similarly, if we allow π (k,m) to be a linear [25]
or exponential [27] function of m and γ = 1.0, we can obtain
distinct types of non-Markovian dynamics. Differing from the
models in Refs. [25,27] in which each adopted individual only
gets one chance to transmit the behavioral information to every
neighbor, in our model an adopted individual can try to transmit
the information many times until he or she becomes recovered
state or transmits the information successfully.

In our study, we concentrate on the so-called spreading
threshold model before turning to more generalized social
contagion models. In the spreading threshold model, an
individual u adopts the behavior only when the number of
pieces of nonredundant information that u possessed exceeds
the adoption threshold Tu. This means that the adoption
probability π (k,m) is a Heaviside step function, which has
the same form as in the Watts threshold model [11]. There
are, however, key differences between the two types of
threshold models. First, differing from the Watts model in
which the adoption threshold is the corresponding fraction
of neighboring nodes, the adoption threshold in our model is
expressed in terms of the absolute number of neighboring
nodes, as in bootstrap percolation [37] and self-organized
criticality models [38]. Second, in the Watts model, each
individual can obtain information about the states of all its
neighbors “instantaneously” at each time step, but in our
model individuals are able to know the neighboring states only
through transmission of the information. Third, in the Watts
model an individual is permanently interested in the behavior
even after its adoption, while we assume more realistically that
individuals having adopted certain behavior may lose interest
in it and never spread the corresponding information, which
is quantified by the abandon probability γ . Note that if the
threshold of the Watts model is expressed as the absolute
number of neighbors who have adopted the behavior, there will
only exist the second and third differences. These three
differences are consequences of introducing the nonredundant
information memory characteristic into our model, better
capturing the essential dynamics of social contagions in the
real world.

III. THEORY

We first develop a unified edge-based compartmental
theory to analyze our general social contagion model with
reinforcement mechanism based on nonredundant information
memory characteristic. We then systematically investigate how
the memory affects the social contagion process in a specific
model, the spreading threshold model. In this theory, we
assume that the networks have large network sizes, sparse
edges, and no degree-degree correlations, and the contagion
dynamics evolves continuously. Mathematically, a contagion

012820-3



WANG, TANG, ZHANG, AND LAI PHYSICAL REVIEW E 92, 012820 (2015)

process can be described by three variables: S(t), A(t), and
R(t), which are the densities of the susceptible, adopted, and
recovered individuals at time t , respectively. The states of all
individuals remain unchanged when t → ∞, and R(∞) is
the final fraction of individuals that have adopted the social
behavior.

A. General theoretical framework

Due to the nonredundant information memory characteris-
tic, in a social contagion process there are strong dynamical
correlations between the states of the adjacent nodes, making
existing theoretical methods such as the mean-field theory [6],
percolation theory [16], and renewal process [30] inapplicable,
especially for networks that are strongly structurally hetero-
geneous. Using insights from Refs. [39–42], we develop an
edge-based compartmental theory to analyze social contagion
dynamics in the presence of strong nodal state correlations.

Let θ (t) be the probability that individual v has not
transmitted the information to individual u along a randomly
chosen edge by time t . In the spirit of the cavity theory [40,43],
we disallow individual u to transmit any information to
its neighbors but u can receive such information from its
neighbors—u is in a cavity state. Initially, a fraction of ρ0

individuals is in the adopted state, and none of them transmits
the information to its neighbors, so θ (0) = 1 for all edges.
For simplicity in theory, we assume that the probability of
not transmitting the information is identical for all edges,
and dynamical correlations don’t exist among neighbors of an
individual. At time t , a uniformly randomly chosen individual
u of degree k in the cavity state has been exposed to m pieces of
nonredundant information (i.e., u has received the information
from distinct neighbors m times) with the probability

φm(k,θ (t)) = (1 − ρ0)

(
k

m

)
θ (t)k−m[1 − θ (t)]m, (1)

where the factor (1 − ρ0) is the fraction of susceptible nodes
initial. By time t , the susceptible individual u has received
the information from m different neighbors. The probability
that u has not adopted the behavior for time of receiving
information less than m is �m

j=0[1 − π (k,j )]. Combining this
factor and summing over all possible values of m, we obtain
the probability that the individual u is still in the susceptible
state at time t as

s(k,t) =
k∑

m=0

φm(k,t)�m
j=0[1 − π (k,j )]. (2)

Taking into account different degrees in the network, we obtain
the fraction of susceptible individuals (i.e., the probability of a
randomly chosen individual is in the susceptible state) at time
t as

S(t) =
∞∑

k=0

P (k)s(k,t). (3)

Analogously, the fraction of individuals with m pieces of
information at time t is

	(m,t) =
∞∑

k=0

P (k)φm(k,θ (t)). (4)

A neighbor of individual u may be in one of susceptible,
adopted, or recovered states. We can thus further express θ (t)
as

θ (t) = ξS(t) + ξA(t) + ξR(t), (5)

where ξS(t) [ξA(t) or ξR(t)] is the probability that a neighbor of
the individual u in the cavity state is in the susceptible (adopted
or recovered) state and has not transmitted the information to
individual u through an edge by time t . Note that the three
quantities are unknown, which are to be solved.

If a neighboring individual v of u is initially in the
susceptible state with probability 1 − ρ0, it cannot transmit
the information to u. Individual v can get the information
from its other neighbors, since u is in a cavity state. At time
t , the probability that individual v has received m pieces of
nonredundant information is

τm(k′,θ (t)) =
(

k′ − 1

m

)
θ (t)k

′−m−1[1 − θ (t)]m, (6)

where k′ is the degree of v. Similar to Eq. (2), individual v will
still stay in the susceptible state at time t with the probability

�(k′,θ (t)) =
k′−1∑
m=0

τm(k′,t)�m
j=0[1 − π (k′,j )]. (7)

For uncorrelated networks, the probability that one edge from
individual u connects with an individual with degree k′ is
k′P (k)/〈k〉, where 〈k〉 is the mean degree of the network.
Summing over all possible k′, we obtain the probability that u

connects to a susceptible individual by time t as

ξS(t) = (1 − ρ0)

∑
k′ k′P (k)�(k′,θ (t))

〈k〉 . (8)

The information spreading process as described in Sec. II
suggests that two events need to occur in order for the growth
of ξR: (1) with probability 1 − λ an adopted neighbor has not
transmitted the information to u via their connection and (2)
with probability γ the adopted neighbor has been recovered.
Taking these into consideration, we get

dξR(t)

dt
= γ (1 − λ)ξA(t). (9)

At time t , the rate of change in the probability that a random
edge has not transmitted the information is equal to the rate at
which the adopted neighbors transmit the information to their
susceptible neighboring individuals through edges. Thus, we
get

dθ (t)

dt
= −λξA(t). (10)

Combining Eqs. (9) and (10), we obtain

ξR(t) = γ [1 − θ (t)](1 − λ)

λ
. (11)

Substituting Eqs. (8) and (11) into Eq. (5), we get an expression
for ξA(t) in terms of θ (t). Doing so, we can rewrite Eq. (10) as

dθ (t)

dt
= −λ

[
θ (t) − (1 − ρ0)

∑
k′ k′P (k′)�(k′,θ (t))

〈k〉
]

+ γ [1 − θ (t)](1 − λ). (12)
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Note that the rate dA(t)/dt is equal to the rate at which
S(t) decreases, because all the individuals moving out of the
susceptible state must move into the adopted state minus the
rate at which adopted individuals become recovered. We have

dA(t)

dt
= −dS(t)

dt
− γA(t) (13)

and

dR(t)

dt
= γA(t). (14)

Equations (1)–(3) and (12)–(14) give us a complete and general
description of social contagion dynamics, from which the
density for each type of individual in each state at arbitrary
time step can be calculated.

Say we are interested in the steady state of the social
contagion dynamics. Setting the right side of Eq. (12) to be
zero, we get

θ (∞) = (1 − ρ0)

∑
k′ k′P (k′)�(k′,θ (∞))

〈k〉
+ γ [1 − θ (∞)](1 − λ)

λ
, (15)

where �(k′,θ (∞)) is a nonlinear function of θ (∞). Note that
θ (t) decreases with t , as the individuals in the adopted state
persistently transmit the information to their neighbors. Thus,
in simulations, only the maximum value of the stable fixed
point (if there exist more than one stable fixed points) of
Eq. (15) is physically meaningful. Substituting this value into
Eqs. (1)–(3), we can obtain the value of the susceptible density
S(∞) and the final behavior adoption size R(∞).

As in epidemic spreading, the condition under which
outbreak of behavior adoption occurs is of interest. Similar
to analyzing epidemic spreading, we can obtain the critical
condition by determining when a nontrivial solution of Eq. (15)
appears, which corresponds to the point at which the equation

g[θ (∞),ρ0,T ,γ,λ] = (1 − ρ0)
∑

k′ k′P (k′)�(k′,θ(∞))
〈k〉

+ γ [1−θ(∞)](1−λ)
λ

− θ (∞)

is tangent to horizontal axis at the critical value of θc(∞).
The value of θc(∞) denotes the critical probability that the
information is not transmitted to u via an edge at the critical
transmission probability when t → ∞. This way we obtain
the critical condition of the general social contagion model as

dg

dθ (∞)
|θc(∞) = 0. (16)

From Eq. (16), we can calculate the critical transmission
probability:

λc = γ


 + γ − 1
, (17)

where


 = (1 − ρ0)

∑
k′ k′P (k′) d�(k′,θ(∞))

dθ(∞) |θc(∞)

〈k〉 .

From Eqs. (6) and (7), we obtain the expression of d�(k′,θ(∞))
dθ(∞)

as

d�(k′,θ (∞))

dθ (∞)
=

k′−1∑
m=0

(
k′ − 1

m

)

×{(k′ − m − 1)θ (∞)k
′−m−2[1 − θ (∞)]m

−mθ (∞)k
′−m−1[1 − θ (∞)]m−1}

×�m
j=0[1 − π (k′,j )]. (18)

Numerically solving Eqs. (15) and (17)–(18), we can get the
critical value of the transmission probability λc for any given
adoption function π (k,m). We see that λc is correlated with
the dynamical parameters such as the adoption probability
π (k,m), the initial seed size ρ0 and the abandon probability γ ,
as well as the topological parameters of the network [e.g., the
degree distribution P (k) and the mean degree 〈k〉].

B. Spreading threshold model

We now apply the general theoretical framework developed
in Sec. III A to analyzing a specific class of social contagion
model—spreading threshold model. In this model, the adop-
tion function π (k,m) is a Heaviside step function:

π (k,m) =
{

1, m � Tk,

0, m < Tk,
(19)

where Tk is the adoption threshold of individuals of degree k.
Here the adoption probability π (k,m) is only a function of k

and m. Further investigations on general model, incorporating
individuals’ inherent characters such as age and habit, are
called for. Utilizing Eq. (19), we can write Eqs. (2) and (7) as

s(k,t) =
Tk−1∑
m=0

φm(k,θ (t)) (20)

and

�(k′,θ (t)) =
Tk′ −1∑
m=0

τm(k′,θ (t)), (21)

respectively. Similarly, Eq. (13) becomes

dA(t)

dt
= λξAψ(t) − γA(t), (22)

where

ψ(t) = (1 − ρ0)
∞∑

k=0

P (k)
Tk−1∑
m=0

(
k

m

)

×{(k − m)θ (t)k−m−1[1 − θ (t)]m

−mθ (t)k−m[1 − θ (t)]m−1}. (23)

The critical condition can be determined using Eq. (16). For
the simple case where the fraction of randomly chosen initial
seeds is vanishingly small (i.e., ρ0 → 0) and all individuals
with different degrees have the same adoption threshold T ,
Eq. (15) has one trivial solution: θ (∞) = 1. At the critical
point, the function g[θ (∞),ρ0,T ,γ,λ] is tangent to horizontal
axis at θ (∞) = 1. For T = 1, using Eqs. (15)–(18), we obtain
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the continuous critical transmission probability as

λII
c = γ 〈k〉

〈k2〉 − 2〈k〉 + γ 〈k〉 , (24)

which has the same form as the epidemic outbreak threshold.
However, for T > 1, the function g[θ (∞),ρ0,T ,γ,λ] can never
be tangent to horizontal axis, suggesting that a vanishingly
small fraction of initial seeds cannot cause a finite fraction of
the individuals to adopt the behavior.

Now suppose that ρ0 is not vanishingly small so that
θ (∞) = 1 is no longer a solution of Eq. (15). In this
case, regardless of the values of other parameters, a finite
fraction of individuals will adopt the behavior. It is thus
reasonable to focus on how nonredundant information memory
characteristic affects the dependence of the final behavioral
adoption size R(∞) on the transmission probability λ, which
can be obtained from the roots of Eq. (15). We are partic-
ularly interested in finding out whether the dependence is
continuous or discontinuous. Note that the number of roots
Eq. (15) is odd (including multiplicity) for any parameters,
because of the g[θ (∞),ρ0,T ,γ,λ] < 0 for θ (∞) = 1 and
g[θ (∞),ρ0,T ,γ,λ] > 0 for θ (∞) = 0. As shown in Figs. 2(a)
and 2(b), numerical calculations indicate that the number of
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FIG. 2. (Color online) Illustration of graphical solutions of
Eq. (15). For ER random networks, (a) continuously increasing
behavior of R(∞) with λ for T = 1, (b) discontinuous change in
R(∞) for T = 3. The black solid lines are the horizontal axis and
the red dots denote the tangent points. Other parameters are ρ0 = 0.1
and γ = 1.0.

roots is either 1 or 3. When we fix all the parameters except λ, if
Eq. (15) has only one root for different values of λ [Fig. 2(a)],
R(∞) will increase continuously with λ. If the number of
roots of Eq. (15) depends on λ, as shown in Fig. 2(b), there
will be three roots (fixed points), which means a saddle-node
bifurcation occurs [44]. The bifurcation analysis of Eq. (15)
reveals that the system undergoes a cusp catastrophe: Varying
λ, one finds that the physically meaningful stable solution
of θ (∞) will suddenly jump to an alternate outcome. In
this case, a discontinuous growth pattern of R(∞) with λ

emerges, and the critical transmission probability λI
c at which

the discontinuity occurs can be obtained by solving Eqs. (15)
and (17)–(18).

The discontinuous behavior in R(∞) versus λ can be
understood by using a specific example, e.g., by setting
T = 3. As shown in Fig. 2(b), for different values of λ, the
function g[θ (∞),ρ0,T ,γ,λ] is tangent to horizontal axis at
λI

c ≈ 0.5811. For λ < λI
c , if Eq. (15) has three fixed points

then the solution will be given by the largest one (since only
this value can be achieved physically). Otherwise, the solution
is the only fixed point. For λ = λI

c , the solution is given by the
tangent point. For λ > λI

c , the only fixed point is the solution of
Eq. (15). In this case, the solution of Eq. (15) changes abruptly
to a small value from a relatively large value at λ = λI

c , leading
to a discontinuous change in R(∞).

Finally, to determine the critical system parameter value of
θs(∞), across which the dependence of R(∞) on λ changes
from being continuous (discontinuous) to discontinuous (con-
tinuous), we can numerically solve Eqs. (15) and (16) together
with the condition

d2g[θ (∞),ρ0,T ,γ,λ]

dθ2(∞)
= 0. (25)

From Eq. (25), we obtain

ρs
0 = 1

�
, (26)

where � = ∑
k′ k′P (k′) d�2(k′,θ(∞))

dθ2(∞) . Using Eqs. (6) and (21),
we get

d�2(k′,θ (∞))

dθ2(∞)

=
Tk′ −1∑
m=0

(
k′ − 1

m

)
{(k′ − m − 1)

× [(k′ − m − 2)θ (∞)k
′−m−3(1 − θ (∞))m

−mθ (∞)k
′−m−2(1 − θ (∞))m−1]

−m[(k′ − m − 1)θ (∞)k
′−m−2(1 − θ (∞))m−1

− (m − 1)θ (∞)k
′−m−1(1 − θ (∞))m−2]}. (27)

Combining Eqs. (15), (16), and (25), we get the value of
θs(∞). For fixed T and P (k), the critical values of other system
parameters, e.g., λs

c and ρs
0, can then be determined.

IV. NUMERICAL VERIFICATION

We perform extensive simulations on the spreading thresh-
old model. In our simulations, we use Erdős-Rényi (ER)
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network model [45] and configuration network model with
power-law degree distribution [32], where the network size
and mean degree are N = 104 and 〈k〉 = 10, respectively. At
least 2×103 independent dynamical realizations on a fixed
network are used to calculate the pertinent average values,
which are further averaged over 100 network realizations. We
separately discuss the effects of dynamical and topological
parameters.

A. Effects of dynamical parameters

To be illustrative, we use ER random networks [45]. We
first calculate the time evolution of the population densities
for λ = 0.8, ρ0 = 0.1, T = 3, and γ = 0.5, as shown in
Fig. 3(a), where we observe that the density of the susceptible
(recovered) individuals decreases (increases) with time, and
reaches some final value for large time. The density of the
adopted individuals decreases initially (due to the fact that the
number of individuals who newly adopt the behavior is less
than that of individuals who become recovered), then increases
and reaches a maximum value at t ≈ 5. These results agree
well with the predictions from our edge-based compartmental
theory [see lines in Fig. 3(a)].

We next study the final behavior adoption size R(∞) as a
function of the transmission probability λ for different values
of the adoption threshold T at another value of γ = 1.0. As
shown in Fig. 3(b), increasing T impedes individuals from
adopting the behavior, since a larger value of T requires
the individual to be exposed with more information from
distinct neighbors to affirm the authority and legality of the
behavior. As a result, individuals hardly adopt the behavior
when the adoption threshold is relatively large (e.g., T � 5).
Lines from the theory in Fig. 3(b) are very consistent with
these simulation results. Through the bifurcation analysis of
Eq. (15), we note that the adoption threshold affects strongly
the manner by which R(∞) increases with λ for T � 4.
As shown in Fig. 3(b), for some small adoption threshold
(e.g., T = 1), R(∞) increases continuously with λ. However,
for a slightly larger adoption threshold (i.e., T � 1), the
R(∞) versus λ pattern becomes discontinuous, exhibiting
an abrupt increase at some critical value λI

c . The statistical
errors are generally small except for λ close to λI

c (for this
reason and for figure clarity the error bars will not be shown
for subsequent figures). The theoretical value of λI

c can be
calculated from Eqs. (15) and (17)–(18). The critical value can
also be estimated by observing the number of iterations [46,47]
(denoted as NOI, where only those iterations at which at least
one individual adopts the behavior are taken into account). We
observe that the NOI exhibits a maximum value at λI

c , e.g.,
for T = 2, 3, and 4, as shown in Fig. 3(c). Overall, there is a
remarkable agreement between theory and numerics in terms
of the quantities R(∞) and λI

c . Through extensive simulations
and theoretical predictions, we know the abandon probability
doesn’t qualitatively affect the growth patterns of R(∞), so it
is set as γ = 1.0 in the rest of this paper.

It is useful to identify the key factors that affect the
dependence of R(∞) on λ. To obtain an intuitive understanding
of the phenomenon of abrupt increase in R(∞) as λ passes
through a critical point, we focus on the individuals in the
subcritical state. An individual u in such a state has received
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FIG. 3. (Color online) Spreading threshold model on ER net-
works. (a) Average densities of susceptible, adopted, and recovered
populations, denoted by S(t) (black squares), A(t) (blue up triangles),
and R(t) (red circles), respectively, versus time. (b) Final behavior
adoption size R(∞) versus the transmission probability λ for T = 1
(black squares), T = 2 (blue up triangles), T = 3 (red circles), T = 4
(dark green diamonds), and T = 5 (light green stars) in the steady
state. (c) Simulation results of NOI (number of iterations) as a
function of λ with T = 2 (blue solid line), T = 3 (red dashed line),
and T = 4 (dark dash dotted green line). The error bars indicate
the standard deviations. The lines in (a) and (b) are theoretical
predictions based on solutions of Eqs. (1)–(3) and (12)–(14). In (a),
we set λ = 0.8, ρ0 = 0.1, T = 3, and γ = 0.5 (so as to obtain longer
evolution time), while in (b) and (c), we set ρ0 = 0.1 and γ = 1.0.

the information but has not yet adopted the behavior, and
the number of information pieces from distinct neighbors is
precisely one less than the adoption threshold. Say at the
time u has received information from his or her neighbors
except neighbor v. Now assume that v has adopted the social
behavior and transmits the information to u successfully so as
to cause u to adopt the behavior. In turn, u will transmit the
information to his or her susceptible neighbors with probability
λ, which will cause some subcritical state neighbors to adopt
the behavior accordingly, and so on, potentially leading to an
avalanche of behavior adoption. If the system has a relatively
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FIG. 4. (Color online) The final fraction of individuals in the
subcritical state on ER networks. 	(T − 1,∞) versus λ for T = 2
(black squares), T = 3 (blue up triangles), T = 4 (red circles), and
T = 5 (dark green diamonds). The lines are theoretical predictions
based on solutions of Eqs. (1), (4) and (12)–(14). Other parameters
are γ = 1.0 and ρ0 = 0.1.

large number of individuals in the subcritical state, a slight
increase in the number of individuals who adopt the behavior,
e.g., by increasing the value of λ slightly, may cause a sudden
and large number of such subcritical state individuals with
information pieces greater than their threshold, leading to a
discontinuous “jump” in the value of R(∞). The above intu-
itive understanding is further proved by numerical simulations
and theoretical predictions in Fig. 4. For 2 � T < 5, the final
fraction of individuals in subcritical state 	(T − 1,∞) first
increases with λ below λI

c , 	(T − 1,∞) reaches a maximum
at the λI

c ; and a slight increment of λ induces a finite fraction
of 	(T − 1,∞) to adopt the behavior simultaneously, which
leads to a discontinuous jump in the value of R(∞). When
this social reinforcement effect is not present [e.g., T = 1
in Fig. 3(b)], there are essentially no individuals in the
subcritical state. In this case, R(∞) increases continuously
with λ. We mention that the mechanism underlying the
discontinuous increase in R(∞) in our spreading threshold
model is similar to that responsible for phenomena such as
explosive percolation [48], bootstrap percolation [37], k-core
percolation [49], and explosive synchronization [50].

We further investigate the role of the initial seed size ρ0

in social contagion dynamics for relatively larger values of T ,
e.g., T = 3. As shown in Fig. 5, we see that R(∞) increases
with ρ0, since individuals in the network have more chances to
be exposed to the information. Based on the values of R(∞),
we can divide the phase diagram into local (ρ0 < 0.04) and
global (0.04 � ρ0 � 1) behavior adoption regions, where in
the former (i.e., region I), only a vanishingly small fraction
of individuals can be exposed to adopt the behavior and,
in the latter including regions II and III, a finite fraction of
individuals adopt the behavior and a crossover phenomenon
occurs in the dependence of R(∞) on λ. The crossover
phenomenon means that the dependence of R(∞) on λ can
change from being discontinuous to being continuous. More
specifically, the saddle-node bifurcation of Eq. (15) occurs for
0.04 � ρ0 � 0.15 (region II in Fig. 5), thus R(∞) versus λ is
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FIG. 5. (Color online) Dependence of final behavior adoption
size on initial seed size and transmission probability. For spreading
threshold model on ER random networks, color-coded values of
R(∞) from numerical simulations (a) and theoretical solutions (b)
in the parameter plane (ρ0,λ), where the theoretical values are from
solutions of Eqs. (1)–(3) and (12)–(14). The numerically obtained
critical values of the transmission probability, λI

c (white circles), are
from the NOI method, and the corresponding theoretical values blue
dashed line) are from Eqs. (15) and (17)–(18). In each subfigure, three
regions are shown: only a vanishingly small fraction of individuals
can be exposed to adopt the behavior in region I, in region II R(∞)
grows discontinuously with λ and a finite fraction of individuals adopt
the behavior above λI

c , and R(∞) grows continuously to a large value
in region III. The vertical white solid lines and dash dotted yellow
lines separate the plane into the three regions, which are predicted
from our edge-based compartmental theory. Other parameters are
γ = 1.0 and T = 3.

discontinuous; R(∞) versus λ is continuous for 0.15 < ρ0 � 1
(region III in Fig. 5), as the saddle-node bifurcation disappears.
The crossover phenomenon originates from the fact that the
number of individuals in the subcritical state decreases with
ρ0. At the crossover or switching point ρs

0, as indicated by the
vertical yellow dash dotted line in Fig. 5, the behavior of R(∞)
versus λ changes from being discontinuous to continuous.
The crossover point can be calculated analytically by solving
Eqs. (15), (16), and (25). We also find that λI

c decreases
with ρ0, since a large value of ρ0 enhances the probability
of individuals’ exposure to the information. In short, R(∞)
versus the parameter plane (ρ0,λ) shows a cusp catastrophe
(i.e., the crossover phenomenon) [44]. Regardless of the
size of the initial seeds, there is a good agreement between
numerically calculated and theoretically predicted behaviors
of R(∞).
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FIG. 6. (Color online) Effect of mean network degree on social
contagion dynamics. For ER random networks, R(∞) versus the
transmission probability λ for mean degree 〈k〉 = 5 (gray squares),
〈k〉 = 8 (blue up triangles), 〈k〉 = 10 (red circles), 〈k〉 = 15 (dark
green diamonds), and 〈k〉 = 20 (light green stars). Other parameters
are ρ0 = 0.1, γ = 1.0, and T = 3. The lines are theoretical values of
R(∞) calculated from Eqs. (1)–(3) and (12)–(14).

B. Effects of topological parameters

We turn to elucidating the effect of network topological
parameters on social contagion dynamics in our spreading
threshold model. In fact, both the value of R(∞) and its pattern
depend strongly on the mean degree and degree heterogeneity
of the network. To be concrete, we first examine ER random
networks with different values of the mean degree 〈k〉, as
shown in Fig. 6, where we see that R(∞) increases with
〈k〉 in general, since individuals with larger degrees have
higher probabilities to be exposed to information from distinct
neighbors, leading to a high likelihood that they adopt the
behavior as well. By the bifurcation analysis of Eq. (15),
we find that with the increase of 〈k〉, the growth pattern of
R(∞) changes from being continuous to being discontinuous.
For a small value of the mean degree (e.g., 〈k〉 = 5), only a
small fraction of the individuals adopt the behavior, so R(∞)
changes with λ continuously. For a relatively larger value
of the mean degree (e.g., 〈k〉 > 5), more individuals adopt
the behavior, leading to a sudden, discontinuous increase in
R(∞) with λ. As discussed in Sec. IV A, the “explosive”
growth of R(∞) occurs whenever there is a finite but sizable
fraction of individuals in the subcritical state, which cannot
happen when the mean degree of the network is small. We
also observe that increasing the mean degree can reduce
the value of the critical point λI

c , due to the corresponding
increase in the number of individuals having relatively large
degrees.

We next study scale-free networks. Figure 7 shows, for
T = 3, R(∞) versus λ for 〈k〉 = 10. The uncorrelated net-
works are generated with the power-law degree distribution
P (k) ∼ k−ν (ν being the degree exponent) according to the
procedure in Ref. [32], where the maximum degree is set
as kmax ∼ √

N . We find that increasing the heterogeneity
of network structure (by using smaller values of the degree
exponent) promotes (suppresses) R(∞) for small (large)
values of λ. This result can be qualitatively explained as
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FIG. 7. (Color online) Effect of network heterogeneity on social
contagion dynamics. For scale-free networks, R(∞) versus λ for
degree exponent ν = 2.2 (gray squares), ν = 3.0 (blue up triangles),
ν = 4.0 (red circles), and ν → ∞ (dark green diamonds). The case
for ν → ∞ reduces to a random regular network with identical
degree. The lines are theoretical values of R(∞) calculated from
Eqs. (1)–(3) and (12)–(14). Other parameters are ρ0 = 0.1, γ = 1.0,
and T = 3.

follows [42]: From Eqs. (1) and (2), we know that hubs
adopt the behavior with large probability. With the increase
of network heterogeneity (i.e., decreasing ν), the network has
a large number of individuals with very small degrees and
more individuals with large degrees. For small values of λ,
more hubs for small ν facilitate behavior spreading as they are
more likely to adopt the behavior. But for large values of λ,
a large number of individuals with very small degrees have
a small probability to adopt the behavior, resulting in smaller
values of R(∞). By the bifurcation analysis of Eq. (15), we
also observe that the system has a critical degree exponent
νs ≈ 4.0, below which R(∞) versus λ is continuous but
above which the variation is discontinuous. That is, as the
network becomes more heterogeneous, we expect a change in
the dependence of R(∞) on λ from being discontinuous to
continuous, since the existence of strong degree heterogeneity
can not make individuals in the subcritical state adopt the
behavior simultaneously. We also note that the critical point λI

c

decreases as the network becomes more heterogeneous. Again,
there is a good agreement between theoretical and numerical
results.

V. ALTERNATIVE MODELS OF SOCIAL
CONTAGION DYNAMICS

The edge-based compartmental theory developed in Sec. III
can be applied to more general social contagion dynamics with
reinforcement effect derived from nonredundant information
memory characteristic. Here, we demonstrate the use of
our theory in analyzing two alternative, somewhat more
complicated social contagion models: (1) correlated spreading
threshold model in which the adoption threshold of each
individual is correlated with his or her degree and (2) a
generalized social contagion model in which the behavior
adoption probability π (k,m) is a monotonically increasing
function of m.
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A. Correlated spreading threshold model

In reality, whether an individual adopts certain social
behavior depends on his or her personal character, such as
age and habit, which are reflected by the corresponding degree
in the social network. As a result, there is typically some
correlation between an individual’s degree and his or her
ability to adopt new social behaviors triggered by crossing
the adoption threshold. For simplicity, we use a recently
introduced relation [51] to account for the correlation between
individual i’s adoption threshold and degree ki , as

Ti = Aα

(
ki

kmax

)α

, (28)

where kmax is the maximum degree, Aα and α are two
adjustable parameters. For α = 0, the adoption threshold
is uncorrelated with the degree, and all individuals in the
network share the same adoption threshold. For α > 0, the
adoption threshold is positively correlated with the degree,
i.e., individuals with larger degrees have higher adoption
thresholds, and the opposite occurs for α < 0.

To investigate the effects of varying α on social contagion
dynamics using the spreading threshold model, we set the
mean adoption threshold (somewhat arbitrarily) to be 〈T 〉 = 3.
The sum of the adoption threshold in the network is Ts =∑N

i=1 Ti . For α = 0, we have Ts = 〈T 〉N = Aα=0N . Further,
we get

Aα = Aα=0Nkα
max∑N

i=1 kα
i

. (29)

Evidence in terms of the quantity R(∞), which supports
our edge-based compartmental theory for varying threshold
as given by Eq. (28), is presented in Fig. 8. We observe a
reasonable agreement between the theoretical predictions and
simulation results. Note that α affects not only the value of
R(∞) but also its dependence on λ. In particular, for α > 0,
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FIG. 8. (Color online) Effect of degree-correlated spreading
threshold on social contagion dynamics. For ER random networks,
final adoption size R(∞) versus the transmission probability λ

for α = −2 (gray squares), α = −1 (blue up triangles), α = 0
(red circles), α = 1 (dark green diamonds), and α = 2 (yellow left
triangles). Other parameters are 〈k〉 = 10, 〈T 〉 = 3, and γ = 1.0. The
lines are theoretical values of R(∞) from solutions of Eqs. (1)–(3)
and (12)–(14) with adoption threshold given by Eq. (29).

increasing α causes the critical point λI
c first to increase then to

decrease. This result can be qualitatively explained by noting
that slightly larger values of α (e.g., α = 1) can cause the
individuals whose degrees are near the mean degree of the
network to hold larger adoption threshold. However, much
larger values of α (e.g., α = 2) will generate hubs with larger
adoption threshold, thereby reducing the adoption threshold
for the individuals with degrees near the mean degree. Since,
in a random network, the degrees of most individuals are close
to the mean degree, this causes the nonmonotonic change
in λI

c .
For α < 0, decreasing α facilitates individuals’ adopting

the behavior, and the dependence of R(∞) on λ changes from
being discontinuous to continuous by the bifurcation analysis
of Eq. (15). Decreasing α makes individuals with small (large)
degrees to hold larger (smaller) adoption thresholds than the
case of α = 0. As a result, the values of R(∞) are smaller than
those for α = 0 in the large λ regime. Since individuals with
small degrees have relatively large adoption threshold, they
have more difficulty in adopting the social behavior, further
decreasing the number of individuals in the subcritical state
and making the discontinuous behavior in R(∞) disappear.

B. A generalized social contagion model

Recently, Centola performed an interesting experiment of
the health behavior spreading in an online social network and
found that the behavior adoption probability is a monotonically
increasing function of m [5], but not the trivial case of
Heaviside step function in the spreading threshold model and
Refs. [6,7]. Therefore, we assume that a susceptible individual
adopts the behavior with probability

π (k,m) = 1 − (1 − ε)m, (30)

where m is the accumulated times that the individual has been
exposed to different sources, i.e., he or she has received the
information m times from the distinct neighbors, and ε is
the unit adoption probability. We can also use the edge-based
compartmental theory to analyze the dynamical process of this
model by substituting Eq. (30) into various equations that give
the solutions of, e.g., R(∞). In particular, we rewrite Eqs. (2)
and (7) as

s(k,t) =
k∑

m=0

φm(k,t)(1 − ε)
∑m

j=1 j (31)

and

�(k′,θ (t)) =
k′−1∑
m=0

τm(k′,θ (t))(1 − ε)
∑m

j=0 j , (32)

respectively, whereas Eq. (13) has the same form as Eq. (22).
The different aspect is that we need to replace Eq. (23) with

ψ(t) = (1 − ρ0)
∞∑

k=0

P (k)
k∑

m=0

(
k

m

)
(1 − ε)

∑m
i=0 i

× [(k − m)θ (t)k−m−1[1 − θ (t)]m

−mθ (t)k−m[1 − θ (t)]m−1]. (33)
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FIG. 9. (Color online) Results from a generalized social con-
tagion model. For ER networks, R(∞) versus the unit adoption
probability ε for λ = 0.3 (a) and the transmission probability λ for
ε = 0.3 (b). Two values of ρ0 are used: ρ0 = 0.01 (gray squares) and
ρ0 = 0.10 (blue up triangles). Additional parameters are γ = 1.0 and
〈k〉 = 10. In both panels, the lines represent the theoretical values
of R(∞) obtained from solutions of Eqs. (1)–(3) and (12)–(14) with
ψ(t) given by Eq. (33).

Substituting Eqs. (31)–(33) into the corresponding equations,
we can obtain a theoretical understanding of the dynamical
evolution of the generalized social contagion model. We
observe that R(∞) varies with λ continuously by the bifur-
cation analysis of Eq. (15). The theoretical values of R(∞)
so predicted agree well with the simulated results, as shown
in Fig. 9.

VI. CONCLUSIONS

In social contagion dynamics, memory of nonredundant
information can have a significant impact on the reinforcement
mechanism required for behavioral adoption. In particular,
the nonredundant information memory has two features: (1)
repetitive information transmission on every edge is forbidden,
(2) every individual can remember the cumulative pieces of
nonredundant information. Social reinforcement incorporating
the memory characteristic is essential to describing and
understanding social contagions in the real world. In this
paper, we first proposed a general social contagion model
with reinforcement derived from this memory characteristic.
Mathematically, a model based on such characteristic is
necessarily non-Markovian. Previous works pointed out the

difficulty of developing an accurate theoretical framework
to analyze social contagion dynamics with only memory
effect [6], let alone models with nonredundant information
memory characteristic. To meet this challenge, in this paper
we developed a unified edge-based compartmental theory
to analyze social contagion dynamics with nonredundant
information memory characteristic. The validity of our theory
is established by testing it using different social contagion
models of varying complexity, different model networks.

Through a detailed study of a comparatively simple model,
the spreading threshold model, the effects of nonredundant
information memory characteristic on the social contagion
dynamics can be quantified by the final adoption size R(∞)
and its dependence on key parameters such as λ. Especially,
decreasing the adoption threshold, increasing the initial seed
size, or increasing the mean degree of the network can facilitate
adoption of social behaviors at the individual level, making
the system less resilient to social contagions. The effect of
structural heterogeneity on R(∞) turns out to be more complex
in that, while making the network more heterogeneous can
promote the spreading process, it impedes spreading for
relatively large values of λ. A striking phenomenon is that
R(∞) as a function of λ can exhibit two characteristically
different types of patterns: continuous variation or sudden,
discontinuous changes, and a transition between the two
patterns can be induced by adjusting parameters such as
individuals’ adoption threshold, the initial seed size or the
structural heterogeneity of the network. For example, in order
to change the dependence of R(∞) on λ from being discontin-
uous to continuous, we can decrease the individuals’ adoption
threshold, increase the initial seed size, or make the network
more heterogeneous. We also find that the discontinuous
pattern disappears when there is negative correlation between
an individual’s adoption threshold and his or her degree. The
above crossover phenomena can be understood through the
bifurcation analysis in theory and also justified by analyzing
the subcritical individuals in simulations.

To study social contagion dynamics in human populations is
an extremely challenging problem with broad implications and
interest. Our main contribution is a treatment of the nonredun-
dant information memory characteristic that is intrinsic to real-
world dynamics of social contagions. Our unified edge-based
compartmental theory gives reasonable understanding of the
roles of the memory characteristic in shaping the spreading dy-
namics, which can be applied to analyzing different dynamical
processes such as information diffusion on computer networks.
However, many challenges remain, such as incorporation of
correlations between local structures (e.g., communities and
motifs) into social reinforcement effect at the individual level,
the impacts of redundant versus nonredundant information
transmission, and further development of analytic methods to
treat non-Markovian social contagion model on more realistic
networks such as clustered [52,53], multiplex [54–58], and
temporal networks [59,60]).
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