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Econophysics of adaptive power markets: When a market does not dampen fluctuations
but amplifies them
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The average economic agent is often used to model the dynamics of simple markets, based on the assumption
that the dynamics of a system of many agents can be averaged over in time and space. A popular idea that is
based on this seemingly intuitive notion is to dampen electric power fluctuations from fluctuating sources (as,
e.g., wind or solar) via a market mechanism, namely by variable power prices that adapt demand to supply.
The standard model of an average economic agent predicts that fluctuations are reduced by such an adaptive
pricing mechanism. However, the underlying assumption that the actions of all agents average out on the time
axis is not always true in a market of many agents. We numerically study an econophysics agent model of
an adaptive power market that does not assume averaging a priori. We find that when agents are exposed to
source noise via correlated price fluctuations (as adaptive pricing schemes suggest), the market may amplify
those fluctuations. In particular, small price changes may translate to large load fluctuations through catastrophic
consumer synchronization. As a result, an adaptive power market may cause the opposite effect than intended:
Power demand fluctuations are not dampened but amplified instead.
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I. INTRODUCTION

Modern power markets face the challenge to satisfy a
continuous demand for electricity, despite fluctuating energy
sources as, e.g., solar or wind [1–6]. It has been proposed
to reduce fluctuations in power markets via time-varying
pricing schemes, in order to stimulate the shift of energy
consuming activities with flexible execution times as, e.g.,
washing or heating, to times with excess supply [7–10]. From
the perspective of a standard economic theory this is a simple
picture: A specific value of the price leads to a predictable total
demand. Consequently, there is an equilibrium price, where
demand and supply are balanced [11]. As a result, one would
expect that part of the demand thereby is shifted to times with
lower prices [7]. Thus the market would act as a low pass filter
for power fluctuations, an elegant idea at first sight, indeed.

However, real markets often behave differently than the sin-
gle representative agent of standard economic theory [12,13],
most prominently illustrated by crashes of stock markets and
similar phenomena resulting from interactions among a large
number of agents [14–18]. Even in markets where agents do
not interact directly, they may exhibit coordinated behavior.
For example, the actions of consumers may self-organize on
the time axis, with catastrophic synchronization as a possible
result. In that case, averaging over the dynamics of many
agents over time is not appropriate because the central limit
theorem’s assumption of independent agents is not given. The
market, instead of acting like a low pass filter that dampens
fluctuations, turns into a generator for catastrophic time series.

In fact, problems with the central limit theorem in dynam-
ical systems with many degrees of freedom are well known
from different fields and often are related to time series
that exhibit large fluctuations. Such phenomena have been
discussed, for example, in the contexts of earthquakes, rice
piles, stock markets, solar flares, and mass extinctions [19–21].
These systems have in common that fluctuations with broad or
power-law size distributions occur that do not need a full mech-
anism of self-organized criticality (SOC) at work. Instead,

coherent stochastic noise acting on a system with many agents
may suffice to explain such power-law-distributed fluctuations
[19]. Agents can react to the coherent noise in a way that
causes their actions to synchronize at rare events. As a result,
power-law-distributed event sizes appear even for narrow (and
even Gaussian) distributions of the coherent noise [21].

In this paper we study whether this mechanism may be
at work in markets, or more specifically, in power markets.
Collective behavior of agents in a market can be treated with
agent-based models allowing for individual behavior of agents.
Agent-based models constructed on simple rules of individual
behavior in markets have been shown to exhibit many features
of real markets [15–18,22]. We here study one of the simplest
possible agent-based models for an adaptive power market.

Our toy model consists of independent agents reacting to
a predefined global price time series. Their rare consumption
events set in once the actual price is below an individual highest
acceptable price. The highest acceptable prices of each agent
are updated with a stochastic process to account for saturation
after consumption and growing need for electricity in times
without consumption. This is to model rare consumption
events with flexible execution time, while the base demand
connected to time-fixed activities is ignored in this study. We
analyze the effect of demand synchronization at low prices.
As a result, the total demand can exceed the average demand
by several orders of magnitude. To prove the robustness of
this behavior, we analyze the demand distribution and the
demand curve (demand over price [11]) for different price
time series with and without correlation. We find the behavior
of our artificial market to be in sharp contrast to standard
economic theory. A sensitive demand curve and saturation
effects question the application of equilibrium prices.

II. MODEL DESCRIPTION

Let us now define the power market agent model. We
analyze an artificial market consisting of one power provider
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FIG. 1. (Color online) Sketch of the model dynamics for an
individual agent. Top: Price time series (blue) together with the price
acceptance of the agent (black). Bottom: Demand of the agent. With
increasing time we see a consumption event with lowering the highest
acceptable price (saturation), followed by two increments (growing
need) and another consumption.

and N power consumers. The power provider has to deal with
time-dependent supply S(t) (e.g., due to weather dependent
electricity production). In addition, the power provider has to
guarantee balance of supply and demand, as mismatch may
cause blackouts. Assuming a smoothly decreasing demand
for increasing prices D(P ), the power provider could control
demand using time-dependent prices P (t) = D−1[S(t)] with
the inverse function D−1 of D(P ), implicating D[P (t)] =
S(t).

Therefore, in every (integer) time step t the power provider
sets a price P (t) (with time average P̄ = 1) visible to all
consumers. The individual demand of an agent i is defined as

di(t) =
{

1 if P (t) � pi(t),

0 if P (t) > pi(t),
(1)

with its individual highest acceptable price pi(t), as illustrated
in Fig. 1. It is initialized with pi(t = 0) = rand(0,1) and
evolves according to

pi(t + 1) =

⎧⎪⎨
⎪⎩

rand(0,pi(t)), if P (t) � pi(t),

rand(pi(t),1), else with prob. f,

pi(t), else.

(2)

The term rand(a,b) denotes a random number uniformly drawn
from the half-open interval [a,b). The first case [P (t) �
pi(t)] corresponds to power consumption at time t . As a
consequence, the acceptable price will then also be lowered
to represent saturation. The second case, rare increases of
the highest acceptable price pi with probability f � 1, is to
model the increasing need for power-consumption with time.
This stochastic evolution of pi(t) is inspired by the coherent
noise model by Newman and Sneppen [19], where a resilience
threshold toward catastrophic events is evolved in time. In
contrast to Ref. [19], where all replacements are chosen out of
the whole interval between zero and one, here the values pi

may not increase for the first case in Eq. (2) or decrease for
the second case.

The total demand D(t) = ∑N
i=1 di(t) is satisfied by the

power provider. We avoid including an additional contribution
of time-fixed activities Dbase(t) into this model, since this
part is not the focus of the present study and would not

change the overall dynamics. To analyze the capabilities
of the power provider to shape demand time series D(t),
we use different types of noisy time series P (t). We take
independent identically distributed prices out of a Gaussian
distribution with mean P̄ = 1 and different standard deviations
σP . Additionally, to consider correlations over time (as they
are known for common price time series and for weather
phenomena), we use a Langevin equation as a particularly
simple realization,

P (t + 1) − P (t) = −v0[P (t) − P̄ ] + σ0ξ (t), (3)

with an independent normally distributed random variable ξ (t)
(the blue solid line in Fig. 3 shows the Gaussian density for
such a time series).

III. SYNCHRONIZATION AT LOW PRICES

Figure 2 on top shows a section of a price time series
according to Eq. (3) with v0 = 0.2 and σ0 = 0.1. In the bottom
panel, we see the according demand divided by the average
demand. The average demand D̄ = 1

T +1

∑T
t=0 D(t) for the

system with f = 10−3, N = 106 agents, and a simulation time
of T = 107 (plus 103 initial time steps for reaching a stationary
state) was calculated to be D̄ = 979. Therefore, a single
agent demands on average d̄ = D̄/N = 9.79 × 10−4 ≈ f .
The parameter f indicates the rareness of consumption. The
time series of D(t)/D̄ shows demand peaks more than two
orders of magnitude above the average demand dominating
the whole time series. This is due to synchronization: At low
prices, many agents demand at the same time. As a result,
the prices, fluctuating in a narrow range, cause a broadly
distributed demand time series with extreme events.

In Fig. 3 we see the density of highest acceptable prices
pi(t) averaged over time and agents (black circles),

ρp(P ) =
N∑

i=1

T∑
t=0

�pi (t),P /N(T + 1), (4)

FIG. 2. (Color online) The Gaussian distributed-price time series
P (t) shown on the top [generated with Eq. (3) and values v0 = 0.2,
σ0 = 0.1] translates into a broadly distributed total-demand time
series D(t) (shown on the bottom, divided by average demand
D̄). Simulations were performed for N = 106 agents with rare
consumption parameter f = 10−3. At low prices, consumers execute
their rare consumption activities in a synchronized fashion, leading
to total demand D far above the average demand D̄.
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FIG. 3. (Color online) Density of prices for the time series as
described in the caption of Fig. 2 (blue solid line). The average price
is indicated with a vertical line together with multiples of one standard
deviation (dotted lines). The density of highest acceptable prices pi(t)
[Eq. (4), black circles] shows a concentration at prices far below the
average price. The density of load bought at certain prices [Eq. (5),
red squares] shows a maximum at rare price events more than two
standard deviations below the average price. Simulation results are
shown for N = 106 and f = 10−3 (as in Fig. 2) and T = 107 time
steps.

the density of total loads consumed at certain prices (red
squares),

ρD(P ) =
T∑

t=0

D(t)�P (t),P /D̄, (5)

and the price distribution (blue solid line). The binning of data
values p [pi(t) or P (t), respectively] to intervals between
P = 0, 1

40 , 2
40 , 3

40 , . . . ,1 is realized with �p,P : �p,P = 1 if
P < p � P + 1

40 and �p,P = 0 if otherwise. The average
price P̄ is indicated with a black vertical line, and multiples of
one standard deviation of the price distribution are indicated
with dotted vertical lines. We observe that only a small
fraction of the demands are executed within one standard
deviation of the average price, 35% of the price events only
lead to 18% of the demand. This part is due to agents who
need to consume power very soon. The average price for
consumers

∑
t P (t)D(t)/

∑
t D(t) = 0.65 is much lower. Due

to synchronization effects, rare events below P̄ − 3σP = 0.5
constituting only 0.14% of the time series lead to a part of 16%
of the total demand. In conclusion, the agents indeed consume
at low costs and their strategy is beneficial. Additionally, the
strategy represents individual needs, implemented by random
moves of the individual highest acceptable prices.

Let us finally discuss how the rareness of consumption
influences extreme synchronization of demand. In Fig. 4, the
distribution of demand D is shown for independent Gaussian
distributed prices with σP = 1/6 and different rareness of
consumption (f = 10−2, f = 10−3, and f = 10−4). All simu-
lations in this study are done with N = 106 and T = 107. Even
in the case f = 10−2, where consumers buy on average in one
of one hundred time steps, maximum demands are almost two
orders of magnitude larger than the average demand. For rarer
consumption (smaller values of f ), the distribution of loads
clearly gets the shape of a truncated power law with exponent
α = 2, as expected from Ref. [19]. The results are qualitatively
the same, if the parameter f is drawn individually for every

10 −1 100 101 102 103

D/D̄
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10 −3
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ρ

FIG. 4. The demand density ρ(D/D̄) is shown for independent
Gaussian distributed prices (σP = 1/6), with N = 106, T = 107, and
different values of f as indicated. Even for a parameter f = 10−2,
where agents consume rather often, highest total demand is far above
the average. With f = 10−3 and f = 10−4, we see convergence
toward a power law with exponent α = 2.

consumer [replacing f by individual fi in Eq. (2)]. For values
fi taken out of a uniform distribution in the half-open interval
(0,10−3] we found the same power law with exponent α = 2
and slightly increased cutoff compared to constant f = 10−3.

IV. ROBUST OCCURRENCE OF HIGH DEMAND

With Fig. 5 we can see how our artificial power market
reacts to price time series of different types, as shown on the
top. On the bottom, the according load densities are shown
(shifted for better visibility) for a system with f = 10−3. The
results emphasize the robustness of synchronization in our
artificial market. On top the result for Gaussian distributed
prices with σP = 1/6 is shown (A). Below, the same type of
price time series with σP = 1/20 is used with similar results
(B). We found that changing the standard deviation of the
prices σP leads to the same dynamics, only with buying events
at different typical prices. From a study on coherent noise
models [21] we can conclude that using other distributions
for the prices (exponential, power laws) should not change
the results considerably. The third case is a correlated time
series generated with Eq. (3) (v0 = 0.2 and σ0 = 0.1) (C). The
same type of broadly distributed demand emerges. We also
tested a real-price time series by using the Dow Jones index
(detrended daily closure values 1900–2007, accordingly the
model was evolved only for about T = 29 000 time steps),
with similar results (D). In conclusion, this means that for our
artificial market the synchronization of consumers occurs for
very different price time series and can hardly be avoided.
This contrasts to the picture of a controllable market of
standard economy, where D(t) would converge to a suitable
expected value D[P (t)] for a large number of consumers
N . This would hold with the central limit theorem, if the
individual demands di(t) would be statistically independent,
as assumed in models of power markets inspired by standard
economy [23]. However, we studied a market model where in
contrary the individual demands di(t) are strongly correlated.
Generalized central limit theorems for random variables with
correlations teach us about large fluctuations being present
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FIG. 5. (Color online) The price time series shown on the top
have widely differing features. We used uncorrelated Gaussian
distributed prices with σP = 1/6 (A, as used in Fig. 4) and σP = 1/20
(B), as well as a time series with correlations over short times
(C, as used in Fig. 2) and the Dow Jones (D, locally detrended). The
according demand density for these cases is shown on the bottom
(shifted for better visibility. N = 106, f = 10−3, T = 29 000 in case
D and T = 107 else). Synchronization of demand occurs robustly.

in different time scales [24]. In our model, fluctuations appear
due to rare consumption at low prices, even without elaborated
strategies or interactions among agents as studied in financial
market models [14–18,25].

Finally, let us discuss the demand curve that is the basic
tool for the power provider to set prices. In Fig. 6 we see a
binning of events according to the rescaled demand D/D̄ and
price P . The counts of events are shown with color values in
logarithmic scale. On the left we see results for uncorrelated
prices and σP = 1/6 (case A in Fig. 5). Due to the distribution
of prices P , events with low prices are generally rare, but if they
occur, they lead to high demand. The average demand for a
certain price interval according to this binning is indicated with
a dashed line. This is the so-called demand curve frequently
used in standard economics to calculate equilibrium prices.
The demand spans more than three orders of magnitude within
about four standard deviations of the price (we checked that
the same holds for the smaller value σP = 1/20). Smooth
changes of the price lead to drastic changes of the demand.
This is in sharp contrast to standard economics and limits
the feasibility of equilibrium prices. Additionally, the demand
values span more than an order of magnitude for many price

FIG. 6. (Color online) Binning of events by price intervals and
demand intervals (N = 106, f = 10−3, T = 107). Counts of events
are shown with color values in logarithmic scale for Gaussian-
distributed uncorrelated prices (left, case A in Fig. 5) and correlated
prices (right, case C in Fig. 5). The dashed lines show the average
demand for price intervals (the so-called demand curve) with an
almost exponential dependence in both cases. The demand curve is a
crucial tool for guessing equilibrium prices; therefore, an exponential
dependence together with large fluctuations indicates difficulties for
the power provider.

values. This is due to saturation effects (only few agents buy
at a low price, if a lower price recently occurred). In the right
panel of Fig. 6, results for the correlated price time series are
shown. The demand curve is not changed considerably, while
the distribution of demands for certain prices is broadened. Due
to saturation effects, consecutive low prices lead to shrinking
loads.

V. SUMMARY AND OUTLOOK

We studied a simple agent-based model of an electricity
market with variable prices and studied collective effects when
consumers aim for lowest prices. In particular, we consider
consumption with time-flexible execution as, e.g., washing
or heating. Time-variable consumption is modeled with a
stochastic process for individual highest acceptable prices. As
a central quantity, the total demand emerging in our artificial
market has been analyzed.

Our main observation is that the rare consumption events
of the consumers in the market tend to strongly synchronize
at low prices. This leads to peak demands exceeding the
average demand by several orders of magnitude. These
frequent extreme events account for a considerable part of
the average demand over time. We find that high demands
occur robustly for different types of price time series, as long
as the pricing noise hits the consumers coherently. We find
power-law-distributed demands with large extreme events,
both, for uncorrelated price time series as well as for correlated
time series. The catastrophic behavior of the system appears
to be hardly to prevent. In earlier power market models
[7,10,23,26], correlations among consumers have usually not
been considered. Indeed, a classical model with a single utility-
maximizing agent, only, demonstrates how to set prices such
that demand is shifted to desired times [7]. In some agent-based
models with detailed description of power distribution [23],
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the time-dependent demand of individual users is modeled
as independent; therefore, the total demand converges to a
predefined shape. Our results complement a different line of
research emphasizing increased fluctuations in complex power
markets. In Ref. [26], the role of feedback loops between
consumers, suppliers, and distribution was emphasized, and in
Ref. [10], it was shown that the feedback between suppliers
and consumers can increase market fluctuations as well.

Finally, we question the concept of equilibrium prices in
the context of our artificial market. As the system shows an
exponential growth of demand when prices drop, equilibrium
prices can hardly establish. Demands take on a wide range of
values, even at the same price.

While these are results from a statistical physics-inspired
toy model for an electricity power market with fluctuating
energy sources and an adaptive pricing scheme, they may
provide a lesson for real markets as well. In particular,
they seem to indicate that the, at first sight, brilliant idea
to use market mechanisms as a low-pass filter for fluc-
tuating electricity sources (e.g., by communicating price
information to consumers through the so-called smart meters)
may not only break down under certain conditions. More
importantly, they also can lead to catastrophic consequences
when a basic prerequisite fails: Breakdown of the cen-
tral limit theorem when consumers do not act statistically
independently.
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