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Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes
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Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in
health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a
recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average
pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements
of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images
of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects
at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge
about their pore shape and symmetry. Furthermore, we introduce “MRPI mapping,” which combines MRPI with
conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes
spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) methods, including
magnetic resonance imaging (MRI), are routinely used to study
the structure of porous materials such as biological tissue or
porous rocks, providing a unique contrast noninvasively [1].
However, because of its fundamental resolution limitations
[2], the use of MRI may be restricted for pore structures on
the micrometer scale or below. Intrestingly, these limitations
do not affect diffusive-diffractive pulsed gradient spin-echo
(PGSE) NMR, which is more akin to scattering than to imaging
methods [3]. As such, this method is able to acquire the
diffractogram of the pore system via NMR visible fluids
located in and saturating the voids of the sample. Since the
molecules constituting these pore fluids undergo Brownian
motion, they probe the pore space and return structural
information of the material under study [3]. Unfortunately,
diffusive-diffractive PGSE NMR fails to measure the phase of
the detected signal, thus preventing one from obtaining pore
images via straightforward Fourier inversion of the measured
diffractograms. Other scattering techniques such as x-ray [4]
and neutron scattering [5] share this shortcoming which is
commonly referred to as the “phase problem.” However,
recent advances in PGSE NMR techniques have overcome
this fundamental issue. In 2011 Laun et al. suggested a
modification of a single PGSE NMR experiment to acquire
images of arbitrary pore shapes [6]. More recently Ref. [7]
introduced a synergistic approach using two double PGSE
NMR experiments. It enables one to obtain the full form factor,
although it remains limited to certain pore symmetries [8].
This method was later extended to arbitrary pore geometries
by restoring the phase and amplitude information of the
signal via iterative approaches at reduced signal-to-noise ratios
[9]. Hertel et al. suggested the name magnetic resonance
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pore imaging (MRPI) for the approach of Laun et al. and
demonstrated its feasibility on cylindrical microcapillaries by
obtaining images of the average pore with a nominal spatial
resolution of only 1.3 μm [10]. Independently, Kuder et al.
showed that the MRPI approach is working for millimeter-
sized triangular capillaries utilizing hyperpolarized xenon
gas and therefore showed the applicability of the method
for arbitrary pore geometries [11]. However, the proof of
feasibility of MRPI on the micrometer scale for nonpoint
symmetric pore shapes remained an open challenge to date.

In this work we meet this challenge using a laser-
machined microcapillary array with hemiequilateral triangular
pore shapes. We will provide a detailed description of the
MRPI pulse sequence, including a thorough discussion of the
experimental implementation of MRPI in extension of our
previous communication [10]. The application of the pulse
sequence to two-dimensional (2D) MRPI will be discussed
and the observed effects of blurring and edge enhancement
will be analyzed in detail. Using the hemiequilateral triangular
capillary sample we show for the first time that one can obtain
the full complex form factor (returning the pore shape via
its Fourier transform) of nonpointsymmetric pores on the
micrometer scale. Furthermore, we introduce a novel approach
we name “MRPI mapping,” which combines MRPI with MRI
by measuring and analyzing the MRPI signal with respect to
individual voxels of the MRI image.

II. THEORY AND DESCRIPTION OF MRPI

A. Principle

When studying porous materials it is convenient to describe
pore shapes by its Fourier transform leading to a complex
function called the form factor,

S0(q) =
∫

V

ρ0(r)e−i2πq·r dr, (1)

1539-3755/2015/92(1)/012808(16) 012808-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.012808


STEFAN ANDREAS HERTEL et al. PHYSICAL REVIEW E 92, 012808 (2015)

where ρ0(r) is the pore shape function, q is the wave
vector in units of m−1 and V is the volume of the pore
space [4,12]. In NMR experiments the pore shape ρ0(r) is
equal to the spin-density function under the assumption of
a homogeneously filled pore with a fluid containing NMR
active nuclei. To describe an array of pores, rather than a
single pore one may require the so-called structure factor
as well. This function captures the scattering intensity due
to the arrangement of pores on a lattice [5]. Indeed, first
reports on diffusive-diffraction PGSE NMR measured the
averaged squared structure factor of a connected pore system
resembling a lattice of pores [3,13]. In these studies the
observed diffraction peak in the PGSE NMR spin-echo decay
can be explained in terms of the lattice constant due to the
distance of neighboring pores. However, in later studies it has
been shown that this method can also be utilized to measure the
average squared form factor of closed pore systems [14–16].
Unfortunately. this may have led to confusion of terms in recent
publications where the form factor S0(q) is called the structure
factor [10] or structure function [7].

PGSE NMR techniques allow access to features of the form
factor by measuring the NMR signal at different wave vectors
q = γ δG/2π imposed onto the spin system [3]. Here γ is
the gyromagnetic ratio of the observed nucleus, δ is the
length of the gradient pulses, and G is the gradient vector.
In such experiments the normalized spin-echo amplitude
E = M(q)/M(q = 0) is given by the ensemble average of
the phase � that the spins acquire during the NMR diffusion
experiment [17,18],

E = 〈exp{−i�}〉. (2)

The ensemble average 〈. . . 〉 has to be taken over all
spins contributing to the signal formation and can be re-
placed by the volume integral over the spin-density function
〈. . . 〉 = 1/V

∫
V

. . . ρ0(r) dr . Since for each closed pore a
similar expression can be found, we restrict ourselves to one
representative pore.

The common principle of PGSE-based methods (including
MRPI) is the superposition of the polarizing magnetic field B0

in the z direction with a pulsed field gradient G(t) [19,20],
such that the magnetic field at time t and position r(t) is
given by Bz(r,t) = B0 + G(t) · r(t). Throughout this study
we regard only the z direction of the magnetic field and define
the magnetic field gradient as G = (∂Bz/∂x,∂Bz/∂y,∂Bz/∂z).
Thus, we chose to leave out the index z in the following
equations. The static magnetic field B0 leads to a uniform phase
for all spins and can be neglected in the analysis of PGSE-based
NMR diffusion experiments [12]. Suppose that the gradient
pulse pattern is of total duration T ; then the so-called echo
condition

∫ T

0 G(t) dt = 0 has to be fulfilled.
During application of a magnetic field gradient G(t) the

precession or Larmor frequency ω is space dependent and is
given by ω(r,t) = γB(r,t). Thus, the phase � is affected
by the Brownian motion of the spin-bearing molecules in
this spatially and temporally varying magnetic field B(r,t).
A spin following a path described by the random variable
r(t) acquires a phase �δ = γ

∫ δ

0 G(t) · r(t) dt during any
time δ during which the gradient is applied. Assuming a
constant gradient during this time interval this relation can be

t
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FIG. 1. Effective gradient schemes of diffusive-diffraction PGSE
NMR with two stepwise incremented narrow gradients of length δ

and with observation time Δ (a). Long-narrow PGSE NMR effective
gradient scheme where one of the narrow gradients is extended in
length to δL with reduced amplitude GL, which is balanced by a
narrow and intense gradient pulse of length δN [6]. The time T is
defined as the total duration of the gradient pulse scheme (b).

rewritten as

�δ = 2πq · 1

δ

∫ δ

0
r(t) dt. (3)

Diffusive-diffractive PGSE NMR experiments such as pub-
lished in Ref. [3] consist of two magnetic-field gradient pulses
of duration δ with opposite polarity separated by the time
Δ and incremented stepwise as shown in Fig. 1(a). Note
that Fig. 1 shows the effective gradient pulse scheme G∗(t)
as experienced by the spin system [21]. The polarity of the
gradients in the laboratory reference frame G(t) will differ
from G∗(t) depending on the applied rf pulse scheme (not
shown). However, only G∗(t) is needed for the analysis of
PGSE NMR diffusion experiments [20]. The observation time
Δ is commonly used in PGSE NMR diffusion studies and is
related to the total duration of the gradient pulse scheme T

by Δ = T − δ. Equation (3) can be modified to resemble the
situation of the diffusive-diffractive PGSE NMR experiment
by integrating over the whole time T of the experiment. Since
the gradient field is zero in between the two short pulses of
length δ the expression can be written as

�Δ,δ = 2πq ·
[

1

δ

∫ Δ+δ

Δ

r1(t) dt − 1

δ

∫ δ

0
r0(t) dt

]
. (4)

Here r1(t) and r0(t) are random variables and describe the
position of a spin undergoing Brownian motion in the confining
domain. Assuming the narrow gradient pulse approximation is
valid [19], i.e., the gradient pulses are short enough to assume
δ → 0 while the area Gδ is kept constant, the time integrals
can be replaced by the instantaneous positions at the times of
the gradient pulses r0(0) and r1(Δ), leading to

�Δ,δ→0 = 2πq · [r1(Δ) − r0(0)]. (5)
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This expression has to be inserted into Eq. (2) and in order to
obtain the NMR signal amplitude one has to average over
the ensemble of spins. If the gradient separation time is
infinitely large Δ → ∞ the starting and final positions lose
their correlation in a closed pore system since the molecules
will have traversed the pore space many times. For finite
separation time Δ it is enough to require L2 � DΔ with L

being the characteristic dimension of the confining geometry
and D the bulk self-diffusion coefficient of the pore filling
fluid. Thus, the ensemble average can be calculated for each
exponential separately delivering

E∞(q) = 〈exp{−i2πq · r1}〉〈exp{i2πq · r0}〉
= S0(q)S∗

0 (q)

= |S0(q)|2, (6)

where we used Eq. (1) in the first step. Thus, this experiment
yields the power spectrum of the form factor while the phase
information is lost. Taking into account that a porous sample
consists of many pores, one has to average over all pores and

the signal is given by E∞(q) = |S0(q)|2 [12].
In the PGSE NMR experiment suggested by Laun et al.

[6] one of the narrow gradient pulses is replaced by a long
gradient pulse of duration δL with reduced amplitude GL, see
Fig. 1(b). The second gradient pulse is intense with amplitude
GN and narrow with duration δN, while the spin-echo condition
GLδL = GNδN has to be fulfilled for each gradient step.
Because of this combination of a long (weak) gradient pulse
matched to a conventional narrow gradient pulse Callaghan
named this experiment figuratively “long-narrow” [12].

Assuming the short gradient pulse is applied instanta-
neously δN → 0 such that δL → T , evaluation of Eq. (3) yields

�T = 2πq ·
[

1

T

∫ T

0
r(t)dt − r(T )

]
, (7)

where r(T ) is the position of the spin at the time of the
narrow gradient. The integral in Eq. (7) can be approximated
by replacing any time integral over the position of a random
walker with the center of mass of its trajectory [22]. The crucial
point of the long-narrow experiment is that in the limit of
infinitely long times T → ∞ (or less stringent DT � L2)
each random walker will have been at every point inside the
pore with equal probability. Thus, the center of mass of each
trajectory converges to the center of mass position of the pore
space rc.m. [6],

lim
T →∞

1

T

∫ T

0
r(t)dt = rc.m.. (8)

Equation (7) and Eq. (8) can again be inserted into Eq. (2),
leaving the ensemble average to be evaluated. For sufficiently
long times T the final position r(T ) will be uncorrelated to the
prior particle positions and once again one can separate the
evaluation of the ensemble average

E∞(q) = 〈exp{i2πq · rc.m.}〉〈exp{−i2πq · r(T )}〉. (9)

The significant difference to diffusive-diffraction PGSE NMR
[comp. Eq. (6)] now becomes apparent. The left term in Eq. (9)
yields a complex phase and the right term returns the form

factor of the pore space according to Eq. (1). Thus, one arrives
at

E∞(q) = exp{i2πq · rc.m.}S0(q), (10)

which provides the form factor S0(q) multiplied by a complex
phase since E∞(q) is approximately determined by the NMR
experiment. The corresponding expression for the pore system
can be obtained by averaging over all pores and is given by
E∞(q) = S0(q). Thus, by stepping the gradient amplitudes and
recording the spin-echo amplitude (i.e., the echo center) for
each gradient step, one acquires the average form factor in the
direction of the applied gradients, which upon inverse Fourier
transform yields the pore shape function ρ0(r). Thus, this
experiment is akin to MRI phase imaging, but with a resolution
no longer limited by signal-to-noise. The only remaining
limitation, as common for PGSE NMR, is the maximum
gradient intensity as generated by the gradient hardware.

B. Resolution

Unlike conventional MRI, signal-to-noise ratio is not the
limiting factor for resolution in MRPI, since the signal of the
average pore image is arising from the whole sample. However,
similar expressions can be derived for the resolution of MRPI
q-space imaging as compared to MRI k-space imaging [23].
Analogously to MRI, the nominal resolution of MRPI is given
by the highest wave vector q imposed onto the spin system.
The pixel size 
x = 1/qmax is therefore given by


x = 2π

γGmaxδN
, (11)

where Gmax is the highest gradient amplitude applied and δN

is the length of the narrow gradient pulse. Note that if the
gradients are applied with both polarities, the value for Gmax

needs to be multiplied by 2 to account for the extra information
gained by scanning q-space symmetrically.

Equation (11) is valid for the long-narrow PGSE NMR
pulse sequence in the limit of infinitely long δL and infinitesi-
mally short δN. Deviations from this limit will lead to artifacts,
which need to be accounted for in the image analysis [24].

First, the length of long gradient δL may not be long
enough to ensure that the limit DδL � L2 holds. In this
case, the phase distribution of the spins in the pore space
cannot be approximated as a δ function anymore and one
has to re-evaluate the first term in Eq. (9). Instead, the
phase distribution function after the long gradient pulse will
take on a Gaussian shape. The width of this distribution can
be calculated using the Gaussian phase approximation [18]
or determined by Monte Carlo simulation [25] and other
matrix-based techniques [26,27]. Laun et al. [24] give an
estimation for the length of δL such that the width of this
phase spread σx is smaller than the pixel size 
x

δL � 1000
x2/(6D). (12)

A violation of this criterion will lead to a blurring of the final
image.

Second, if the narrow gradient has a finite width δN one
may observe an enhancement of the signal near the pore walls
[22]. This effect is well known from diffusive-diffractive PGSE
NMR [22] and NMR microscopy [28–31] and has been called
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edge enhancement. During the time δN the molecules may
diffuse a distance comparable to or larger than the pixel size
of the pore image. Molecules which are located near the wall
at the beginning of the gradient pulse are likely to be reflected
and directed towards the center of the pore. Thus, there will
be a region of depleted signal close to the wall. Moreover, due
to conservation of the total signal there will be a region of
increased intensity shifted towards the center of the pore. An
empirical formula for the distance from the boundary of the
signal maximum xmax can be derived from the equations found
by Mitra et al. [22] for the case of parallel planes and is given
by [24]

xmax = 0.5926
√

DδN. (13)

Note that this position will be shifted further towards the
center of the pore in case the blurring effect is present. This
may be rationalized when considering that the edge enhanced
image has to be convoluted with the Gaussian function which
describes the phase distribution at the end of the long gradient.
Since the edge enhanced image has approximately constant
intensity inside the pore and zero outside, the convolution with
a Gaussian will shift the area of the increased signal intensity
further towards the pore center.

C. Description of MRPI by multiple correlation function
(MCF) approach

The multiple correlation function (MCF) approach to
solving the Bloch-Torrey equation has proven to be an efficient
way to simulate the PGSE NMR signal amplitude for arbitrary
gradient pulse patterns [27] and is discussed in detail in Refs.
[24,32]. Thus, we restrict ourselves to the elements necessary
for this publication.

The Bloch-Torrey equation for the complex magnetization
density m(r,t) = mx(r,t) + i my(r,t) is given by

∂m(r,t)
∂t

− D
m(r,t) + i γβf (t)B̃(r)m(r,t) = 0. (14)

The second term of Eq. (14) describes the influence of
diffusion on the magnetization density m(r,t) with isotropic
self-diffusion coefficient D. The second term accounts for the
phase difference accumulation due to the magnetic field,

B(r,t) = βB̃(r)f (t), (15)

which is written as a product of its maximum amplitude β,
its normalized spatial profile B̃(r), and its temporal profile
f (t). Note that there are only a few spatial profiles B̃(r)
frequently used in PGSE NMR, like linear [33] or second-order
magnetic fields [34–37]. In the dimensionless function f (t)
the application of a 180◦ rf pulse is taken into account by
inverting the function f (t) for t < t180◦ and the echo condition
is reformulated to

∫ T

0 dtf (t) = 0.
In this work we restrict the simulations to the case of

reflecting pore walls. Thus, the magnetization density fulfills
the Neumann boundary condition

∂

∂n
m(r,t) = 0 ∀r ∈ ∂, (16)

where ∂/∂n denotes the derivative perpendicular to the
boundary of the confining domain .

One ansatz for solving Eq. (14) is to expand the magnetiza-
tion density m(r,t) in the basis of eigenfunctions un(r) of the
Laplace operator,

m(r,t) =
∞∑
n

cn(t)un(r), (17)

with integer index n = 0,1,2, . . . . The eigenfunctions un(r)
are given by


un(r) = − λn

L2
un(r) ∀r ∈ , (18)

with the dimensionless eigenvalues λn and L again the
characteristic dimension of the confining domain, e.g., the
radius of a cylinder.

To find the coefficients cn(t) one substitutes Eq. (17) into the
Bloch-Torrey equation [Eq. (14)], multiplies with the complex
conjugate of the eigenfunctions u∗

n(r) and integrates over the
domain . The resulting set of ordinary differential equations
is given by

d

dt
cn(t) + Dλn

L2
cn(t) + i γβL

∞∑
n′=0

Bn,n′cn′(t) = 0, (19)

where B is an infinite dimensional matrix given by

Bn,n′ =
∫



dr u∗
n(r)B̃(r)un′(r). (20)

The coefficients cn(t) can be combined into an infinite-
dimensional vector C(t) which allows us to rewrite Eq. (19) in
matrix representation as

T
d

dt
C(t) + (p� + i qGB)C(t) = 0. (21)

In the last step, two new dimensionless quantities were intro-
duced: the reduced self-diffusion coefficient p = DT/L2 and
the generalized gradient intensity qG = γβT L. We followed
the notation used by Laun et al. [24] and denote the generalized
gradient intensity as qG to discern it from the gradient
wave vector q. Here the diagonal matrix of dimensionless
eigenvalues was defined as �n,n′ = δn,n′λn. Equation (21) has
the solution

C(t) = exp {−(p� + i qGB)t/T }C(0) . (22)

The NMR signal E can be obtained by integrating Eq. (17)
over the domain . Assuming that the detection coil has a
homogeneous detection profile, one arrives at

E =
∫



m(r,t)d r =
∞∑

n=0

cn(t)
∫



un(r)dr

= V

∞∑
n=0

cn(t)cn(0). (23)

Substituting the solution already found for the vector C(t)
[Eq. (22)] one arrives at

E = V C∗(0) exp {−(p� + i qGB)t/T }C(0)

= U∗ exp {−(p� + i qGB)t/T }U, (24)

where a new vector U = V 1/2C(0) has been introduced. At
t = 0 the magnetization density is uniform, which is equivalent
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to assuming that there is no relaxation prior to the onset of the
gradient and thus one has

m(r,t = 0) = 1

V
, (25)

where V is the volume of the confining domain . The initial
condition given by Eq. (25) implies that

cn(0) = V −1/2δn,0. (26)

Therefore, C(0) has only one entry in case of the Neumann
boundary condition and one can reduce Eq. (24) by taking the
first diagonal element given by

E = [exp {−(p� + i qGB)t/T }]0,0. (27)

In case the temporal profile deviates from f (t) = 1, one
can subdivide the interval [0,T ] into a number of subintervals
K of duration τ = T/K . Then, f (t) is equal to f (kτ ) on the
kth sub-interval by approximating the temporal profile as piece
wise constant on these subintervals. The signal is then found
by evaluating the ordered matrix product

E ≈
[

K∏
k=1

exp {−(p� + i qGf (kτ )B)τ/T }
]

0,0

. (28)

One has to compute the matrices B and � for the chosen
domain  and spatial profile B(r) only once. The time
dependence (the usual experimental variation) of the magnetic
field then can be approximated by Eq. (28) and its influence
on the NMR signal E can be studied.

It is worth noting that the initial magnetization might not
be uniform, e.g., due to strong surface relaxation following
the excitation rf pulse. This effect has been omitted here,
since under weak surface relaxivity conditions as found in
our samples the magnetization can be approximated as being
homogeneous. The rf coil may also introduce a spatial filter
function or pick-up function. However, with our rf coil design
the pick-up function is homogeneous in the region of interest.
This more general description, including nonuniform magne-
tization profiles and nonuniform rf and pick-up functions, is
discussed in the above-stated references but was not necessary
for the evaluation of our case.

D. Phase incremented echo train acquisition (PIETA)

In our communication [10] we introduced the MRPI pulse
sequence, which uses a train of 180◦ rf pulses. This approach
may introduce destructive coherence pathways which are
dependent on the experimental setup. Baltisberger et al.
[38] suggested a new phase cycling scheme that allows one
to unambiguously extract desired coherence pathways from
experiments relying on CPMG like rf pulse schemes. This
approach is called phase incremented echo train acquisition
(PIETA), because the phase of every other refocusing pulse �P

is incremented in unison from scan to scan. In conventional
CPMG experiments one acquires the signal in the dimensions
of echo count n and the time t after the last refocusing pulse,
which yields the signal E(n,t). PIETA adds another dimension
to CPMG experiments in the direction of the incremented
phase �P and thus the signal is given by the matrix E(n,t,�P).
The signal can be reduced back to two dimensions by applying

a Fourier transform of the signal with respect to this phase �P,

E(n,t,
P ) =
∫

E(n,t,�P)e−i
P�Pd�P, (29)

followed by extracting the desired cumulative coherence
transfer pathway difference 
P . 
P depends on the echo
count n according to the desired pathway equation 
P (n).
The result is the two-dimensional signal E(n,t) containing
only intensity from the selected pathway related to the selected
cumulative coherence transfer difference 
P (n).

We note that the number of scans with PIETA has to
be at least 2 times the number of rf pulses in order to
unambiguously extract the direct coherence pathway. Thus,
this phase scheme comes at an expense of experimental time
but naturally provides a much increased signal-to-noise ratio.

III. EXPERIMENTAL

A. MRPI pulse sequence design

1. 1D-MRPI

In order to achieve the limiting condition DδL � L2, the
length of the long gradient δL may need to be on the order of
several 100 ms or more. During this time δL the magnetization
has to reside in the transverse plane and is therefore subject to
experimental limitations as discussed below. Thus, the long-
narrow PGSE NMR pulse sequence may have to be adapted
to utilize and extend the available time most efficiently.

The limitations as imposed by the instruments and the
sample can be categorized as follows:

(a) Internal gradients: Self-diffusion of spin-bearing
molecules in an internal gradient leads to an additional
coherence loss and thus increases the effective transverse
relaxation rate 1/T eff

2 [39].
(b) Gradient nonlinearities and offsets: The gradient

strength may not scale linearly with the current output of
the gradient amplifier. Furthermore, any voltage offset may
render bipolar gradients nonsymmetric. Both effects can lead
to mismatches and a distorted echo formation as well as
additional spin-echo attenuation [40].

(c) Eddy currents: Ring down of the current in the gradient
system may lead to gradient mismatches and additional spin-
echo attenuation [40].

(d) Concomitant fields: According to Maxwells equations,
any magnetic field gradient has to be accompanied by an
additional gradient field perpendicular to the applied gradient
field. If uncompensated concomitant fields may also lead to
echo distortions and additional spin-echo attenuation [41,42].

One may note that in diffusive-diffractive PGSE NMR some
of the above-stated effects may have none or only little effect
due to the symmetry in the gradient pulse pattern. For example,
concomitant fields will be equally strong if two identical, but
opposite, gradient pulses are applied and thus their effect is
compensated [41,42].

One method to reduce these effects for nonsymmetric
gradient pulse patterns as utilized in long-narrow PGSE NMR
is to employ a Carr-Purcell-Meiboom-Gill- (CPMG) like pulse
sequence [43]. CPMG-like pulse sequences are characterized
by a leading 90◦ rf pulse followed by a train of 180◦ rf pulses

012808-5



STEFAN ANDREAS HERTEL et al. PHYSICAL REVIEW E 92, 012808 (2015)

(a)

t

90◦
φ1

τ

180◦
φ2

2τ

180◦
φ3

2τ

180◦
φ2

2τ

180◦
φ3

2τ

180◦
φ4

τ Echo

tE
G(t)

(b)

t

δ δ

G* (t)

(c)

t

GL GR
GN

loop NL
2

FIG. 2. 1D-MRPI pulse sequence with a CPMG like rf pulse
scheme (a). The long gradient is replaced by NL gradient pieces with
gradient amplitude GL and the narrow gradient was split into two
intense gradient pulses with gradient amplitude GN. The gradients
are shown relative to each other as applied in the laboratory reference
frame [G(t)] (b). The effective gradient pulse scheme G∗(t) shows
that the gradient pulses GL add up and are balanced by the two
gradient pulses GN (c). In practice the gradient pulses are ramped in
order to reduce eddy currents (not shown).

each separated by twice the initial 90◦–180◦ rf pulse separation
(2τ ).

One crucial feature of the CPMG pulse sequence is that in
case an internal gradient g is present, its influence is partially
refocused halfway between two 180◦ rf pulses. The effective
transverse relaxation rate is given by [43,44]

1

T eff
2

= 1

T2
+ 1

3
D(γ gτ )2 . (30)

The second term in Eq. (30) describes the influence of the self-
diffusion of spin-bearing molecules in the internal gradient g
on the effective transverse relaxation rate. Through variation
of τ and its extrapolation to zero the effect of self-diffusion
on the transverse relaxation rate can be minimized [21,45].
Figure 2(a) shows the CPMG like rf pulse sequence as utilized
in this work. The rf pulse phases �i are adapted for the special
requirements of the MRPI approach as discussed below. In
order to apply the CPMG concept to long-narrow PGSE
NMR, the long gradient (GL) was split into a succession
of short gradient pulses of length δ

′
, which were applied

centered between the 180◦ rf pulses [Fig. 2(b)]. Similarly, the
narrow gradient pulse GN was split into two intense gradient
pulses each of duration δ

′
. It is important to note that in

the laboratory reference frame the gradients were applied in
alternating polarity, such that their effect on the spin system
is cumulative. The effective gradient pulse scheme G∗(t) as
seen by the spin system is schematically shown in Fig. 2(c).
The influence of the internal gradient g is partially refocused
as required (not shown). The effective pulsed gradient G∗(t)
consists of NL gradient pieces of strength GL which are
balanced by two narrow gradients with gradient strength GN.
In this work we employed two narrow gradients as well as
an even number NL of long gradient pieces to ensure that
gradient nonlinearities and offsets are canceled with each

TABLE I. Phase cycle for the CPMG based MRPI pulse sequence.
The rf phases �i correspond to the rf pulses according to Fig. 2(a).

Pulse phases

φ1 φ2 φ3 φ4 Rec. phase

x x −x y −x

x y −y x x

x −x x −y −x

x −y y −x x

second gradient pulse. Additionally, all gradients were ramped
to reduce eddy currents and to ensure a controlled gradient
pulse shape (not shown in Fig. 2).

Furthermore, we introduced read gradients GR in the
interval between the leading 90◦ and the first 180◦ rf pulse
and during acquisition, see Figs. 2(b) and 2(c). The acquisition
of the spin echo in the presence of the read gradient allows
one to monitor the echo position in the time domain [46].
This approach is vital to detect gradient mismatches and
for separating the wanted signal from unwanted coherence
pathways.

The introduction of many rf pulses can give rise to unwanted
spin echoes due to additional coherence pathways [47],
especially if the rf pulses are applied in inhomogeneous fields
as they are common in porous materials. Unwanted coherence
pathways can be filtered either using phase cycling [48,49]
or using gradient pulses [50]. The MRPI pulse sequence
utilizes a distinct gradient pattern which limits the number
of contributing coherence pathways if the gradient amplitudes
are sufficiently high.

Nonetheless, there are remaining coherence pathways
which are unaffected by these gradients. An example is the
stimulated echo pathway, which is stored by the first 180◦ rf
pulse in the z direction until it is transformed into detectable
signal by the last 180◦ rf pulse, where both rf pulses partially
act as 90◦ pulses. Such unwanted signals were detected in the
time domain. Rf pulses involved in the generation of these
coherence pathways were identified by observing the intensity
of the spurious spin echos in the time domain while changing
the length of selected 180◦ rf pulses. The phase cycle as shown
in Table I was subsequently designed to compensate for these
contributions. The number of phase increments was restricted
to four steps to keep experiment time within acceptable limits,
especially if the pulse sequence is used for multidimensional
MRPI experiments as will be discussed in Sec. III A 2 and
Sec. III A 3.

We note that especially for low-gradient amplitudes this
phase cycle is not sufficient to cancel all unwanted coherence
pathways. More elaborate phase schemes such as the PIETA
phase-cycling approach may have to be applied in these cases.

2. 2D-MRPI

It is delightful to recognize that the MRPI pulse sequence is
in fact an imaging pulse sequence in disguise [24]. As such, it
becomes apparent that the narrow gradient GN acts similarly to
the imaging gradient in purely phase-encoded MRI. In MRPI
GN imprints a phase proportional to the distance of the spins to
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t

90◦ 180◦

Echo

te

t

Gx

t

Gy

FIG. 3. 2D-MRPI pulse scheme. Gradients Gx and Gy are stepped
independently. In practice, the gradient pattern and rf pulse pattern
were replaced with the MRPI pulse pattern (using alternating
gradients) shown in Fig. 2. It was omitted here for clarity.

the center of mass of the pores very similar to phase-encoded
MRI where the gradient imprints a phase proportional to the
distance of the spins, however, in this case to the center of the
gradient system.

This similarity can be exploited to sample q-space in
whichever experimentally preferred manner. For example, we
proposed a two-dimensional MRPI approach [10] in which two
gradient pulse patterns are stepped independently to sample
q-space point by point on a Cartesian grid. The effective
gradient scheme of the two-dimensional version of the MRPI
pulse sequence is shown in Fig. 3. This allows us to obtain the
average pore image directly by 2D Fourier transformation of
the resulting 2D q-space data. In practice, we employed the
CPMG-based MRPI pulse sequence with alternating Gx and
Gy as discussed in Sec. III A 1.

An alternative approach is to acquire a set of 1D radial
q-space profiles which are evenly distributed in a plane not
unlike spokes in a wheel. The resulting q-space data have
to be Fourier transformed individually to yield a set of real
space profiles (projections along the gradient direction) of the
sample. Subsequently, a back-projection or Radon transform
may be applied to the magnitude data of the real space profiles
[51]. This method may provide an advantage in cases where
the total experimental time is long since control measurements
(such as conventional MRI experiments) can be interspersed
between individual profile acquisitions. For example, one may
check for long-time drifts of the experimental setup, e.g., by
acquiring MRI images of the sample to check for evaporation.
Additionally, the simulation using the MCF technique may be
faster for 1D profiles in q-space than for the 2D case and a
comparison of simulation and experiment may be carried out
for individual profiles during acquisition.

3. MRPI mapping

Measuring the spatial distribution of pore sizes is of great
relevance in technological applications and for medical diag-
nosis. One particularly compelling example of the integration
of MRPI within the MRI toolbox is the MRPI mapping
experiment. It is similar to chemical shift imaging [52];
however, here the MRPI q-space information is mapped onto
MRI images instead of the chemical shift.

G∗(t)

t

G∗
P(t)

t

G∗
R(t)

t

FIG. 4. MRPI-mapping pulse sequence for acquisition of the
spatial distribution of pore shapes and sizes mapped onto MRI images.
Effective gradients of the MRPI part G∗(t) are stepped for each step
of the phase gradient G∗

P(t). The read gradient G∗
R(t) yields the second

dimension of the MRI image.

A conventional MRI pulse sequence typically employs
both frequency-encoding and phase-encoding gradients [23].
Figure 4 shows the effective gradient pulse pattern of the
MRPI mapping experiment. In the actual experiment the
effective gradient G∗(t) is replaced by the CPMG-based MRPI
alternating gradient pattern as discussed in Sec. III A 1. In
MRPI mapping the read gradient GR in the beginning and end
of the MRPI pulse sequence serves also for the purpose of
frequency encoding in read direction. Additionally, a phase
gradient GP is stepped independently to provide the phase
encoding of the MRI image. Thus, the experiment proceeds
by sampling q-space for each step of the phase gradient GP.
A two-dimensional MRI image is acquired and the 1D-MRPI
signal is encoded in the third dimension.

B. Challenges imposed by NMR hardware limitations

1. NMR hardware used

NMR measurements were performed on a Bruker Avance
400 spectrometer operating at a proton resonance frequency
of 400 MHz. The utilized rf coil had a bird-cage coil design
and allowed for a maximum outer diameter of the sample of
OD = 1 cm. Typical rf pulse lengths were t90◦ = 12.5 μs and
t180◦ = 25 μs when using 1H as the NMR active nuclei in a
distilled H2O sample.

Three Bruker GREAT 60 gradient amplifiers were utilized,
each having a maximum current output of 60 A at a digital-
to-analog conversion (DAC) resolution of 16 bits. A Bruker
Micro 2.5 imaging probe was used to provide gradients
in all three Cartesian directions with gradient strengths
of 24.2 mT m−1A−1. At the maximum current output of
±60 A the gradient system provided gradient strengths up to
Gmax = ±1.45 T m−1.

2. Resolution limit of gradient amplifier

Due to the typical length of the long gradient δL which
may be on the order of several 100 ms, there may be gradient
mismatches due to the finite DAC resolution of the gradient
amplifier. With a digital resolution of the amplifier limited to
16 bit there are effectively 215 current steps (1 bit is reserved
to determine the polarity). Thus the minimal gradient step
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is given by 
Gmin = 1.45 Tm−1/215 = 4.4 × 10−5 Tm−1.
Unfortunately, this minimal step width is far too coarse if
one would try to match the long-gradient amplitude to a
given amplitude of the narrow gradient. This is easy to
rationalize since the calculation of the long-gradient amplitude
based on the value of the narrow gradient would require
us to match the long gradient with a precision which is
increased by the gradient duration ratio δL/δN. This ratio can
easily reach 100 . . . 1000. For this reason, we implemented
a program to determine the long-gradient amplitude GL

first using values exactly corresponding to available digital
steps. Subsequently, the narrow gradient amplitude GN was
automatically calculated and matched from this information.

3. Further experimental precautions

Due to the inductivity of the gradient coils we controlled
the rise and fall of the current in the gradient coils by ramping
the gradients. In this work we employed a ramp time of
0.1 ms for each gradient pulse. Furthermore, eddy currents
may be induced when ramping the gradients, which may lead
to changing selectivity of the rf pulses [40]. In order to prevent
residual eddy currents during application of the rf pulses a
minimum gradient settling time of 0.25 ms after each gradient
pulse was implemented in the pulse program.

C. Samples

1. Calibration samples

Two different calibration samples were used containing
liquids of known self-diffusivity. Sample CAL1 consisted of a
cylindrical sample tube of inner diameter ID = 0.8 cm filled
with distilled H2O. Additionally, a second sample (CAL2)
was needed to calibrate the pulse sequence at the highest
gradient strengths available. For this purpose, a substance
with low self-diffusion coefficient was needed. We chose
polydimethylsiloxane (PDMS) with a molecular weight of
Mw = 36 000 gmol−1 in a sample tube of inner diameter of
ID = 0.8 cm.

2. Cylindrical capillaries

Cylindrical glass capillaries with inner diameters in the
micrometer range were utilized in a number of recent studies
involving PGSE NMR and NMR methods to extract pore
sizes and other parameters [7,10,53–56]. This model porous
system is ideally suited to study the influence of the various
parameters of the MRPI pulse sequence, since the domain
is straightforward to simulate and the inner glass surface
leads to a negligible wall relaxation.

The capillaries utilized for sample CYL1 were com-
mercially available cylindrical glass capillaries (Polymicro
Inc.) with an inner capillary radius of L = (10 ± 1) μm.
These particular capillaries consist of a silica core coated
with polyimide, yielding an outer diameter of 360 μm. The
polyimide coating gives the capillaries some flexibility and
allows them to be wound on spools for distribution. Hence,
one has to cut the several-meter-long capillary into pieces of
the desired length using a sharp knife. For this study a total of
470 capillaries were cut to a length of 5 cm each.

Subsequently, for sample CYL1, the capillaries were
loosely stacked and submerged in distilled H2O for filling
by capillary forces. The bath was heated to the boiling point in
order to remove residual gas trapped in the capillaries. After
removing the stack from the water bath, excess water in the
intercapillary spaces was removed by manual drying. The
closed pore system was designed by stacking all capillaries
in a glass sample tube of inner diameter ID = 0.8 cm [10].
Conventional MRI images were taken of the stacks cross
section at different heights of the sample in order to ensure
that no NMR signal arises from the intercapillary spaces.

A second sample CYL2 containing two capillary diameters
was prepared for the MRPI mapping experiments presented in
Sec. IV D. This sample was prepared by creating two compart-
ments filled with capillaries of different diameters by inserting
a polymer sheet in the middle of the glass sample tube. Both
compartments were filled with capillaries of cylindrical shape;
however, their radii for the two compartments differed and
were L1 = (10 ± 1) μm and L2 = (5 ± 1) μm, respectively.

3. Hemiequilateral triangular capillaries

Low-symmetry pore shapes of micrometer size pose an
additional challenge for the construction of suitable phantoms.
For this work, we chose a hemiequilateral triangular shape,
since its MCF parameters necessary for MRPI simulations
have recently been calculated [24]. The mechanical require-
ments on the final sample are high since the pore shape
dimensions have to be of high precision to prevent additional
blurring of the average pore image. Additionally, all capillaries
have to be prepared with the same orientation such that the
average pore image resembles the underlying pore shape.

The method used was microgroove pattern machining by
excimer laser dragging [57]. With this method, the excimer
laser is guided perpendicular onto the mask containing the
desired pattern as shown in Fig. 5. When the laser impinges
on the triangular mask, the laser beam will go through the

FIG. 5. (Color online) Scheme of microgroove pattern machin-
ing by excimer laser dragging. The arrow indicates the direction of
movement of the work piece with respect to the laser.
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transparent portion of the mask onto the work-piece surface
and ablate the work piece. The pattern may be machined
into the mask at convenient macroscopic dimensions and then
demagnified by a projection lens to the desired dimension of
the pattern on the work piece. The desired groove is created
by moving the work piece laterally with respect to the laser,
while the laser is firing. The arrow in Fig. 5 indicates the
direction of movement of the work piece with respect to the
laser. The laser ablates material from the work piece with
an ablation depth proportional to the exposure time and the
fluence F of the laser. Thus, the depth of the groove in the
work piece is proportional to the height of the mask pattern in
the scanning direction and it is inversely proportional to the
movement velocity. Additionally, the width of the grooves in
the work piece L will be given by the width of the mask pattern
divided by the demagnification factor.

For this work, a triangular mask with sides of lengths
400, 796, and 845 μm was machined into chrome on quartz
using a custom JPSA micromachining stage (model IX-100)
and an 800-nm, 110-fs pulsed laser (1-kHz Coherent Legend
Elite) with a 50-μm-diameter circular spot. The mask was
projected at 20× demagnification with an excimer laser
(248 nm, 5 ns, F = 3 J cm−2, 500 Hz, Coherent Xantos XS)
onto the work piece [175-μm-thick amorphous polycarbonate
(APC), Makrofol]. The piece was then translated in a direction
perpendicular to the side of length 400 μm at 1.2 μm s−1

to create 40 rows of 50-mm-long, hemiequilateral triangular
grooves with the desired characteristic width of L = 20 μm
and 80 μm spacing (Fig. 6). Dichloromethane (DCM) has
proven to be an effective solvent for chemically welding
amorphous polycarbonate [58] but care must be taken to
overcome deformations during the chemical welding process.
A blank APC sheet was exposed to DCM vapor for 3 min
(22 ◦C, atmospheric pressure) and applied to the machined
surfaces to create sets of closed capillaries (Fig. 6). Two of
these sets were exposed to DCM vapor on their flat sides to
bond them to one another and form the final chips containing
80 channels (2 layers of 40 channels each, with all triangular
channels oriented in the same direction). The final product

FIG. 6. (Color online) Hemiequilateral triangular pores and their
alignment into an ordered array. The characteristic width of a channel,
L = 20 μm, is indicated for one channel cross section (top). Forty
channels separated by 80 μm were machined into APC sheets.
Closed hemiequilateral channels were created by bonding a flat
polycarbonate sheet on top of the array (dotted line).

FIG. 7. Optical microscope image of the channel cross section
for two exemplary triangular capillaries. The flat polycarbonate sheet
delaminated during cutting of the stack and thus there is a black
region and the channels appear to be open. The intact samples used
for our MRPI experiments contained only closed channels as verified
by MRI images of the sample cross section of samples filled with
water.

was clamped and allowed to cure slowly over 2 days at room
temperature.

Figure 7 shows an optical microscope image of the cross
section of two exemplary channels. In order to prepare the array
for optical microscopy, the stack had to be cut with a sharp
knife, which led to a delamination of the flat sheet and thus the
channels appear to be open (dark gray region in Fig. 7). Filling
with distilled water was carried out by submersion of the whole
chips into a water bath. Subsequently, vacuum was applied
over the water phase to remove residual air in the channels
by degassing. After sufficient degassing had occurred the
vacuum was removed to allow the filling of the capillaries with
distilled water. In order to maximize the signal-to-noise ratio
for the NMR experiments, a total of four of these filled chips
were stacked in a sample tube of diameter d = 1 cm. Thus, the
final sample (TRI) contained a total of 320 microchannels of
the same orientation and size. It should be noted that no effort
was made to arrange the pores in the array periodically. In fact,
the four chips are only aligned such that the pores have the
same orientation across the sample but do not necessarily lead
to a periodic arrangement of the pores in a latticelike fashion.

The sample was characterized using standard MRI images
to ensure that signal was only coming from inside the pores
and that the pores were isolated from each other.

IV. RESULTS AND DISCUSSION

A. Free diffusion

1. Calibration

In order to test whether the given NMR setup is suitable
to apply long weak gradients, which are refocused by short
intense gradients, we measured the unrestricted self-diffusion
of sample CYL1, whose self-diffusion coefficient is known
from the literature [59]. To check whether the hardware is
working as expected we derived an analytical expression for
the expected spin-echo decay. In this context it is convenient to
hold all experimental parameters in the wanted expression by
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FIG. 8. Comparison of spin-echo attenuation of the unaltered
long-narrow PGSE NMR experiment (squares) versus the diffusive-
diffractive PGSE NMR experiment (circles) for sample CAL1. The
slopes of the fits for the long-narrow PGSE NMR experiment (dashed
line) and the diffusive-diffraction PGSE NMR experiment (solid line)
yield a ratio of 0.34.

one single b value [60]. In this case, the spin-echo amplitude
for unrestricted Gaussian self-diffusion is given by

E = exp{−bD}. (31)

The influence of gradients on the spin-echo amplitude E can
be calculated with the double time integral over the effective
pulsed gradient pattern G∗(t) [20,60]

b = γ 2
∫ t

0
dt ′

[∫ t ′

0
dt ′′G∗(t ′′)

]2

. (32)

The b factor for the unaltered long-narrow PGSE NMR pulse
scheme [as shown in Fig. 1(b)] as found by evaluating Eq. (32)
in the limit T � δ is given by bLN = (γGδ)2T/3. Thus, it is
related to the b factor of the diffusive-diffractive PGSE NMR
pulse scheme [as shown in Fig. 1(a)] by

bLN = bPGSE

3
. (33)

Hence, the spin-echo attenuation of the long-narrow PGSE
NMR experiment for a given gradient amplitude G is reduced
by a factor of 3 as compared to diffusive-diffractive PGSE
NMR. Figure 8 shows a comparison for the spin-echo attenua-
tion of the unaltered long-narrow PGSE NMR pulse sequence
as shown in Fig. 1(b) (squares) and the diffusive-diffractive
PGSE NMR pulse sequence as shown in Fig. 1(a) (circles)
with the sample CAL1 at a temperature of TK = 293 K. In
both cases a spin-echo rf pulse scheme [61] was utilized
consisting of a leading 90◦ and a refocusing 180◦ rf pulse.
The gradient parameters were δ = 2 ms, Δ = 50 ms for the
PGSE NMR experiment and δL = 50 ms, δN = 2 ms for the
long-narrow PGSE NMR experiment. Respective data in
Fig. 8 were fitted against bLN and bPGSE, yielding consistent
self-diffusivities of DLN = 2.04 × 10−9 m2 s−1 (dashed line)
and DPGSE = 2.00 × 10−9 m2 s−1 (solid line), verifying the
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FIG. 9. 1D-MRPI pulse sequence applied to measure free diffu-
sion of H2O (dots). A fit of the data with Eq. (34) yields a self-diffusion
coefficient of D = 2.2 × 10−9 m2 s−1 (solid line).

validity of the derived b factors. Furthermore, the ratio of the
two slopes in Fig. 8 equates to 0.34 which is close to 1/3
predicted by Eq. (33).

2. 1D-MRPI calibration

In the case of the MRPI pulse sequence as shown in
Fig. 2(b), evaluation of Eq. (32) leads to a more complex
expression for the b value in the case of unrestricted Gaussian
diffusion. The corresponding b factor for the 1D-MRPI pulse
sequence based on CPMG applying

∫ T

0 G∗(t)dt = 0 is given
by

b = (γGN2δ
′
)2

3

[
δ

′
(NL + 2) + δs

(
2N2

L + 3NL + 1

2NL
+ 3

4

)]
,

(34)

where δs is the separation between the gradient pulses, i.e., the
time from the end of one gradient pulse until the leading edge
of the next gradient pulse. Equation (34) reduces to Eq. (33)
in the limit of δs → 0 and δ

′
(NL + 2) = T . The effect of the

gradient pulse ramps is partially accounted for by adding one
ramp time to the gradient pulse duration δ

′
.

Figure 9 shows the application of the 1D-MRPI pulse
sequence attempting to measure unrestricted self-diffusion in
sample CAL1 at a temperature of TK = 293 K. The parameters
of the MRPI pulse sequence were NL = 40, δ

′ = 2 ms,
2τ = 2.5 ms, δs = 0.5 ms, and Gmax

N = 0.175 Tm−1. A fit of
the experimental data yields a self-diffusion coefficient of
D = (2.2 ± 0.2) × 10−9 m2 s−1, consistent with a literature
value of D = 2.0 × 10−9 m2 s−1 [59] within uncertainties.

While the omission of the first couple of data points in Fig. 9
and a smaller signal-to-noise ratio as compared to the data
presented in Fig. 8 do not allow for a smaller uncertainty, the
difference might also be explained by not taking into account
the extra term in the b factor arising from the gradient ramp
times, a correction term well known in PGSE NMR diffusion
experiments [62]. In this study we chose to ignore this term,
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FIG. 10. (Color online) 2D-MRPI applied to PDMS. Shown is
the spin-echo maximum in the time domain obtained by sampling
q-space on a Cartesian grid.

since we were foremost concerned with obtaining a Gaussian
attenuation in case of free diffusion as well as a stable spin
echo in the time domain with each pulsed gradient step. The
spin-echo attenuation shows a depression of the spin-echo am-
plitude of the first four data points. This phenomenon is more
pronounced when more 180◦ rf pulses are utilized. This can be
explained by destructive coherence pathways that are created
by imperfect rf pulses, which are dephased by the gradient
pulses once they are applied at sufficiently high gradient
strengths. These points have been excluded from the fit.
We will return to this signal depression in more detail in
Sec. IV B 1.

3. 2D-MRPI calibration

MRPI may require the maximum gradient strength available
with the current gradient system. In this case, the high
self-diffusion coefficient of H2O of sample CAL1 would lead
to a too strong attenuation of the spin-echo signal. Thus, a
substance with small diffusivity was necessary to achieve
sufficient signal-to-noise even for highest gradient strengths
GN. The sample CAL2 contains highly viscous PDMS and
is therefore ideally suited. Figure 10 shows a surface plot
of the magnitude of the spin-echo maxima obtained when
applying the 2D-MRPI pulse sequence to the sample CAL2.
The parameters used were NL = 36, δ

′ = 4.6 ms, δs = 0.9 ms,
Gmax

N = 1.45 Tm−1, and TK = 293 K. The observed spin-
echo attenuation exhibits rotational symmetry around the
axis (qx,qy) = (0,0), as expected for isotropic Gaussian self-
diffusion. A fit along the one-dimensional contour at qx = 0
yields a self-diffusion coefficient of D = 1.0 × 10−12 m2 s−1

which lies in the expected range according to Ref. [63] and
is consistent with a diffusion measurement utilizing a PGSE
NMR stimulated echo pulse sequence. Note that a 1D-MRPI
experiment was performed as well to observe the spin-echo
signal in the time domain up to the highest gradient strengths
(not shown in Fig. 10). Furthermore, we secured that the
spin-echo position and spin-echo shape in the time domain
is stable for all gradient amplitudes (data not shown).

B. 1D-MRPI

1. Cylindrical capillaries

Gradients in the one-dimensional MRPI pulse sequence
were applied perpendicularly to the symmetry axis of the

FIG. 11. (Color online) Real (triangles) and imaginary part
(squares) of the q-space profile of sample CYL1 as obtained by
the 1D-MRPI pulse sequence. The spin-echo amplitude is distorted
at low gradient strengths due to destructive coherence pathways (a).
The PIETA rf pulse phase scheme allows us to extract the direct
pathway and to recover the points at low gradient strengths (b). The
solid lines was obtained by MCF simulation for both figures.

cylinders of the sample CYL1. The q-space data are shown
in Fig. 11(a). The phase between the real and imaginary
parts of the signal is either 0◦ or 180◦ in agreement with
the symmetry of the confining domain. The number of long
gradient pulses was NL = 36 with gradient durations of
δ

′ = 3.045 ms (including one ramp time) and the separation
between the 180◦ rf pulses was 2τ = 5.56 ms.

As discussed in Sec. III A, at low gradient strengths
additional coherence pathways may contribute to the signal.
In order to recover the correct signal intensity we applied
the PIETA rf pulse phase scheme [38]. For this purpose the
rf pulse phases �2 and �4 were incremented from 0 to 2π

in 64 steps. The other rf pulse phases were kept constant
at �1 = �rec = 0 and �3 = π/2, respectively. The resulting
data set had dimensions of 512 × 16 × 64, where 512 points
were acquired in the time domain, q was incremented in 16
steps, and 64 phase steps were acquired. A subsequent Fourier
transform in the phase direction allowed us to extract the direct
coherence pathway.

Figure 11(b) shows the complex form factor as obtained by
selecting the spin-echo center of the direct coherence pathway
for each step in q-space. As predicted, the points for low
gradient strength were recovered. Moreover, when comparing
the signal amplitude for low q values between Fig. 11(a) and
11(b) one may notice that the imaginary part (squares) is closer
to zero in Fig. 11(b) as required by the cylindrical pore shape.
Note that the experiment time increases by a factor of 16
when comparing with the four-step phase cycle. Therefore, this
phase scheme is not feasible for multidimensional MRPI appli-
cations. However, by analyzing the coherence pathway spec-
trum contributing to the echos, one is, in principle, able to iden-
tify the most important spurious coherence pathways. Based
on this information one can design shorter but still efficient
phase cycles which eliminate these most important pathways,
depending on the particular conditions of the experiment.

Figure 12 shows the convergence of the signal E(q)
to the form factor S0(q) with increasing ratio DT/L2.
The total time of the gradient pattern T of the MRPI
experiment was increased by increasing the number of long
gradient pulses NL while keeping all other parameters fixed.
The MRPI parameters were 2τ = 4.725 ms, δ

′ = 4 ms, and
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FIG. 12. (Color online) Real part of the normalized spin-echo
amplitude E(q) versus wave vector q for increasing ratio
DT/L2. The shown experimental data corresponds to DT/L2 = 1.1
(diamonds), DT/L2 = 2.1 (squares), DT/L2 = 3.0 (triangles), and
DT/L2 = 5.8 (circles). MCF simulation for each experiment is
shown as a black line.

Gmax = 0.58 T m−1. In contrast to the experiments shown
in Ref. [10] the sample was not heated but was kept at
a temperature of TK = 293 K, leading to a self-diffusion
coefficient of D = 2.0 × 10−9 m2 s−1. The number of long
gradient pulses was varied with NL = {10,20,30,50}, leading
to ratios of DT/L2 = {1.1,2.1,3.0,5.8}. Corresponding MCF
simulations were carried out and match the experimental
results (solid lines in Fig. 12). The spin-echo amplitudes
E(q) in Fig. 12 contain the first negative lobe of the form
factor even for moderate lengths T of the MRPI gradient
pattern. At room temperature the parameters NL = 20 and
thus T = 103 ms were sufficient to extract useful information
about the pore structure. Observation of the second lobe,
and therefore more detailed information about the struc-
ture, requires more gradient pulses, e.g., NL = 50 and thus
DT/L2 = 5.8. Experimental parameter in this work typically
satisfy DT/L2 ≈ 5.8 by using higher than room temperatures
while only employing NL = 36 long gradient pulses.

2. Triangular capillaries

MRPI experiments on the hemiequilateral triangular capil-
lary sample TRI pose additional challenges. The amorphous
polycarbonate is partially permeable for H2O molecules. Thus,
there is exchange of molecules between the capillary space and
the solid matrix during the MRPI experiment. Moreover, there
is noticeable surface relaxation at the APC-H2O interface.
Both phenomena have similar effects on the MRPI signal
and can be regarded as a finite absorption probability of
the diffusing H2O molecules at capillary boundaries. The
experimental determination of the rate constants of both
processes is possible but very time consuming and might
warrant a study of its own.

To understand the conditions of our setup (including
the sample) and to optimize experimental parameters we
simulated a series of 1D profiles with the MCF technique
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FIG. 13. (Color online) Comparison of experiment and simu-
lation of the q-space profile as obtained when applying a one-
dimensional MRPI experiment to the stack of hemiequilateral
triangular capillaries.

using a hemiequilateral triangular domain without surface
relaxation. Fixed input conditions were the transverse relax-
ation time of T2 = 600 ms and the self-diffusion coefficient of
D = 2.0 × 10−9 m2 s−1 for H2O at a temperature of
TK = 293 K. Variable parameters were the number of long gra-
dient pulses, their length, and 2τ . This procedure returned op-
timized parameters as 2τ = 6 ms, NL = 26, and δ

′ = 5.5 ms
corresponding to T = 168 ms and an effective narrow gradient
length of 2τ + δ

′ = 11.5 ms.
Subsequently, a one-dimensional MRPI experiment was

performed, acquiring the real part (squares) and imaginary
part (triangles) of the q-space as shown in Fig. 13. Data
were obtained from the center of the spin echos in the
time domain for each gradient step. The orientation of the
capillary with respect to the q vector is indicated in the insert
of Fig. 13. The solid and dashed lines show the real and
imaginary parts as obtained by MCF simulation. Parameters
of the MCF simulation were identical to the experimental
parameters; however, the gradient pulses were approximated
to be rectangular, while their length included one ramp time.
Simulation and experiment agree qualitatively. Differences can
be explained by residual irregularities in the capillary geometry
due to the manufacturing process and the inherent noise in
experimental data. However, experiment and simulation show
the correct phase behavior, which includes values that differ
from 0◦ and 180◦. Thus, Fig. 13 shows the measurement of the
complex one-dimensional form factor of a triangular domain
on the micrometer scale.

C. 2D-MRPI

1. Cylindrical capillaries

The 2D-MRPI pulse sequence was applied to the sample
CYL1 with the capillary radius L = (10 ± 1) μm. The gradi-
ents qx and qy were stepped independently in 32 steps each
up to a maximum gradient strength of Gmax = ±1.45 T m−1

as already reported in Ref. [10].
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FIG. 14. (Color online) Real part of the two-dimensional form
factor as acquired with MRPI from water in a bundle of capillaries (a)
and the corresponding averaged pore image obtained by a subsequent
2D-Fourier transform of this data matrix (b). Replot from Ref. [10].

Figure 14(a) shows a surface plot of the real part of the
two-dimensional q-space data. The data contain both positive
and negative values and resemble the two-dimensional form
factor of the underlying pores of cylindrical shape. The
average pore image [Fig. 14(b)] was obtained by a 2D Fourier
transform of the q-space data and plotting the phased real part
of the resulting image. Further experimental parameters can
be obtained from Ref. [10].

The circular cross section of the cylindrical capillaries has
been imaged at a nominal resolution of 1.3 μm. Figure 15 (dots)
shows the cross section through the pore image at y = 0. The
solid line in Fig. 15 shows the same cross section as obtained
by MCF simulation with a cylinder radius of L = 10 μm
which is consistent with the experimental data. In particular,
the effects of edge enhancement and blurring are convincingly
reproduced by the MCF approach. Such agreement cannot
be achieved by considering the edge enhancement according
to Eq. (13) alone (assuming a locally flat surface). With an
effective duration of the narrow gradient of 2τ + δ

′ = 8.6 ms,
Eq. (13) would predict a peak xmax = 3.1 μm away from the
surface. However, comparison with Fig. 15 shows that the
peaks are shifted even further towards the center of the pore
due to the finite length of the long gradient as discussed in
Sec. II B.
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FIG. 15. (Color online) One-dimensional cross section through
the 2D-MRPI image at y = 0 (dots) and MCF simulation (solid line).

FIG. 16. (Color online) Image simulated with MCF technique (a)
and experimental image obtained by Radon transform of the one-
dimensional Fourier transformed q-space profiles (b).

MCF simulations are based on the same set of parameters
as used for the experiments. In particular, the full MRPI
gradient scheme was incorporated in the MCF simulation.
Thus, the effects of edge enhancement and blurring were
captured. The only free parameter in the simulation was
the radius of the pores. Thus, one may incorporate the
MCF simulation into a least-squares fit algorithm and fit the
dimensions of an unknown sample.

2. Triangular capillaries

Due to the unknown absorption rate of the spins at the
H2O-APC interface, we simulated the expected MRPI image
for the hemiequilateral triangular domain using the MCF
approach with a set of reasonable experimental parameters
without wall relaxation. Figure 16(a) shows the expected
image for triangular capillaries where surface relaxation has
been neglected. The image shows the shape of the underlying
pore structure. Due to the limited time of the long gradient the
image appears blurred.

We chose to acquire 2D-MRPI images using the back-
projection–Radon transform approach. The permeability of
the polycarbonate sheet allows for H2O molecules to leave
the pore space. Therefore, we verified between the individual
MRPI profiles that the capillaries were still filled with water.
For this purpose we acquired conventional MRI images of
the sample cross section at different heights of the sample.
The one-dimensional MRPI pulse sequence was applied
in 18 directions. The resulting q-space data were Fourier
transformed and subsequently subjected to a back-projection
which yielded the two-dimensional image.

Figure 16(b) shows the first MRPI image of a non-point-
symmetric pore shape at the micrometer scale. As a guide to
the eye, the expected triangular shape is indicated. While the
signal-to-noise ratio is limited the hemiequilateral triangular
shape has been recovered. When comparing Fig. 16(b) with
the optical microscope image in Fig. 7 one may note the
rounded edges in the actual sample, which are captured by
the MRPI image. Additionally, the finite surface relaxation
leads to further blurring of the image.

Remarkably, the presence of finite surface permeability and
surface relaxation did not pose an insurmountable barrier to
the application of MRPI. In fact, the presence of these effects
in the sample TRI may be regarded as a starting point for a
systematic study of the effect of surface relaxivity and surface
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FIG. 17. (Color online) Mapping of average pore images on the
MRI image. Shown are the two imaging dimensions x and y. The
MRPI encoding was applied in the third dimension (not shown).
The Fourier transform of the MRPI q-space profile is shown for two
exemplary pixels (arrows). The profile width yields the right pore
diameters of L1 = 20 μm (b) and L2 = 10 μm (d). The sketch shows
the cross section through the whole sample (a) and the sketch of the
two compartments filled with two sizes of cylindrical capillaries (c).

permeability and the required MRPI parameters. This may
aid in the method development for the eventual application to
natural porous media in material and life science.

D. MRPI mapping

The MRPI mapping pulse sequence was applied to the
capillary sample CYL2 containing two sizes of capillaries.
Figure 17(a) shows the two-dimensional MRI image of the
cross section of sample CYL2. This image was obtained by
2D-Fourier transformation of the MRI encoded image for
the first step in the MRPI gradient sequence (q = 0). The
two-dimensional matrix consisted of 512 points in the the
time domain under influence of the read gradient GR and eight
steps in the domain of the phase gradient GP. The width of
the circular profile in the MRI image agrees with the actual
inner diameter of the sample tube of ID = 8 mm. Figure 17(c)
shows a sketch of the transverse cross section through the
sample. Note that the sketch is not to scale and many more
capillaries were contained in the sample tube. In the sketch,
the direction x indicates in which direction the read gradient
GR was applied. The two compartments of different capillary
diameters can be distinguished by an increased signal intensity
for the side with the larger capillaries. It is worth noting that the
higher signal intensity is solely caused by the larger volume
of H2O present in the large capillaries rather than a higher
number of capillaries per pixel.

The MRPI signal was Fourier transformed for two exem-
plary pixels, see Figs. 17(b) and 17(d). The arrows indicate
the location of the MRI pixels from which the pore images
were extracted. The dimensions of the large [Fig. 17(b)] and
small capillaries [Fig. 17(d)] were recovered when taking into
account edge enhancement and blurring.

It is intriguing to see that the signal-to-noise ratio of the
profiles is on the order of 10 although only a few capillaries
are present in each MRI voxel. This is a consequence of

the increased signal-to-noise ratio of MRPI as compared to
diffusive-diffractive PGSE NMR, since S0(q) is measured
instead of |S0(q)|2. This may render MRPI more robust and
versatile for combinations with MRI in mapping experiments.

Thus, one is able to map the average pore shapes as
well as sizes present within a given voxel onto MRI images,
which allows us to combine the resolution of MRPI with the
spatial information of MRI. In principle, one may perform
four-dimensional (2D × 2D) experiments where for each pixel
of the MRI image a full two-dimensional MRPI image is
acquired. In the 4D MRPI mapping approach one would
apply the full 2D-MRPI pulse sequence for each imaging
phase gradient step. The 2D-Fourier transform of the MRI
k-space data at zero MRPI gradient (q = 0) would yield the
MRI image. Another 2D-Fourier transform of the q-space
data would yield the average pore image for each voxel in
the MRI image. However, the cylindrical symmetry of the
underlying pore structure in the present study would not yield
any additional information about the sample and a 3D approach
is sufficient.

V. CONCLUSIONS

The MRPI approach is a recent tool to acquire average
pore images and to determine the sizes and shapes of a
porous system with closed pores. While stimulated echo pulse
sequences appear to be attractive for samples with T1 � T eff

2
one needs to rationalize that the accumulation of spatially
distributed phase differences only occur in the presence of
magnetic field gradients while the magnetization resides in the
x,y plane. Only in this case will the average phase converge
to the center-of-mass phase [comp. Eq. (8)]. Hence, when the
magnetization is stored in the z direction the phase accumula-
tion does not progress. Therefore, stimulated echo techniques
are not favorable for MRPI, although they might be applicable
with recently suggested double-wave-vector techniques [9].
However, MRPI may be chosen due to better performance
in low signal-to-noise situations and thus advanced pulse
sequences such as discussed in this contribution may be needed
to utilize and extend the available time most efficiently. If the
condition of convergence DδL � L2 is met one is rewarded
with the higher information content of the average form factor
and the ensuing ability to acquire true images of the average
pores [6,10,11].

Here we demonstrate together with a parallel study focusing
on triangular domains [11] that MRPI can be applied to
arbitrary pore shapes and down to sizes on the micrometer
scale. MRPI can inherit a wealth of proven concepts from the
MRI toolbox when exploiting its similarity to MRI phase-
encoded imaging. In particular, the acquisition of q-space
data can be carried out point by point and thus advanced
trajectories already developed for MRI k-space imaging such
as compressed sensing [64] could be adopted for MRPI.

Moreover, the signal-to-noise ratio with MRPI is improved
by up to an order of magnitude as compared to diffusive-
diffraction PGSE NMR, since S0(q) is measured instead of
|S0(q)|2. This provides more opportunities when combining
a multitude of NMR or MRI approaches with MRPI. For
example, we demonstrated that measuring the MRPI signal
inside an individual voxel of an MRI image is feasible. The
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application of MRPI mapping can obtain valuable information
on heterogeneous materials with spatial distributions of pore
sizes and shapes. While methods for the mapping of local pore
sizes have been introduced [65,66], MRPI mapping provides
the local averaged pore shape as the more fundamental
characterization of the porous system.
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