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Robustness of scale-free networks to cascading failures induced by fluctuating loads
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Taking into account the fact that overload failures in real-world functional networks are usually caused by
extreme values of temporally fluctuating loads that exceed the allowable range, we study the robustness of
scale-free networks against cascading overload failures induced by fluctuating loads. In our model, loads are
described by random walkers moving on a network and a node fails when the number of walkers on the node
is beyond the node capacity. Our results obtained by using the generating function method show that scale-free
networks are more robust against cascading overload failures than Erdős-Rényi random graphs with homogeneous
degree distributions. This conclusion is contrary to that predicted by previous works, which neglect the effect of
fluctuations of loads.

DOI: 10.1103/PhysRevE.92.012814 PACS number(s): 64.60.aq, 64.60.ah, 89.75.Fb, 05.40.Fb

I. INTRODUCTION

Modern human societies are supported by various func-
tional networks, such as power grids, the Internet, road
systems, and corporate transaction networks [1,2]. Since the
function of a network is guaranteed by its global connectivity,
a decomposition of the network into disconnected components
by failures on network elements (nodes or links) might induce
the breakdown of the function, which causes a fatal damage
to our daily life. It is thus crucial to elucidate what type of
network topology is resilient to failures. In this context, the
vulnerability of complex networks against random failures
and targeted attacks has been extensively studied [3–8]. In
these studies, failed nodes are removed from a network at
the same time. In addition to such simultaneous failures,
many of actual breakdowns are driven by a chain of failures
triggered by initial failures of a single or a few nodes. Initial
failures and the subsequent avalanche of failures in functional
networks are often induced by loads exceeding node capacities.
For instance, a bankruptcy of an insolvent company and
subsequent chain bankruptcies due to redistributed debts of
the bankrupt company can be regarded as a process of such
cascading overload failures in a corporate transaction network.

In order to describe how networks lose their global connec-
tivity by cascading overload failures, Motter and Lai proposed
a model in which the load at a node is given by the betweenness
centrality of the node [9]. Their model predicts that the
initial removal of the highest degree (or highest load) node
leads a large-scale cascade and scale-free networks are more
fragile against cascading overload failures than homogeneous
networks. The vulnerability of scale-free networks has also
been found in other models of cascading failures [10–15]. In
these models, overload failures are caused by nonfluctuating
loads determined uniquely by the network structure that exceed
the capacity of each node. It is, however, quite general that the
load on a node fluctuates temporally [16–18]. An overload
failure takes place when an instantaneous value of fluctuating
load exceeds the capacity, as in the cases of river flooding or
financial collapse in a country [19]. The property of cascading
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overload failures induced by extreme events might be largely
different from that by nonfluctuating loads.

However, the robustness of networks against cascading
failures induced by fluctuating loads has not been widely
argued so far [20]. Among several ways to describe fluctuating
loads, Kishore et al. modeled them by random walkers on
a network [21,22]. They calculated the overload probability
that the number of random walkers on a node exceeds the
predetermined node capacity. Moreover, applying this theory,
the network robustness against noncascading overload failures
has been studied, in which nodes are simultaneously removed
once according to the overload probability [23,24]. Although
these theories take into account the temporal fluctuations
of loads, cascade processes triggered by the initial overload
failures have not been considered. In this paper, we examine the
robustness of complex networks against cascading overload
failures induced by the extreme value of fluctuating loads.
Adopting the random walker model proposed by Kishore
et al. and their theory of the overload probability [21,22],
we present a simple model to describe cascades of overload
failures caused by fluctuating loads and calculate the size of
the giant component after completing the cascade by using
the generating function formalism. Our main result shows that
scale-free networks are more robust against cascading overload
failures than homogeneous networks, which is contrary to that
predicted by previous works [9–15].

The rest of this paper is organized as follows. In Sec. II we
present a model to describe cascading overload failures on a
complex network based on the random walker model proposed
by Kishore et al. [21,22]. In Sec. III we explain the method
to calculate the size of the giant component after completing
the cascade process by utilizing the master equation for the
probability of a node to have the initial degree k0 and the degree
k at a cascade step τ and the generating function formalism.
Our results are presented in Sec. IV. Section V is devoted to
the summary and concluding remarks.

II. MODEL

In a functional network, some sort of flow is often required
to realize its functionality and at the same time the flow plays
a role of a load in the network, such as electric current in
a power grid or packet transfer on the Internet. The relation
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between the average and fluctuation of flow in such networks
has been investigated empirically and theoretically [16–18].
These studies elucidated that the flux fluctuations at a node
have the same scaling behavior with the fluctuations of the
number of random walkers on the node. Inspired by this fact,
Kishore et al. modeled fluctuating loads by random walkers
moving on a network [21,22], where the number of walkers
indicates the amount of loads. The stationary probability to
find a random walker on a node of degree k in a connected and
undirected network with M0 links is given by [25]

pk = k

2M0
. (1)

Using this relation, the probability hk(w) that w walkers are
observed on a node of degree k is presented by

hk(w) =
(

W0

w

)
pw

k (1 − pk)W0−w, (2)

where W0 is the total number of walkers in the network. This
leads to a natural definition of the node capacity qk of a node
of degree k as

qk = 〈w〉k + mσk, (3)

where 〈w〉k and σk are the average and the standard deviation
of the binomial distribution hk(w), which are given by 〈w〉k =
W0pk and σk = √

W0pk(1 − pk), respectively, and m is a real
positive parameter that characterizes the node tolerance to
load. Since the overload probability FW0 (k) of a node of degree
k is the probability of w to exceed qk , FW0 (k) is given by
summing up the distribution function (2) over w larger than
qk . Thus, we have [21]

FW0 (k) =
W0∑

w=�qk�+1

(
W0

w

)
pw

k (1 − pk)W0−w

= Ik/2M0 (�qk� + 1,W0 − �qk�), (4)

where Ip(a,b) is the regularized incomplete beta function [26]
and �x� is the greatest integer not greater than x. It is important
to pay attention to the fact that the overload probability is a
decreasing function of degree k [21].

Based on the above overload probability, we model the
cascade process of overload failures as follows.

(i) Prepare an initial connected, uncorrelated, and
undirected network G0 with N0 nodes and M0 links, in which
W0 random walkers exist, and determine the capacity qk of
each node according to Eq. (3).

(ii) At each time step τ , assign Wτ random walkers to the
network Gτ at time τ . The total load Wτ is given by

Wτ =
(

Mτ

M0

)r

W0, (5)

where Mτ is the total number of links in the network Gτ and r

is a real positive parameter.
(iii) Calculate the overload probability of every node and

remove nodes from Gτ with this probability.
(iv) Repeat (ii) and (iii) until no node is removed in

procedure (iii).
In procedure (ii), the total load Wτ is reduced in accordance

with the reduction of the network size. In actual cases of

cascading failures, the total load is often reduced to some
extent during a cascade process to prevent the breakdown of
the network function. For instance, when a problem arises in a
power supply system due to a natural disaster, the temporary
restriction of electricity use is sometimes introduced to avoid
a large-scale breakdown of the power grid, as in the case of
the Tohoku earthquake and tsunami in 2011 [27]. In addition,
when a company goes bankrupt, a large-scale chain bankruptcy
could be prevented by the reduction of the total debt (loads)
on the transaction network by means of, for example, a special
low-interest lending facilities for companies having business
relationships with the bankrupt company or the injection of
taxpayers’ money. The quantity Wτ given by Eq. (5) represents
such a reduction of the total load during the cascade process.
The exponent r characterizes how quickly the total load
decreases with decreasing the network size, which we call
hereafter the load reduction parameter. Although the initial
network G0 is connected, the network Gτ at cascade step τ is
not necessarily connected. For an unconnected network Gτ , we
assume that Wτ random walkers are distributed to components
in proportion to the numbers of links in these components.
Namely, the load allocated to the αth component is given by

Wα
τ = Mα

τ

Mτ

Wτ , (6)

where Mα
τ is the number of links in the αth component.

In procedure (iii), the overload probability during the
cascade process cannot be calculated straightforwardly by
Eq. (4). First, the degree k of a node in the network Gτ at step τ

is not the same as its initial degree k0. Since the probability to
find a random walker on a node inGτ is a function of the present
degree k of the node while the node capacity is determined by
its initial degree k0, the overload probability is presented by
Eq. (4) with replacing qk by qk0 . Moreover, when the network
Gτ is unconnected, the overload probability must be calculated
in each component, because random walkers in a component
cannot move beyond the component. Therefore, the overload
probability of a node of degree k, whose initial degree is k0, in
the αth component is given by

FWα
τ
(k0, k) = Ik/2Mα

τ
(�qk0 (W0)� + 1,Wα

τ − �qk0 (W0)�), (7)

where Mα
τ and Wα

τ are again the total number of links and
the number of random walkers in the αth component of Gτ ,
respectively.

The robustness of a network against cascading overload
failures described above is evaluated by the relative size of
the giant component Sf ≡ Nf/N0, where Nf is the number of
nodes in the largest component of the network Gf at the final
stage of the cascade process. More specifically, the robustness
of the network is measured by the load reduction parameter
rc above which the relative size Sf becomes finite. A network
providing a smaller rc can be regarded to be more robust in
the sense that there exists a giant component even if the total
load is slowly reduced in accordance with the reduction of the
network size during the cascade process.

III. SIZE OF THE GIANT COMPONENT

In order to assess the robustness of a network, we calculate
the relative size Sτ of the giant component in the network Gτ at
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cascade step τ . The calculation of Sτ requires information on
the load Wα

τ to obtain the overload probability FWα
τ
(k0,k) for

each component. It is, however, difficult to find an analytical
expression of Wα

τ . Thus, we assume that random walkers can
jump to other components with a small probability, which
enables us to estimate the stationary probability to find a walker
on a node of degree k by

pk = k

2Mτ

, (8)

instead of pα
k = k/2Mα

τ , and the overload probability by

FWτ
(k0,k) = Ik/2Mτ

(�qk0 (W0)� + 1,Wτ − �qk0 (W0)�), (9)

instead of Eq. (7). This simplification does not largely change
the overload probability if the number of links in a component
is large enough. The reason is the following. The probability
that w walkers are found on a degree-k node in the αth
component containing Wα

τ walkers is written as

h(w; Wα
τ ,pα

k ) =
(

Wα
τ

w

)(
pα

k

)w(
1 − pα

k

)Wα
τ −w

, (10)

if random walkers are confined in the component. The
average and the standard deviation of this binomial distribution
function of w are 〈w〉k = Wα

τ pα
k = Wτk/2Mτ and σk =√〈w〉k(1 − k/2Mα

τ ), respectively, where we used Eq. (6) and
the relation pα

k = k/2Mα
τ . In the case that random walkers

are allowed to jump between components, on the other hand,
the probability to find w walkers on a degree-k node is
given by h(w; Wτ,pk). The average 〈w〉′k of this distribution
function coincides with the average 〈w〉k of h(w; Wα

τ ,pα
k ).

Although the standard deviation σ ′
k = √〈w〉k(1 − k/2Mτ )

of h(w; Wτ,pk) is larger than σk of h(w; Wα
τ ,pα

k ), σ ′
k is

not very different from σk if Mα
τ (thus Mτ ) is large

enough. Therefore, both distribution functions h(w; Wα
τ ,pα

k )
and h(w; Wτ,pk) with the same average and similar widths are
close to each other. Because of this similarity, FWα

τ
(k0,k) =∑

w��qk0 �+1 h(w; Wα
τ ,pα

k ), which leads Eq. (7), can be ap-

proximated by FWτ
(k0,k) = ∑

w��qk0 �+1 h(w; Wτ,pk), giving
Eq. (9).

We calculate the relative size Sτ of the giant component by
using the generating function method [28]. To this end, here we
slightly modify the rule of procedure (ii) described in Sec. II
so that overloaded nodes are not removed but are left in the
system as zero-degree nodes for which random walkers never
visit. This does not influence any results in this work, except
that the total number of nodes in Gτ remains constant at N0,
which makes the theoretical treatment easier. In spite of this
modification, we will continue to use the expression “remove a
node” for simplicity, but this actually means “remove all links
from a node.” The generating function method then enables
us to calculate Sτ if the network Gτ is uncorrelated and the
degree distribution function Pτ (k) of Gτ is given. In order to
estimate Pτ (k), we introduce the probability �τ (k0,k) that a
randomly chosen node has the degree k and the initial degree
k0. Obviously, the probability �τ (k0,k) is related to the degree
distribution Pτ (k) through

Pτ (k) =
∑
k0�k

�τ (k0, k). (11)

As a special case we have, at τ = 0,

�0(k0, k) = P0(k)δk0k, (12)

because k is always equal to k0 in the initial network G0.
To obtain the probability �τ (k0,k), we further introduce the
probability φτ (k) that the overload failure occurs on a node
connected to a node of degree k in the networkGτ . Considering
that �τ (k0,k)/Pτ (k) represents the probability of a degree-k
node chosen randomly from Gτ to have the initial degree k0,
the probability φτ (k) is expressed as

φτ (k) =
∑
k0

k0∑
k′=1

Pτ (k′|k)
�τ (k0, k

′)
Pτ (k′)

FWτ
(k0, k

′), (13)

where Pτ (k′|k) is the conditional probability that a node of
degree k is connected to a node of degree k′. Since the network
G0 has no degree correlations,Gτ generated by removing nodes
randomly from G0 with a probability depending only on the
degree is also uncorrelated [29]. Therefore, the conditional
probability is presented by Pτ (k′|k) = k′Pτ (k′)/〈k〉τ , where
〈k〉τ is the average degree of Gτ , and φτ is written as

φτ =
∑
k0

k0∑
k′=1

k′�τ (k0, k
′)

〈k〉τ FWτ
(k0, k

′), (14)

which is independent of k. The probability �τ (k0, k) is equal
to the probability that a randomly chosen node from Gτ−1 has
the initial degree k0 and the degree of this node becomes k

during the cascade from Gτ−1 to Gτ . Thus, we can set up the
master equation for �τ (k0, k) as

�τ (k0, k) =
∑
k′�k

�τ−1(k0, k
′)
{(

k′

k

)
φk′−k

τ−1 (1 − φτ−1)k

× [1 − FWτ−1 (k0, k
′)] + δk0FWτ−1 (k0, k

′)
}
. (15)

The right-hand side of this equation represents the probability
that a degree-k′ node in Gτ−1 becomes a node of degree k.
The first term describes the situation that the degree-k′ node
survives and k′ − k nodes adjacent to this node are removed
by overload failures. The second term stands for the case that
the degree-k′ node itself experiences an overload failure and
becomes a zero-degree node. Solving numerically Eq. (15)
with the aid of Eq. (14), we can obtain the time evolution of
the probability �τ (k0, k) and the degree distribution Pτ (k) by
Eq. (11). The relative size Sτ of the giant component at cascade
step τ is calculated by [28]

Sτ = 1 −
∑

k

Pτ (k)uk, (16)

where u is the smallest non-negative solution of the transcen-
dental equation

u = G
(τ )
1 (u), (17)

with G
(τ )
1 (x) the generating function of the remaining degree

distribution, which is defined by

G
(τ )
1 (x) = 1

〈k〉τ
∑

k

(k + 1)Pτ (k + 1)xk. (18)
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FIG. 1. (Color online) Relative size Sτ of the giant component as
a function of the cascade step τ . The initial network is an Erdős-Rényi
random graph with 5000 nodes and 12 500 links, which implies
that the initial average degree is 〈k〉0 = 5.0. The symbols indicate
the results obtained by numerical simulations following the cascade
process from (i) to (iv) described in Sec. II and averaging over 50
network realizations. Error bars represent one standard deviation
from the mean values. The lines show the results calculated by
the analytical method explained in Sec. III. The total number of
walkers at the initial cascade step is W0 = 25 000. The values of the
node tolerance parameter m and the load reduction parameter r are
displayed in the figure.

According to procedure (iv) stated in Sec. II, the cascade
process must be terminated when no node experiences over-
load failures. In an actual calculation, we stop the cascade
process at the step τ satisfying the condition

∑
k,k0

FWτ
(k0, k)�τ (k0,k) <

1

N0
. (19)

This condition implies that the expectation number of over-
loaded nodes becomes less than unity.

It should be noted that the above formalism is based on
the approximation that random walkers are allowed to jump
over components with a small probability. In order to evaluate
the accuracy of this approximation, we compare the time
evolutions of Sτ for an Erdős-Rényi random graph calculated
by both the method explained in this section and numerical
simulations following the cascade process from (i) to (iv)
described in Sec. II. The results shown in Fig. 1 indicate that
Sτ calculated by Eq. (16) agrees quite well with the simulation
result, which reflects the high accuracy of the approximation.

IV. RESULTS

We assess the robustness of networks against cascading
overload failures by computing the relative size Sf of the
giant component at the final stage of the cascade process as a
function of the load reduction parameter r . In this work, we
examined two types of initial networks, namely, homogeneous
Erdős-Rényi (ER) random graphs and scale-free (SF) networks
with inhomogeneous degree distributions. An SF network is
generated by the configuration model [30] with the degree

FIG. 2. (Color online) Relative size Sf of the giant component
at the final stage of the cascade process as a function of the load
reduction parameter r , for an ER random graph (black dashed line
and solid squares) and an SF network (red solid line and solid circles).
The SF network has the degree distribution given by Eq. (20) with
γ = 2.5. The lines represent the results calculated by the analytical
method explained in Sec. III. The symbols indicate the simulation
results obtained by following numerically the cascade process from
(i) to (iv) described in Sec. II and averaging over 50 samples. Only
error bars larger than the symbol size are shown. In this calculation,
we set N0 = 104, M0 = 2 × 104, m = 2.0, and W0 = 2M0.

distribution given by

P0(k) =
{

C

kγ + dγ
for k � kmin

0 for k < kmin,
(20)

where d is a real positive parameter and γ is the exponent
describing the asymptotic power-law form of the degree
distribution, i.e., P0(k) ∝ k−γ for k 
 d. In Eq. (20), kmin

is the minimum degree and C is the normalization constant.
The parameters d and kmin can control the average degree 〈k〉0

for a fixed value of γ . Throughout this paper the minimum
degree is fixed at kmin = 2. Figure 2 shows the r dependence
of Sf for an ER random graph (black dashed line and solid
squares) and for an SF network (red solid line and solid circles).
Both networks have N0 = 104 nodes and M0 = 2 × 104 links,
which implies that the initial average degree is 〈k〉0 = 4.0.
The initial total load is chosen as W0 = 2M0 and the node
capacity qk is determined by Eq. (3) with m = 2.0. For the SF
network, the exponent γ is set as γ = 2.5 and d is tuned to
satisfy 〈k〉0 = 4.0. The solid and dashed lines in Fig. 2 indicate
the results calculated by the analytical method explained
in Sec. III, whereas the symbols represent Sf obtained by
simulating numerically the cascade process from (i) to (iv)
described in Sec. II. For both types of networks, the analytical
results agree quite well with the numerical ones. As shown
in Fig. 2, there exists a value rc(N0) below which Sf = 0
and above which Sf > 0. This implies that a global cascade
of overload failures occurs if the total load Wτ is reduced
during the cascade more slowly than the reduction scheme (5)
with r = rc(N0), while a finite fraction of nodes survives the
cascade if the reduction of Wτ is faster. The fact that the
value of rc(N0) for the SF network is smaller than that for
the ER random graph suggests that SF networks are more
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FIG. 3. (Color online) Scaling plot of Sf(r,N0) for ER random
graphs of several sizes (N0 = 217, 218, 219, and 220). The average
degree of these networks is set to be 〈k〉0 = 4.0. The calculations
have been done under the condition of W0 = N0〈k〉0 and m = 2.0.
In this plot, we choose rc = 1.84, β = 1.27, and 1/ν∗

r = 19.45.
Two branches correspond to the percolating and nonpercolating
phases.

robust to cascading overload failures than ER random graphs.
This tendency is opposite to what was predicted by previous
works [9–15].

The above conclusion, however, is obtained for finite-size
networks. It is crucial to study the robustness of infinitely
large SF networks against cascading overload failures. If
the change of Sf at r = rc(N0) provides a critical transition
when N0 goes to infinity, we can use the finite-size scaling
analysis to calculate rc in the thermodynamic limit. According
to the finite-size scaling theory, the relative size of the giant
component in the network Gf at the final stage of the cascade
process starting from the initial network G0 of size N0 is
expressed as

Sf(r,N0) = N
−β/ν∗
0 �

(
N

1/ν∗
0 |r − rc|

)
, (21)

where the correlation volume exponent ν∗ characterizes the
divergence of the number of nodes Nξ within the correlation
volume as Nξ ∝ |r − rc|−ν∗

in the infinite system, β is the
critical exponent for the approach to zero of Sf(r,∞), rc is
the critical load reduction parameter in the thermodynamic
limit, and �(x) is a scaling function. Therefore, if the suitable
values of the parameters ν∗, β, and rc are selected, the quantity
N

β/ν∗
0 Sf(r,N0) as a function of N

1/ν∗
0 |r − rc| collapses onto a

single curve for various values of r and N0. Figure 3 shows
such a plot for ER random graphs of different sizes with the
use of the r dependence of Sf(r,N0) calculated by the method
explained in Sec. III and the best-fit values of ν∗, β, and rc.
The fact that all data collapse onto a single curve implies
that the transition at r = rc can be considered as a critical
phenomenon. Similar scaling behaviors have been confirmed
for SF networks.

The criticality of the network Gf at r = rc has also been
confirmed by the fractal property of the giant component in Gf.
The fractality of complex networks is widely investigated by
the box covering algorithm [31–37]. If the minimum number
NB(lB) of subgraphs of radius lB required to cover a given

FIG. 4. (Color online) Number of subgraphs NB(lB) for the giant
components in Gf obtained numerically by simulating the cascade
process with r = rc(N0) starting from an ER random graph (black
solid squares) and an SF network with γ = 3.5 (red solid circles).
The number of nodes and the average degree of both of the initial
networks are N0 = 104 and 〈k〉0 = 4.0, respectively. The calculations
have been done under the condition of W0 = N0〈k〉0 and m = 2.0.
The results are averaged over 100 samples. The longitudinal axis is
rescaled by NB(lB) at lB = 1. The dashed lines are merely guides to
the eye.

connected network satisfies the relation

NB(lB) ∝ l
−dB
B , (22)

the network is considered to be fractal with the fractal
dimension dB [31]. We calculated, by using the compact-box-
burning algorithm [38], NB(lB) for giant components included
in networks Gf at the final stage of the cascade process with
r = rc(N0) starting from both an ER random graph and an
SF network. The giant components are obtained numerically
by simulating the cascade process described in Sec. II. The
results shown in Fig. 4 indicate that the structures of these
giant components exhibit the fractal nature, which supports
the criticality of Gf at r = rc. The fractal dimension for the ER
random graph is dB = 1.54 ± 0.01, while dB = 2.13 ± 0.02
for the SF network with γ = 3.5. These values of dB are
different from those of giant components at the critical point
of the conventional percolation with random node removals,
which are dB = 2 for ER random graphs (or SF networks
with γ � 4) and dB = (γ − 2)/(γ − 3) for SF networks with
3 < γ < 4 [39]. Such a discrepancy is, of course, due to
the difference in ways of node removals. In the cascade
process, nodes that will be removed at the cascade step τ

depend strongly on nodes removed at τ − 1, as in the case
of a fire spread for which a portion remaining unburned has
a different structure from that of a survival from random
removals.

The critical load reduction parameter rc calculated by the
finite-size scaling method is plotted in Fig. 5 as a function
of the exponent γ of SF networks. In this figure, rc for the
ER random graph is also indicated by the horizontal dashed
line. The results only for γ � 5 are presented here, because
for a small value of γ the computation of �τ (k0,k) requires
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FIG. 5. Critical load reduction parameter rc as a function of the
exponent γ in the thermodynamic limit. In this calculation for SF
networks, we tune the parameter d in Eq. (20) to satisfy 〈k〉0 = 4.0
for various values of γ . The values of rc are estimated through the
finite-size scaling analysis for Sf(r,N0) calculated by the method
described in Sec. III under the condition of W0 = 〈k〉0N0 and m =
2.0. The horizontal dashed line is the result for the ER random graph
(γ → ∞) with 〈k〉0 = 4.0.

a long CPU time due to the increase of the maximum degree
kmax of the initial network G0 associated with a decrease of γ

as is given by kmax ∝ N
1/γ

0 . We see from Fig. 5 that rc is an
increasing function of γ . This implies that the enhancement
of the SF property by decreasing γ makes networks robust to
cascading overload failures even in the thermodynamic limit. It
should be emphasized that rc is always positive for any γ . This
is because in any network a cascade of overload failures under
r = 0 never stops until the network collapses completely. Our
result, which is contrary to previous predictions [9–15], comes
from the fact that the overload probability is a decreasing
function of degree k. At the first step of the cascade process,
nodes with small degrees are more likely to be removed
according to the overload probability FW0 (k). A low-degree
node tends to be connected to a node with large degree in
an uncorrelated SF network. The overload probability of a
high-degree node adjacent to the low-degree node that was
removed at the first step becomes smaller at the second cascade
step than its initial overload probability. Therefore, nodes
with relatively small degrees are again preferentially removed
also at the second step and so on. It is obvious that SF net-
works are robust against preferential removals of low-degree
nodes [40].

Our model differs from previous models of cascading
overload failures in two points. One is that overload fail-
ures in our model occur when fluctuating loads exceed the
capacities predetermined for nodes, while failures are caused
by nonfluctuating loads (or average values of fluctuating loads)
exceeding the node capacities in previous models [9–15]. The
other difference is in the dynamics of loads on a network. In
many of previous works [9–15], the load is defined by flow
passing through the shortest path between a pair of nodes.
This type of load describes, for example, a packet flow in the
Internet and a traffic flow in a road system. On the other hand,
loads in our model move randomly on a network, as in the

FIG. 6. Degree dependence of the overload probability Fu(k) for
several values of the node tolerance parameter m. The lines from
top to bottom represent the results for m = 2.0, 3.0, 4.0, 5.0, and
6.0, respectively. The size of the set Vu is fixed at u = 500. The
load distribution h̃k(w) required to calculate Fu(k) is numerically
evaluated by computing the partial betweenness centrality for each
of 104 different sets Vu selected from each of 30 SF networks with
104 nodes. The degree distribution of these SF networks is given by
Eq. (20) with γ = 2.5 and d = 0.152 providing 〈k〉 = 4.0.

case of a flow of debt in a corporate transaction network. It
is important to clarify whether the robustness of SF networks
is caused by the fluctuation of the load or by its random walk
behavior.

In order to identify the origin of the robustness, namely,
the origin of FW0 (k) being a decreasing function of degree
k, we calculate the overload probability for fluctuating loads
imposed by a shortest-path flow. Fluctuating loads carried by
flow along the shortest paths have been argued in Ref. [16]
to explain the relation between the average flux and the
fluctuations. According to this work, we newly define the load
wi of the node i by

wi =
∑

(j,j ′ )∈Vu
(j �=j ′ )

σjj ′(i)

σjj ′
, (23)

where Vu is a set of u node pairs that are randomly selected
from (N0 − 1)(N0 − 2)/2 node pairs in G0 excluding the node
i, σjj ′ is the total number of shortest paths between the
pair (j,j ′) in Vu, and σjj ′(i) is the number of those paths
that pass through i. Since the quantity represented by the
right-hand side of Eq. (23) is equivalent to the betweenness
centrality bi if Vu is chosen as the set of all node pairs,
namely, u = (N0 − 1)(N0 − 2)/2, we call the above quantity
wi the partial betweenness centrality. The partial betweenness
centrality of a node depends on which node pairs are selected
for the set Vu and thus the load wi fluctuates in accordance
with the choice of Vu. For a large number of different sets Vu

with 1 � u � (N0 − 1)(N0 − 2)/2, the distribution h̃i(w) of
the load can be calculated for each node. As the conventional
betweenness centrality bi is strongly correlated to the degree
ki in an uncorrelated network [41,42], the partial betweenness
centrality of a node is also expected to have a correlation with
the degree of the node. In fact, we have confirmed numerically
that two distribution functions h̃i(w) and h̃j (w) of the load

012814-6



ROBUSTNESS OF SCALE-FREE NETWORKS TO . . . PHYSICAL REVIEW E 92, 012814 (2015)

TABLE I. Robustness and fragility of SF networks against
cascading overload failures induced by several types of loads. The
fragility for the shortest path flow without fluctuation is a consequence
of previous work [9].

Load flow Without fluctuation With fluctuation

shortest path fragile robust
random walk fragile robust

on the nodes i and j that have the same degree are close
to each other. Therefore, we can define the degree-dependent
load distribution h̃k(w) for the partial betweenness centrality
model, which corresponds to the load distribution hk(w) given
by Eq. (2) for the random walker model. The node capacity
qk is also defined by Eq. (3) with the average load 〈w〉k
and the standard deviation σk calculated by the distribution
function h̃k(w). Finally, as in the case of the random walker
model, the overload probability is defined as the probability
that the load of a node of degree k exceeds its capacity qk ,
which is calculated by

∫ ∞
qk

h̃k(w)dw. Since h̃k(w) depends
on u, we denote this overload probability by Fu(k) instead
of FW0 (k).

Figure 6 shows the degree dependence of Fu(k) for several
values of the node tolerance parameter m. We see that the
overload probability Fu(k) is a decreasing function of k for
any m. This implies that SF networks are robust also against
cascading overload failures induced by fluctuating shortest-
path flow. It is not surprising that the degree dependences of
FW0 (k) and Fu(k) show a similar tendency, because it has
been reported that the couplings between the fluctuations
and the average of the number of random walkers and the
partial betweenness centrality on individual nodes obey the
same scaling law [16]. We can also consider a situation
that cascading failures are caused by nonfluctuating loads
by random walkers. In this case, an overload failure occurs
when the average number of walkers 〈w〉k = W0k/2M0 on
a node of degree k exceeds the node capacity depending
on 〈w〉k , where W0 is the total number of walkers and M0

is the number of links in the initial network. Since 〈w〉k
is proportional to k and the degree of a node correlates
closely with the betweenness centrality of the node [41,42],
the property of cascading failures induced by nonfluctuating
random walking loads is essentially the same as that by loads
of the betweenness centrality [9]. Therefore, SF networks are
fragile to such cascading failures. All the above arguments
can be summarized as shown in Table I. From this table we
can conclude that the robustness of SF networks in our model
is a consequence of the property that failures are caused by
extreme values of fluctuating loads, but not concerned with
the random walk behavior of loads.

V. CONCLUSION

We have studied the robustness of scale-free (SF) networks
against cascading overload failures induced by extreme values
of fluctuating loads that exceed the node capacities. In our
model, temporally fluctuating loads are treated as random
walkers on a network, for which the stationary overload

probability has been studied by Kishore et al. [21]. At the
first stage of the cascade, nodes are removed from the initial
network with this overload probability and the redistribution
of loads in the damaged network causes iteratively subsequent
failures according to the updated overload probability until no
node is expected to be removed. During the cascade process,
the total load is reduced in response to the decrease of the
number of links in the network under the cascade. How quickly
the total load is reduced is characterized by the load reduction
parameter r . The robustness of a network is measured by the
critical load reduction parameter rc above which the relative
size Sf of the giant component at the final cascade stage is finite.
We present a formulation to calculate Sf by using the master
equation for the probability �τ (k0, k) of a node in the network
Gτ at cascade step τ to have the present degree k and the initial
degree k0 and by applying the generating function method. Our
results for SF networks with degree distribution P0(k) ∼ k−γ

at large k show that rc increases with the exponent γ , which
implies that SF networks are robust against cascading overload
failures in our model as opposed to previous works [9–15].
The robustness of SF networks is explained by the property
of the overload probability of being a decreasing function
of the degree, which is a consequence of the load fluctua-
tions but not concerned with the random walk behavior of
loads.

In our model, the total load does not fluctuate throughout
the cascade process though the local load on a node fluctuates.
If the total load also fluctuates temporally and the time scale
of the fluctuation is faster than that of the cascade process,
the overload probability must be different from Eq. (4) or (9).
However, we can expect that the overload probability remains a
decreasing function of the degree if the magnitude of the total
load fluctuation 
W is much smaller than the average total
load 〈W 〉, which guarantees the robustness of SF networks
to cascading overload failures. This is because the standard
deviation σk of the fluctuating load w on a node of degree
k is proportional to the square root of the average load
〈w〉k if 
W � 〈W 〉, as in the case of the present work. It
has been reported, however, that σk becomes proportional
to 〈w〉k when 
W/〈W 〉 approaches 1 [16]. The change in
the property of the load fluctuations may alter drastically the
degree dependence of the overload probability and hence the
robustness of networks. It is thus important to study how
robust SF networks are against cascading failures under large
fluctuations of the total load. Furthermore, although we present
the formulation to calculate the relative size of the giant
component Sf in this work, an analytical expression for the
critical load reduction parameter rc is not found. In addition
to solving this problem, the identification of the universality
class of the present model is also a subject for future work.
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