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A discrete-time random process is described, which can generate bursty sequences of events. A Bernoulli
process, where the probability of an event occurring at time t is given by a fixed probability x, is modified
to include a memory effect where the event probability is increased proportionally to the number of events
that occurred within a given amount of time preceding t . For small values of x the interevent time distribution
follows a power law with exponent −2 − x. We consider a dynamic network where each node forms, and breaks
connections according to this process. The value of x for each node depends on the fitness distribution, ρ(x),
from which it is drawn; we find exact solutions for the expectation of the degree distribution for a variety of
possible fitness distributions, and for both cases where the memory effect either is, or is not present. This work
can potentially lead to methods to uncover hidden fitness distributions from fast changing, temporal network
data, such as online social communications and fMRI scans.
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The mathematics of interactive complex systems has a
vital role to play in the interpretation of large-scale social
and biological data. Technology that facilitates the collection
of vast amounts of information is increasingly becoming
available for both academic and commercial purposes; how-
ever, in the absence of a detailed understanding of the
underlying processes, there will always be a risk of deriving
the wrong conclusion from the facts. Complexity science
provides numerous models of social, biological, physical, and
economic systems, which combine large numbers of individual
components to reproduce the types of behavior observed on the
systemic level. The components in such systems are usually
uninteresting in isolation, but when allowed to interact with
each other they produce complex nontrivial patterns, which in
some cases agree very well with empirical results. This poses
a challenge for data scientists: given information only about
the system as a whole, with all its complex and interactive
dynamics, how can one conclude anything about the individual
components? To begin answering that question we need to
understand, in mathematical terms, the form and extent of the
biases that complexity creates.

The purpose of the present work is to provide an un-
derstanding of how one very simple mechanism, a memory
effect (brought about by interaction), will bias the statistical
properties of a complex system, such as the distribution of
communication activity in a social network or the distribution
of brain activity of different cortical regions in a fMRI scan.
We consider a hypothetical system of individual agents (nodes)
and the instantaneous pairwise interactions that happen be-
tween them (edges). By aggregating all of the interactions that
occur within some given time window, a network is formed
whose structure can be analyzed for a deeper understanding
of the system. In general, the length of this time window
determines the density of the network; as an increasing amount
of data is aggregated, a picture of the system emerges, which
shows not only whether or not two nodes are connected, but
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also includes the strength of their relationship through the
frequency of their interactions.

Throughout this paper we will be comparing two possible
forms of stochastic process: Markovian and non-Markovian.
In the non-Markovian case the rate of activity of the individual
agents in the system is proportional to the number of events
that the agent can remember; these are events that happened
at earlier times and are stored in a memory of a given fixed
size. We will refer to this as the memory effect. When a large
number of interacting agents are considered, the memory of
an individual is recorded in the structure of the network of
interactions. Specifically, the number of interactions a node
can remember is effectively the same as its degree; this way the
mechanism for creating links in the non-Markovian network
model is a form of linear preferential attachment [1]. Likewise,
the process of forgetting is an edge deletion mechanism [2].

I. RELATED WORK

The motivation for this work is the growing evidence of
memory-dependent, burstlike activity in complex interactive
systems. Recently this has been most prominent in the
study of online communication patterns [3]. Evidence for
burstiness is found in the distribution of interevent times
between actions; in a Poisson process, for example, which
is Markovian, i.e., memoryless, the interevent times follow an
exponential distribution; periodic events, such as a heartbeat,
have interevent times that generally stay close to the mean;
and lastly, in systems that are generally said to be bursty, the
interevent times follow a power-law distribution. A formal
definition has been proposed to quantify these behaviors in
Ref. [4]. A slightly different approach in Ref. [5] identifies
a burst as a sequence of events where each event follows
the previous one within a given time interval. This definition
naturally leads to the consideration of two possible types of
event: those that happen spontaneously, and those that occur
as reactions to previous events (e.g., the dynamics of human
conversations).

The current explanations for why a sequence of events
might have a power-law interevent time distribution rely
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on a memory effect; in other words the probability of an
event occurring at a given time is dependent on events that
occurred at previous times. Models have been proposed based
on queuing theory where incoming messages are replied to
according to some prioritisation strategy [6–8]. By adjusting
a parameter that controls the randomness of the strategy,
these models have been shown to create power-law distributed
interevent times with exponents that agree with a number of
real-world data sets.

Many of of the systems in which burstiness has been ob-
served cannot be considered to have the internal mechanisms of
a queuing model; these include studies of the human brain [9],
animal movement patterns [10], and consumer behavior [11].
Bursts of activity closely resemble cascading events, such as
avalanches and mass extinctions, and therefore might possibly
be examples of self-organized criticality (SOC) [12], where
the focus is on the emergence of scale-free distributions
based on very few assumptions about the system. In fact, the
Bak-Sneppen model [13], one of the fundamental examples of
SOC, is known to have a power-law distribution of interevent
times [14]. Much of the analytical progress made in the study
of bursts has come from related models [15–19].

The present work examines how the bursty behavior of
individual interacting agents affects the large-scale macro-
scopic view of the system. We consider activity on a dynamic
network, which is closely related to several previously studied
models: Preferential attachment [1,20] is a non-Markovian
method by which many networks grow. In this process,
nodes are added to the network sequentially in discrete time
steps and edges are created between the new node and old
nodes selected randomly but with probability proportional to
their degree. The rate of growth in connectivity of a node
at any given time therefore depends on its entire history.
Conversely, in fitness networks the connectivity of a node
accords only to an attractiveness value drawn from some
probability distribution [21]. Such models are versatile in
their applications as they can incorporate various topological
network features such as clustering, and have also allowed
complex network topologies to be incorporated into SOC
models [22] (we note here that a significant proportion of the
fitness network literature concerns correlations between the
fitness of connected nodes, while the present work concerns
only uncorrelated networks). A simple way to combine fitness
and preferential attachment has been achieved by defining
the attractiveness of a node to be either the sum or product
(or a combination of both) of its degree and its intrinsic
fitness [23–25].

The networks mentioned so far are static in the sense that
once a link is created between nodes it remains in that location
forever. In many situations this is not the case and we here
use the term dynamic to refer to networks whose edges can
be removed as new ones are created [2,26–28]. The model
introduced in Ref. [29] combines the preferential selection of
nodes with an added fitness parameter (the same for every
node) on a dynamic network where edges are removed so that
the total number of edges remains constant. The authors focus
on the problem of finding the degree distribution; what they
do not mention is that the degree of each individual node in
this model fluctuates with a memory-driven bursty process
with power-law distributed interevent times between each

attachment event. The present work provides a mathematical
description of this behavior. Additionally, by incorporating
heterogeneous fitness distributions into the previous model,
we will describe a class of complex networks, which exhibit a
rich variety of structural and time-dependent properties.

The model presented in this paper is a versatile and
applicable dynamic network with varying node fitness. There
is currently research activity in related areas that is of much
interest: time-varying networks, in particular, have some
similarities with dynamic networks. Informally speaking,
these are multilayered networks where each layer corresponds
to a distinct time interval; they differ from dynamic networks
because at the end of each time interval the entire network
(rather than just a single edge) is removed and replaced [30,31].
In its most basic form the action potential (the propensity
to act at any given time) of each node does not change
with time. In Ref. [32] memory effects are considered within
the time-varying formulation. The authors observe in social
communication data a universal rule for the probability that an
individual will continue an old correspondence rather than start
a new one. Adding this constraint to the original time-varying
concept gives accurate results regarding the number of contacts
and the weight of correspondence with each contact.

In Ref. [33] the waiting time distribution between actions
takes an arbitrary form, thus the action potential of each node
may vary. When the waiting time takes a power-law form they
find that the exponent of the degree distribution depends on
the exponent of the waiting time distribution. Similarly, in the
model introduced in Ref. [34], the rates at which new links
are formed and broken, and the rate at which old links become
active, depend on the probability distribution of interevent
times. The authors choose to examine the power-law interevent
time distribution, commenting that this is akin to a preferential
attachment mechanism. Unlike the present work, however, the
power law is an assumption and not an emergent property.

The aforementioned studies do not contradict the work
presented here, these papers are complementary. Together they
reinforce the movement to unify bursty dynamics and network
structure.

The remainder of this paper is structured as follows: We
describe a process for generating a sequence of events, which,
under certain circumstances, produces a power-law interevent
time distribution. In the section that follows, we introduce a
model of an evolving network where edges are removed and
replaced at each time step. Within this section two possible
attachment kernels are described; the first is entirely fitness
based, the second has an additional preferential attachment
mechanism, which can be interpreted as an increased propen-
sity to act caused by previous interactions. We show that in the
latter case, the activity of the nodes is described by the random
process of Sec. II. Results are presented and we present figures
that show the degree distributions in some special cases of the
model. In Sec. IV we highlight the advances achieved by this
research. We then discuss briefly its possible applications and
elements that require further study. In Appendix A the solution
for the interevent time distribution is shown. In Appendix B
we show how the network is described mathematically, and
derive results regarding the degree distribution for a general
fitness distribution. In Appendix C we look at some special
cases of the fitness distribution.
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II. GENERATING EVENT SEQUENCES WITH
POWER-LAW DISTRIBUTED INTEREVENT TIMES

Before discussing the network topology of a population of
interacting agents, we first examine a process that describes
the memory-dependent behavior of an individual node. We
describe a discrete-time stochastic process, which generates
an infinite sequence of binary random variables X1,X2, . . .. At
time t we may have Xt = 1, which we consider to be an event,
or Xt = 0, which we consider to be a moment of inactivity.
The system has a memory capacity of size M , meaning that
there are M locations, m1(t),m2(t), . . . ,mM (t), where an event
may be stored, i.e., mn(t) ∈ 0,1 for n ∈ 1,2, . . . ,M . We define
kt = ∑M

n=1 mn(t) and let the event probability kernel f be
any function such that 0 < f (kt ) < 1 for kt ∈ 0, . . . ,M . We
consider two possible ways, random and age based, in which
events can be deleted from the memory.

A. Randomized memory

At time t ,
(i) With probability f (kt ), Xt = 1. With probability 1 −

f (kt ), Xt = 0.
(ii) Integer n′ is selected uniformly at random from

1,2, . . . ,M and mn′(t + 1) = Xt . For all other n �= n′, mn(t +
1) = mn(t).

Since there is always a nonzero probability that Xt = 1 (and
similarly that Xt = 0) the process will continue indefinitely
without ever reaching an absorbing state. For example, if on
the contrary f (kt ) = kt/M , and we start from an initial state
where k0 �= 0, then we will eventually end up in one of two
states: either kt = M or kt = 0. Analysis of this particular
case is important to evolutionary biology [35]. We find that
by eliminating the possibility of absorption the statistical
properties of the sequence can be calculated in the t → ∞
limit.

B. Age-based memory

The randomized memory process is approximately equiva-
lent to the following alternative description: In each iteration
we perform step 1 as before. We then set mM (t + 1) = Xt

and mn(t + 1) = mn+1(t) for 1 � n � M − 1. This way i will
remember all the events that happened in the previous M

iterations. For example,

. . . 0000010 1010010︸ ︷︷ ︸
M

Xt .

Assuming that the value of m1 is not correlated with the value
of kt , i.e., the probability of removing a 1 is well approximated
by kt/M , then the solutions given in Appendix A are applicable
in both cases.

We are interested in �τ , the probability that the interevent
time of a randomly selected pair of consecutive events will be
exactly τ . Our analysis focuses on the linear probability kernel

f (kt ) = kt + x

M + x + ε
, (1)

where x and ε are real positive numbers. As x increases,
the contribution from the memory factor k becomes less
important and the system approaches a Bernoulli process.
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FIG. 1. (Color online) The interevent time distribution for a
sequence of events generated by the process described in Sec. II A.
The simulation lasted for 108 iterations with M = 103 and ε = 1.
The markers show the log-binned frequencies (normalized to give the
proportion of interevent times of length τ ). The dotted lines show the
corresponding slope predicted by Eq. (2).

At the other extreme, when x is small relative to M , the
interevent time distribution asymptotically follows a power
law. In Appendix A we derive an approximate solution to �τ

showing that the exponent of the power law is independent of
the parameters M and ε, but is dependent on the choice of x

in the following way

�τ ∼ τ−(2+x). (2)

Numerical results are presented in Fig. (1) for a range of
values of x. The deviation away from a power law that is
present in the very large values of τ can be attributed to
the fact that once the waiting time reaches such high values,
it becomes overwhelmingly likely that k = 0, meaning that
memory effects are null.

Section III B concerns a network of agents who create
edges with other nodes dynamically according to a preferential
attachment process, and destroy edges either randomly or
according to their age. After introducing the network model
we will show that its parameters can be equated with the
parameters of the stochastic process described in this section.

III. DYNAMIC NETWORK MODEL

We consider a network formed of N nodes and E edges.
Initially the edges are placed between pairs of randomly
selected nodes. For each node, a positive continuous random
variable x ∈ R is selected according to a probability density
function ρ(x), which has mean 〈x〉. Following the related
literature we shall refer to this value as the fitness of the
node, denoted xi for the node i. The degree ki is the total
number edges adjacent to i (note that this not the same as
the number of neighbors of i since multiple edges can exist
between any pair of nodes). The dynamics of the system are
described as follows: in each iteration, a node i is randomly
selected with probability given by its attachment kernel �(i),
a second node is selected in the same way and an edge is
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FIG. 2. Three iterations of the network model starting from a
random initial configuration. The number of stripes inside each node
corresponds to the fitness; the node with the least stripes has fitness
x = 0.5, the others have x = 1, x = 1.5, x = 2, x = 2.5, and x = 3.
The number of dashes in each edge corresponds to its age with the
oldest having the most dashes. In each iteration the oldest edge is
removed and a new edge is added between nodes selected either
with probability proportional to their fitness [shown in (a)] or with
probability proportional to the sum of their fitness and their degree
[shown in (b)]. Note that in (a) the fittest node is also the most active.
In (b) this is not the case.

created between them. In the same iteration the oldest edge
is removed (thus E, N , and the mean degree 〈k〉 = 2E/N

remain constant throughout). Alternatively we could choose
to remove a randomly selected edge instead of the oldest,
these two possibilities correspond to the randomized and
age-based forms of the processes described in Secs. II A
and II B respectively; the results presented here are applicable
to both. Under these rules, the probability that an edge will
be created between two nodes i and j is proportional to the
product of their fitness �(i)�(j ). This is just one of many ways
to combine the fitness of two nodes; a wealth of literature exists
examining the other possibilities and generalizations (see, for
example, Refs. [21,36]). The process is illustrated in Fig. (2)
for both of the attachment kernels considered here.

In most real-life situations the fitness of a node represents
some hidden (or latent) quantity, whereas its degree represents
something tangible that appears in empirical data sets. In

general, then, an important problem to address is in inferring
the fitness of the node when given only its degree and
other properties describing the structure of the network. In
a stochastic system the closest we can get to achieving this is
finding the probability that a node has fitness x given some
information about the network structure. When the available
information is the degree of each node, Bayes rule gives the
appropriate expression for this quantity:

P (x|k) = ρ(x)P (k|x)

pk

, (3)

where pk is the probability of randomly selecting a node that
has degree k, and P (k|x) is the same probability but this time
conditioned on x. Thus there is an incentive to extract these
quantities; as well as being interesting in their own right; they
are integral to uncovering the hidden variables. The analysis in
this section focuses mainly on deriving the degree distribution
and the conditional degree distribution for a range of fitness
functions. We consider the two following possible attachment
kernels.

A. Dynamic model without memory

The probability of attaching one end of an edge to a node i

of fitness xi is

�(i) = xi∑
j xj

= xi

N〈x〉 . (4)

Under this condition the xi can be considered the rate of activity
of i and one might naively assume that the relationship between
xi and the degree of i, ki , is approximately linear (specifically
ki ≈ xi × 〈k〉/〈x〉 since this would give the correct result for
the total degree of the network). In general, this is not the
case; Figs. 4(a) and 4(c) show that the degree distributions and
fitness distributions of networks created by this process after a
large number of time steps contain fundamental differences. If
ρ(x) = λe−λx then the degree distribution depends only on the
mean degree of the network and not at all on the parameter λ.
In this case there are therefore infinitely many possible fitness
distributions that produce the same degree distribution. If ρ(x)
follows a power law with exponent γ then pk will have a
power-law tail with the same exponent γ , small values of k,
however, become increasingly uncommon as we look at denser
networks.

B. Dynamic model with memory

The probability of attaching one end of an edge to a node i

of fitness xi is

�(i) = ki + xi∑
j (kj + xj )

= ki + xi

N (〈k〉 + 〈x〉) , (5)

where ki is the degree of i. Memory in this system is recorded
by the edges, as the current degree influences the creation of
future edges. Because the edges in this system are dynamic,
in that the oldest one is removed with each iteration while
new ones are added, each node effectively has a memory,
which extends backward in time to the age of the oldest edge.
Let us now consider the relationship between this attachment
kernel and the process described in Sec. II. If we consider
the attachment of the end of an edge to the node i to be
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FIG. 3. (Color online) The interevent time distribution for attach-
ment events of a single node i with fitness equal to the mean of the
fitness distribution (xi = 〈x〉) on log-log axes (main), and log-linear
axes (inset). The plotted results consider a dense network where
N = 10 and E = 100. The attachment events of i are described by
the process introduced in Sec. II with M = E and ε = (N/2 − 1)〈x〉.
When xi , and hence N〈x〉, are very large, the event probability
is dominated by the contribution from xi and is therefore weakly
dependent on the memory of i. In this case the interevent times
are distributed exponentially (as expected in a Bernoulli process).
As 〈x〉 → 0 the contribution from the memory of previous events
becomes dominant and the distribution approaches a power law with
exponent −2.

an event, then the probability of an event occurring at time
t is given by Eq. (5) multiplied by 2 (corresponding to the
two ends of the edge). Additionally, the event will be deleted
from memory after precisely E iterations, so the number of
edges corresponds to the length of the memory, i.e., M =
E. Therefore, when ε is chosen such that xi + ε = N〈x〉/2,
Eq. (1) and 2 times Eq. (5) become identical and we conclude
that the results of Sec. II apply to the sequence of attachment
events for individual nodes in this model. It is possible then, by
choosing a fitness distribution, which ensures that 〈x〉 � 〈k〉,
to create burstlike patterns of behavior in the activity of the
node i. As we deviate away from these conditions the activity
of the nodes is better described by a Bernoulli process, giving
exponentially distributed interevent times, seen in Fig. (3).

Results for the degree distribution are plotted in Figs. 4(b)
and 4(d). We find that in the case where the fitness follows a
gamma distribution, pk approaches a power law with exponent
−1 as the mean fitness 〈x〉 → 0. In this limit, the heterogeneity
in the degree distribution can be explained entirely by the
fluctuations seen in individual nodes, given by Eq. (A11); the
fact that one node might have a greater fitness than another
node becomes irrelevant. This, however, is not the case when
the fitness distribution follows a power law. If ρ(x) follows
a power law with exponent γ then pk will have a power-
law tail with the same exponent γ . The effect of introducing
memory is seen mostly in the smallest values of k, which, in
contrast to the memoryless case, remain relatively frequent,
even in dense networks. We conclude then, that while both

gamma and power-law distributions have tails that extend to
infinity, as 〈x〉 → 0 the effect of memory dominates over the
fitness distribution in the first case, and the fitness distribution
dominates over the effect of memory in the second.

Given the degree distribution from a system whose behavior
meets the description of the model, our analysis suggests a
method to infer the hidden fitness distribution numerically by
assuming it takes the form of a step function, reducing the
problem to an optimization problem given in Appendix C.

IV. DISCUSSION

This analysis has potential to be useful in many applica-
tions. Suppose we have a system where data arrives in the
form of a list of interactions between a finite number of
agents. This model provides a framework for interpreting such
data. A sample of say, n interactions, can be thought of as
a network with n edges, all of which are placed according
to some hidden fitness variable, which the present model
makes no assumptions about. It should also be noted that the
assumption in our model that interactions are pairwise can
easily be generalized so that any given number of nodes may
be active at each time step (i.e., a hypergraph). We have shown
the impact of the edge density (which can be interpreted as
the size of the sample) on the degree distribution and that the
effect of bursty, memory driven, behavior is seen mostly in
the nodes that have low intrinsic fitness. We also suggested
a method to recover the hidden fitness distribution from the
data. We note that the variability with edge density is very
similar to the problem of time-varying networks discussed in
Ref. [30] although in this work the authors focus on the issue
of not counting multiple edges more than once (something
the present analysis ignores) and are not concerned with the
aggregate network after a long time when it reaches a high
density. The results of this paper have shown that the effect at
high densities is profound and can be significantly altered by
the addition of memory.

The motivation for this work was the potential applicability
to two specific areas of data analysis: online social interactions
(e.g., Twitter) and the data received from fMRI scans, in
particular when the cortical regions of the brain are considered
as nodes and activity may transmit from one region to another
(see, for example, Refs. [37,38]). Both systems are known to
exhibit bursty activity. In the case of human communication
this is brought about by the reciprocation of messages.
Empirical studies [16] have found the power-law exponent
in the interevent time distribution to be between −1 and −2.
This behavior can be recreated by our model but it requires
negative values of x and for f (0) in Eq. (1) to be defined
separately. Further work would therefore be required to make
this analysis directly applicable. Less is known about why
burstiness occurs in the human brain but it is likely because of
some kind of feedback mechanism [39]. Recovering a fitness
distribution using the dynamic model with memory in either
of these situations would effectively amount to filtering out the
effects of these internal feedback mechanisms and exposing
the external influences on the system.

Our final remark concerns the burst-like pattern observed
in the activity of nodes [Fig. (3)]. In many studies of burstiness
(such as Refs., [33] and [34]) the power-law interevent time
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(a) Exponential without memory. (b) Exponential with memory.
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(c) Power-law without memory.
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FIG. 4. (Color online) The degree distributions for both types of attachment kernel and two different forms of ρ(x). In each plot the markers
show the results of a single numerical simulation of a network of 2 × 103 nodes, the smooth lines show the corresponding analytical results.
In (a) E = 4 × 103 and the fitness distribution is ρ(x) = λe−λx , which is special case of the gamma distribution [Eq. (C1) with α = 1 and
β = 1/λ]. For a range of values of λ, an exponential fitness distribution is plotted with filled markers and the degree distribution is plotted
with unfilled markers of the same shape. We see that in this particular case the parameter λ does not effect the result. This is not the case
when memory effects are introduced, shown in (b); as λ increases the degree distribution approaches a power law [see Eq. (C8)]. In (c) the
power-law fitness distribution [given by Eq. (C9) with xmin = 1 and γ = 2.5] is plotted next to the degree distributions for a range of values of
E (giving different densities). For large values of k the degree distribution has the same power-law exponent as the fitness distribution, even
when memory effects are introduced as we see in (d). The effect of including memory is however seen in the small values of k.

distribution is included as an a priori assumption in the
description of the model. We have shown that this pattern
can emerge from a simpler, lower-level process, suggesting
that there could be a universal reason why such patterns are
observed so frequently in complex systems. The relationship
between this result and the well-studied SOC models needs
to be established in order to move towards an analytical
understanding of both phenomena, hopefully broadening this
model to a wide range of universality classes, and potentially
extending its applicability.
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APPENDIX A: SOLUTION FOR THE INTEREVENT
TIME DISTRIBUTION

We first find pk , the probability that kt = k for a randomly
selected t ∈ N. For the general event probability kernel f we
find a recursion relation relating pk to pk−1. We then continue
by examining only the special case where

f (k) = k + x

M + x + ε
(A1)

for constants x and ε and find the exact solution for pk .
From this result we approximate the probability that the time
between two events is exactly τ iterations of the model.

1. Memory size distribution

Table I shows the possible events that can happen regarding
the addition and deletion of 1s in the memory. All possible
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TABLE I. At each iteration Xt ∈ 0,1 is added to the memory
while at the same time a randomly selected entry will be removed.
We show the probabilities of these events and how each possible
combination changes kt .

Added
1 0

Probability f(kt) 1 − f(kt)

1
kt/M kt+1 = kt kt+1 = kt − 1

0
1 − kt/M kt+1 = kt + 1 kt+1 = ktR

em
ov

ed

transitions of kt are brought together in the following master
equation, which describes the evolution of pk(t):

pk(t) =
[

1 − k − 1

M

]
f (k)pk−1(t − 1)

+
[

1 − k

M
− f (k) + 2

k

M
f (k)

]
pk(t − 1)

+ [1 − f (k + 1)]

(
k + 1

M

)
pk+1(t − 1). (A2)

As t → ∞ the distribution will converge towards a time-
invariant distribution, pk , described by[

1 − k − 1

M

]
f (k)pk−1 −

[
k

M
+ f (k) − 2

k

M
f (k)

]
pk

+ [1 − f (k + 1)]

(
k + 1

M

)
pk+1 = 0. (A3)

This second-order recurrence relation reduces to a first-order
recurrence relation with the introduction of

H (k) = k

M
[1 − f (k)]pk (A4)

and

F (k) = f (k)

[
1 − k

M

]
pk; (A5)

using the condition that p−1 = 0 in Eq. (A3) we see that
F (0) = H (1) and also that Eq. (A3) becomes

F (k) − F (k − 1) = H (k + 1) − H (k). (A6)

Clearly then F (k − 1) = H (k), and so pk obeys the first-order
recurrence equation:

pk =
(

M − 1 − k

k

)[
f (k − 1)

1 − f (k)

]
pk−1. (A7)

Writing p1 in terms of p0, then p2 in terms of p1 and so on,
we can express Eq. (A7) as

pk = p0

k∏
i=1

(
M − 1 − i

i

)[
f (i − 1)

1 − f (i)

]
. (A8)

We choose at this point to investigate only the linear case with
f (k) given by Eq. (A1). In this instance the translation property

of the Gamma function [x
(x) = 
(x + 1)] can be used and
we arrive at

pk = 
(M − 1)
(M − k + ε)
(k + x)


(M + ε)
(M − k − 1)
(x)k!
p0 (A9)

giving the probability distribution for the number of 1s in the
memory at any given time.

2. Interevent time distribution

Here we derive �τ , the probability that a randomly selected
interval has size τ . Suppose we select a random Xt from the
sequence. For Xt to be 0 and belong to an interval of length
τ it must be preceded by a string composed of a 1 followed
by τ ′ 0s, and it must be the first 0 in a sequence of τ − τ ′ 0s
followed by another 1. The variable τ ′ can be any integer from
1 to τ and we need to sum the probabilities of each possibility
to arrive at the probability that Xt is a 0 at any location within
an interval of size τ . Expressed symbolically, the previous
sentence is equivalent to

τ�τ (t) =
τ∑

τ ′=1

f (kt−τ ′)f (kt+τ−τ ′+1)
t+τ−τ ′∏

i=t−τ ′+1

1 − f (ki), (A10)

where �τ (t) is the probability that the interval containing Xt

has length τ . The multiplication by τ on the left-hand side
comes from the fact that there are τ choices of Xt , which
belong to this interval. We make the following approximations
and coarsening of the model.

(i) We assume that M is large and also consider only the
values of k large enough for Stirling’s approximation to be a
valid to approximate the Gamma functions in Eq. (A9). We
further limit our attention to those values of k for which M � k

and get

pk ≈
[

1 − k

M

]1+ε
p0


(x)
kx−1 ≈ p0


(x)
kx−1. (A11)

(ii) We choose M � δ,ε which means f (kt ) ≈ kt/M .
More importantly, if we say that P (f (kt ) = φ) is the proba-
bility that f (kt ) = φ for a randomly selected t ∈ N then from
Eq. (A11) we have

P (f (kt ) = φ) ≈ p0


(x)
[Mφ]x−1. (A12)

(iii) Over short time periods, changes to kt will be small. In
other words, locally the system behaves as a Bernoulli process
with success probability given by φ. This allows Eq. (A10) to
be approximated by

�τ (t) = f (kt )
2[1 − f (kt )]

τ . (A13)

When t ∈ N is selected randomly this is equivalent to

P (τ |f (kt ) = φ) = φ2(1 − φ)τ . (A14)

(iv) We approximate φ by a continuous variable.
The time-independent solution to the interevent time distri-

bution is found by solving

�τ =
∫ 1

0
P (f (kt ) = φ)P (τ |f (kt ) = φ)dφ

≈ p0M
x−1


(x)

∫ 1

0
φx+1(1 − φ)τ dφ. (A15)
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Thus we find that the interevent time distribution is given by
a Beta function �τ ∼ B(τ + 1,x + 2), which for large values
of τ obeys

�τ ∼ τ−(2+x). (A16)

APPENDIX B: SOLUTION FOR THE NETWORK
DEGREE DISTRIBUTION

1. Dynamic model without memory

For each positive integer k we want to know the number
of nodes nk that have degree k as a function of the fitness
distribution ρ(x), as well as the parameters N and E. This
quantity is the expectation of the degree distribution; the mean
of the ensemble of networks generated in this way. Letting t

be the number of iterations and nk(x,t) be the expectation of
the number of nodes of degree k with fitness x at time t , we
can write down the rate of change

∂nk(x,t)

∂t
= 2x

N〈x〉 [nk−1(x,t) − nk(x,t)]

+ 1

E
[(k + 1)nk+1(x,t) − knk(x,t)]. (B1)

The first two terms on the right-hand side account for the
creation and destruction (respectively) of nodes of degree k,
which occurs when an edge is attached to a node of degree
k − 1 (creation) or to a node of degree k (destruction). The
last two terms on the right-hand side account for the creation
and destruction of nodes of degree k, which occurs when the
oldest edge is removed from a node of degree k + 1 (creation)
or removed from a node of degree k (destruction). We have
assumed here that the ages of edges adjacent to a node are
not correlated, thus the process of removing the oldest edge
is approximately the same as removing a randomly selected
one. After a large number of iterations the system will be
in equilibrium, nk(x,t) = nk(x), and the left-hand side will be
equal to zero. Using a similar method to that found in Ref. [29]
we solve Eq. (B1) by introducing

H (k,x) = 2x

N〈x〉nk(x) and G(k,x) = 1

E
knk(x). (B2)

Equation (B1) now becomes

G(k + 1) − G(k) = H (k) − H (k − 1). (B3)

By summing Eqs. (B3) over all k � 1 we find that G(0,x) =
H (1,x) and consequently G(k,x) = H (k − 1,x) for all k � 1,
solving this leads to

nk(x) =
(

2Ex

N〈x〉
)k 1

k!
n0(x). (B4)

To find n0 we consider N (x), the expected number of nodes of
fitness x,

N (x) =
∞∑

k=0

(lx)k
1

k!
n0(x) = n0(x)elx, (B5)

where l = 2E/N〈x〉. The conditional probability P (k|x) =
nk(x)/N (x) is found by combining Eq. (B4) and Eq. (B5) to

get

P (k|x) = 1

k!
(lx)ke−lx . (B6)

Thus isolating only the nodes which have fitness exactly equal
to x we find a Poisson degree distribution. Interestingly, this
implies that if one was to take a sample of nodes that all have
a similar fitness value, one would see a network that looks
very similar to an Erdös-Rényi random graph. [Eq. (B6) can
also be found by more direct means. It can be expressed as the
probability of k successes in 2E trials where the probability
of success, i.e., creating an edge, is given by Eq. (4). P (k|x) is
given by a binomial variable and gives the same result when
N → ∞.]

To finally reveal the fraction of nodes in the entire network
of degree k, pk = nk/N , we need to solve the integral

pk =
∫ ∞

0
ρ(x)P (k|x)dx = lk

k!

∫ ∞

0
ρ(x)xke−lxdx. (B7)

This is as far as a the general solution can be taken but
the solutions for two special forms of ρ(x) are presented in
Appendix C.

2. Dynamic model with memory

The rule determining whether a node is active at any given
time can be divided into two constituent mechanisms: one is
regarded as a reaction to one or more previous interactions; it
is memory dependent and is responsible for bursts of activity.
The other is the fitness of the node, which encompasses all the
other reasons why a node may become active at any given time.
Modifying the model [Eq. (B1)] for the new kernel Eq. (5) we
now have

∂nk(x,t)

∂t

= 2

N (〈k〉 + 〈x〉) [(k + x − 1)nk−1(x,t) − (k + x)nk(x,t)]

+ 1

E
[(k + 1)nk+1(x,t) − knk(x,t)]. (B8)

As before, we set the left-hand side to zero to get a difference
equation

knk(x) − (k + 1)nk+1(x) = m[(k − 1)nk−1(x) − knk(x)

+ xnk−1(x) − xnk(x)], (B9)

where m = 〈k〉/(〈k〉 + 〈x〉). To solve this we introduce the
generating function,

g(z,x) =
∞∑

k=0

nk(x)zk (B10)

by multiplying Eq. (B9) by zk and summing over all k � 0 we
arrive at

(z − 1)(1 − mz)
∂g(z,x)

∂z
− mx(z − 1)g(z,x) = 0, (B11)

which has the solution g(z,x) = [C(1 − mz)]−x (a general
description of this method is described in the Appendix of
Ref. [28]). We find C by substituting g(1,x) = N (x) into the
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solution and get

g(z,x) = N (x)

(
1 − m

1 − mz

)x

. (B12)

The coefficient of zk in the expansion of the right-hand side
is nk(x), dividing this by N (x) then gives the following
conditional probability, which contrasts with Eq. (B6)

P (k|x) =
(

x + k − 1

k

)
(1 − m)xmk. (B13)

As 〈x〉 → ∞, P (k|x) tends towards the Poisson distribution
with the same mean we had in Eq. (B6). This is expected since
in this limit the attachment kernel for any given node will be
dominated by its fitness. Let pk be the fraction of nodes with
degree k and is the integral of the product of ρ(x) and the
right-hand side of Eq. (B13) over all possible values of x

pk = mk

k!

∫ ∞

0
x(x + 1) . . . (x + k − 1)(1 − m)xρ(x)dx.

(B14)
We can simplify the integral by multiplying out all the brackets,
which contain x, this gives

pk = mk

k!

k∑
n=0

c(k,n)
∫ ∞

0
xn(1 − m)xρ(x)dx. (B15)

Here c(k,n) denotes the unsigned Stirling numbers of the first
kind (the number of permutations of k symbols that have
exactly n cycles [40]), since an explicit expression for these is
not known, Eq. (B15) is only useful at small values of k. For
large k we examine the generating function

G(z) =
∞∑

k=0

pkz
k. (B16)

It follows from Eq. (B12) that

G(z) =
∫ ∞

0
ρ(x)

(
1 − m

1 − mz

)x

dx. (B17)

When the fitness parameter is the same for all nodes, xi = α,
the model reduces to that studied in Ref. [29]. Substituting
ρ(x) = δ(x − α) into Eq. (B17) yields the expected result.

APPENDIX C: EXAMPLES OF SPECIFIC
FITNESS DISTRIBUTIONS

1. Gamma distribution

We examine in detail the possible scenario where the fitness
of the population follows the gamma distribution

ρ(x; α,β) = xα−1e−x/β

βα
(α)
, (C1)

which generalizes a number of distributions that have appli-
cations in social sciences including χ2 and the exponential
distribution. In general it has the appearance of an asymmetric
bell curve and we consider it entirely likely that a system might
exist where the fitness values are clustered around the mean in
this way.

a. Dynamic model without memory

We solve Eq. (B7) to find the degree distribution. The
integral becomes

pk = lk

k!βα
(α)

∫ ∞

0
xk+α−1e−x(l+1/β)dx. (C2)

By applying the change of variables y = (l + 1/β)x the
integral becomes the product of a gamma function and some
other factors. We arrive at

pk = lk
(k + α)

βα(l + 1/β)k+α
(α)k!
. (C3)

For large values of k this solution becomes a gamma distribu-
tion pk ∼ ρ[k; α, log(1 + 1/lβ)].

b. Dynamic model with memory

We substitute Eq. (C1) into Eq. (B15) and applying the
change of variables; y = x[(1/β) − log(1 − m)], we can again
take a gamma function out as a factor, leaving

pk = mk

k!βα
(α)

k∑
n=0

c(k,n)
(n + α)

×
[

log

(
1

1 − m

)
+ 1

β

]−(n+α)

. (C4)

Substituting Eq. (C1) into Eq. (B17) and solving the integral
we arrive at

G(z) =
[

1 + log

(
1 − mz

1 − m

)β]−α

. (C5)

As z → 1, the logarithm in the above expression approaches
0 making the approximation log(X) ≈ X − 1 appropriate to
use. For z ≈ 1 we have

G(z) ≈
(

1 − m

1 − mz

)αβ

, (C6)

which can be expanded to recover the power series. Equating
the coefficients of the expansion with those of Eq. (B16) we
find

pk ≈ (1 − m)αβ

(−αβ

k

)
(−m)k. (C7)

For large k this is

pk ≈ (1 − m)αβ


(αβ)
mkkαβ−1 = cρ

(
k; αβ,

1

log(1/m)

)
, (C8)

where c = [(1 − m)/ log(1/m)]αβ is a normalizing constant.
As the mean 〈x〉 = αβ tends towards 0 the distribution tends
towards a power law with exponent −1. This represents a
scenario where the majority of actions are in fact reactions to
previous events.

2. Power-law distribution

Suppose fitness is distributed according to the following
power law

ρ(x; xmin,γ ) =
{

γ−1
xmin

(
x

xmin

)−γ
if x � xmin

0 if x < xmin,
(C9)
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which has the mean

〈x〉 = γ − 1

γ − 2
xmin. (C10)

a. Dynamic model without memory

To find the degree distribution we substitute Eq. (C9) into
Eq. (B7), giving

pk = (γ − 1)lk

x
1−γ
min k!

∫ ∞

xmin

xk−γ e−lxdx. (C11)

Using the substitution y = lx, the integral can be expressed
using the upper incomplete gamma function (see Ref. [40])
defined as 
(u,v) = ∫ ∞

v
υu−1e−υdυ for real numbers u and v.

We can also simplify the solution by combining the parameters
using

A = lxmin = 2E(γ − 2)

N (γ − 1)
(C12)

and we get

pk = (γ − 1)Aγ−1

k!

(k − γ + 1,A). (C13)

Notice that all choices of xmin yield the same result. This is not
unexpected; the scale invariance of the power-law distribution
means that generating a random fitness xi using Eq. (C9) is
equivalent to generating ξ from ρ(ξ,1,γ ) and taking xi =
ξxmin as the fitness value. Substituting this fitness value into
Eq. (4) we see that xmin is no longer present.

It is also informative to solve Eq. (C11) for integer values
of γ . We first express the part inside the integral as a derivative

xk−γ e−lx = (−1)k−γ dk−γ e−xy

dyk−γ

∣∣∣∣
y=l

(C14)

before performing the integration with respect to x. Since∫ ∞

xmin

e−xydx = exp(−xminy)

y
(C15)

and

dn

dyn

(
exp(−xminy)

y

)
= (−1)n exp(−xminy)

n∑
s=0

n!

s!
xs

miny
s−n−1

(C16)

for n ∈ N, for integer values of γ we arrive at

pk = (γ − 1)(lxmin)γ−1 exp(−lxmin)

k(k − 1) . . . (k − γ + 1)

k−γ∑
s=0

(lxmin)s

s!
, (C17)

which, using Eq. (C12) simplifies to

pk = (γ − 1)Aγ−1e−A

k(k − 1) . . . (k − γ + 1)

k−γ∑
s=0

As

s!
. (C18)

It is now easy to see that the degree distribution has a power-law
tail [see Fig. 4(c)].

b. Dynamic model with memory

First we substitute Eq. (C9) into Eq. (B15). We introduce
L = − log(1 − m), then, by applying a the change of variables
y = Lx, we can factorize out an incomplete gamma function.
This gives the following exact solution for the degree distribu-
tion

pk = mk(γ − 1)

k!x1−γ
min

k∑
n=0

c(k,n)Lγ−n−1
(n − γ + 1,Lxmin).

(C19)
The parameter xmin, which was absent in Eq. (C13), now
controls the overall effect of fitness in proportion to memory.
For large values of k we solve Eq. (B17) to find

G(z) = (γ − 1)
[1 − γ,�(xmin,z)][�(xmin,z)]γ−1, (C20)

where

�(xmin,z) = xmin log

(
1 − mz

1 − m

)
. (C21)

Using the approximation log(X) ≈ X − 1 as z approaches 1
we find

G(z) ≈ (γ − 1)γ−1
(1 − γ )Aγ−1(1 − z)γ−1, (C22)

where A is given by Eq. (C12). For noninteger values of γ this
can be expanded and the coefficients of the expansion can be
equated with Eq. (B16). We see that

pk ≈ (γ − 1)Aγ−1
(k − γ + 1)


(k + 1)
. (C23)

The k dependence exists in the form of the ratio of two gamma
functions so asymptotically pk ∼ k−γ . It is worth remarking
that the power-law exponent in the fitness distribution is the
same exponent found in the degree distribution and is not
affected by the choice of the other parameters N , E, or xmin as
can be seen in Fig. 4(d).

3. Step function distribution

For practical purposes it is useful to have a general method
of inferring a fitness distribution from a degree distribution.
We suggest one such approach here and focus exclusively on
the case where memory effects are present.

By assuming the fitness distribution has the form of a
step function (otherwise know as a staircase function) we can
minimize the error between the theoretical prediction and the
observed data by adjusting the height of each step (or stair).
Suppose we have a vector of parameters a = [a0,a1, . . . ,aJ ],
we then define the distribution as

ρ(x,a,δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a0 for 0 < x � δ

a1 for δ < x � 2δ
...

aj for jδ < x � (j + 1)δ
...

aJ for Jδ < x � (J + 1)δ,

(C24)
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where
∑J

i=0 aj = [δJ ]−1. The mean fitness is

〈x〉 = av, (C25)

where v = (δ/2)[1,3,...,2J + 1]. Substituting ρ into Eq. (B17)
we get

G(z) =
I∑

i=0

ai

∫ (i+1)δ

iδ

(
1 − m

1 − mz

)x

dx

= [(1 − m)/(1 − mz)]δ − 1

log[(1 − m)/(1 − mz)]

I∑
i=0

ai

(
1 − m

1 − mz

)δi

.

(C26)

We can generate (randomly or systematically) a vector of
values z = [z0,z1, . . . ,zI ] at which the generating function
can be evaluated. The empirical data is the degree distribution
p = [p0,p1, . . . ,pK ] where K is the largest degree. The degree
distribution p, the generating function as given by Eq. (B16),
fitness parameters a, and the generating function as given by

Eq. (C26) are all connected by the following expression:

Zp = Wa. (C27)

Here Z is a I × K matrix whose (i,k)th entry is zi,k = zk−1
i−1

and W is a I × J matrix whose (i,j )th entry is given by

wi,j = [(1 − m)/(1 − mzi−1)]δ − 1

log[(1 − m)/(1 − mzi−1)]

(
1 − m

1 − mzi−1

)δ(j−1)

.

(C28)

While Eq. (C27) appears to be a simple linear algebra problem,
it is complicated by the fact that m depends on 〈x〉, which is
only known after a choice of a has been made, therefore W

is a function of both a and δ. This does, however, provide a
neat way to formally present the problem: We choose J < K

to prevent having more parameters than data points and solve

ρ(x) = ρ(x,a,δ), (C29)

such that

‖Zp − Wa‖ = min
a,δ

‖Zp − Wa‖. (C30)
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[17] S. Vajna, B. Tóth, and J. Kertész, New J. Phys. 15, 103023

(2013).
[18] Z. Jiang, Y. Zhang, H. Wang, and P. Li, J. Stat. Mech.: Theory

Exp. (2013) P02006.
[19] A. Vazquez, Phys. A (Amsterdam, Neth.) 373, 747 (2007).
[20] D. D. S. Price, J. Am. Soc. Inf. Sci. 27, 292 (1976).
[21] G. Caldarelli, A. Capocci, P. De Los Rios, and M. A. Muñoz,
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