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Influence of Luddism on innovation diffusion
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We generalize the classical Bass model of innovation diffusion to include a new class of agents—Luddites—that
oppose the spread of innovation. Our model also incorporates ignorants, susceptibles, and adopters. When an
ignorant and a susceptible meet, the former is converted to a susceptible at a given rate, while a susceptible
spontaneously adopts the innovation at a constant rate. In response to the rate of adoption, an ignorant may
become a Luddite and permanently reject the innovation. Instead of reaching complete adoption, the final state
generally consists of a population of Luddites, ignorants, and adopters. The evolution of this system is investigated
analytically and by stochastic simulations. We determine the stationary distribution of adopters, the time needed to
reach the final state, and the influence of the network topology on the innovation spread. Our model exhibits an im-
portant dichotomy: When the rate of adoption is low, an innovation spreads slowly but widely; in contrast, when the
adoption rate is high, the innovation spreads rapidly but the extent of the adoption is severely limited by Luddites.
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I. INTRODUCTION

Models of innovation diffusion seek to understand how new
ideas, products, or practices spread within a society through
various channels [1]. Innovation may refer to new technologies
or deviations from existing social norms. Rather than a single
theory, innovation diffusion represents a theoretical framework
that encompasses a range of social models in which the
term “diffusion” can mean contagion, imitation, and social
learning [2–4].

Many of the traditional approaches [5] to innovation diffu-
sion modeling are based on a mean-field approximation and are
referred to as aggregate models. An influential example is the
seminal Bass model [6–12], where innovation spreads as the
result of either an adopter converting a susceptible (contagion)
or through external influences on susceptibles (advertising and
mass media). The basic outcome of the Bass model is that
the time dependence of the fraction of adopters exhibits a
sigmoidal shape [1,6–9,13]. Thus significant adoption arises
only after some latency period, after which complete adoption
is quickly achieved.

While the Bass and related models have been successful in
fitting historic data [14], there are several limitations of these
approaches:

(a) The predictive power of the Bass model is uncertain
[15,16].

(b) Aggregate models are based on infinitely large, homo-
geneous populations [12,13] and cannot account for sample-
specific differences and related fluctuation phenomena.

(c) Bass-like models do not account for behavioral pat-
terns that result from social reinforcement and “bandwagon”
pressure [17–20].

(d) Aggregate models assume a “proinnovation bias”
and thus cannot reproduce phenomena such as incomplete
adoption [1,17,20,21].

We are particularly interested in situations where innovation
can be accompanied by controversy, suspicion, or rejection
within some social circles, potentially leading to incomplete
adoption. As an example, mobile phones are owned by 90%
of Americans [22] as of 2014, but their use is accompanied by

continued health and safety concerns [23]. Similarly, the cov-
erage of the measles, mumps, and rubella vaccine in the United
Kingdom reached 92.7% in 2013–2014, below the target level
of 95% coverage for herd immunity. This incomplete adoption
level may result from doubts about vaccine effectiveness and
safety concerns promulgated by antivaccination movements
[24,25]. Such doubts seem to persist even in the face of
their apparently negative consequences, such as the measles
epidemic that seemed to have its inception in Disneyland at
the start of 2015.

Motivated by these facts, we introduce a model for the
diffusion of an innovation, using a statistical physics approach
[26], in which we account for the competing role of “Luddites”
in hindering the spread of the innovation. Agents may be
Luddites (opposed to innovation), “ignorants” (no knowledge
of the innovation), “susceptibles” (receptive to innovation), or
“adopters” of the innovation. We dub this the LISA (Luddites-
ignorants-susceptibles-adopters) model. The main new feature
of the LISA model is the existence of agents that reject the
innovation in response to the spread of adoption. Previous
work [27] has considered the introduction of “resistance
leaders” who spread a negative response to the innovation,
akin to the spread of a competing innovation. The LISA
model differs from this approach by considering agents who
respond in particular to the rate of uptake of the innovation.
We use the term “Luddites” in reference to the 19th-century
Luddism movement in which English textile artisans protested
against newly developed labor-saving machinery [28]. We are
interested in determining how Luddism limits the final level of
adoption and how the presence of Luddites leads to a trade-off
between adoption levels and adoption times scales.

The LISA model is defined in the next section, while the
behavior of the model in the mean-field limit and on complete
graphs is investigated in Sec. III. Section IV focuses on the
model dynamics on random graphs and on a one-dimensional
regular lattice. For all these substrates, we investigate how
Luddism affects the final level of adoption and the time scale
of adoption. We also elucidate a dichotomy between the cases
of slow but relatively universal adoption for low values of an
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FIG. 1. (Color online) Schematic depiction of the LISA model.
An ignorant I can become a Luddite L with rate rȦ (in a mean-field
setting); an ignorant can also become a susceptible S by contagion
with rate proportional to the susceptible density. A susceptible
spontaneously becomes an adopter at rate γ .

intrinsic innovation rate and the rapid but limited spread of
innovation that occurs in the opposite limit. Our conclusions
are presented in Sec. V.

II. THE LISA MODEL

As a helpful preliminary, let us review the simpler two-state
Bass model of innovation diffusion. Here a population consists
of two types of agents: susceptibles S or adopters A. In the
Bass model, susceptibles can become adopters via either of
two processes:

(a) Contagion-driven conversion: A susceptible converts to
an adopter by interacting with another adopter, as represented
by the process S + A → A + A.

(b) Spontaneous adoption: A susceptible converts to an
adopter, S → A.
The characteristic feature of the Bass model is that the adopter
density exhibits a sigmoidal time dependence, in which the
time derivative of this density has a sharp peak (corresponding
to an inflection point in the time dependence of the density
itself) before complete adoption eventually occurs [1,6–9,13].

Our LISA model is a four-state system that consists of a
population of N individuals that can each be in the states
of Luddite (L), ignorant (I), susceptible (S), or adopter
(A). Ignorant agents may either be persuaded to become
susceptible, and thence reach the adopter state, or they may
become a Luddite and permanently oppose the spread of the
innovation. Specifically, the elemental steps of our LISA model
are the following (see Fig. 1):

(a) Contagion-driven conversion: An ignorant agent be-
comes susceptible by interacting with another susceptible
agent. That is, I + S → S + S with rate 1.

(b) Spontaneous adoption: A susceptible agent sponta-
neously becomes an adopter, S → A with rate γ .1

(c) Luddism: Ignorants may permanently reject the inno-
vation and become Luddites, I → L, with a rate proportional
to the change in the density of adopters in its neighborhood.
The Luddism mechanism outlined above incorporates two
aspects of negative behavior towards innovation. The first
represents a fear of innovation or its consequences, as in
the case of the historical Luddism movement, where the
introduction of labor-saving machinery caused fear over job
security [28]. The second is that of nonconformity; agents
may oppose the innovation simply due to its rapid increase in
popularity [20]. We model this feature by defining the rate at

1Adoption could also occur by contagion, according to S + A →
A + A. This two-body process would yield similar features as our
LISA model but would be technically more tedious to handle.

which the Luddite density increases to be proportional to the
adoption rate, with constant of proportionality denoted by r ,
the Luddism parameter.

The multistage progression I → S → A may also be
viewed as a type of social reinforcement mechanism in which
adoption follows from a succession of prompts from neighbors
[18,19]. The equivalent three-state model with only Luddites,
ignorants, and adopters creates a polarized community creates
a polarized community where the ratio of adopters to Luddites
is dependent only on the Luddism parameter, r . Other relevant
models [27] have found that high levels of advertising can
prompt a negative response to innovation which cannot be
replicated with only three states. The combination of a
multistage progression to adoption, together with the Luddite
mechanism, arguably represents the simplest generalization of
the Bass model that gives rise to nontrivial long-time state with
incomplete adoption of an innovation.

III. MEAN-FIELD DESCRIPTIONS

We first consider the LISA model in the mean-field limit,
where agents are perfectly mixed. The densities of each type of
agent are given by (L,I,S,A) = (NL,NI ,NS ,NA)/N , where
NX is the number of agents of type X ∈ {L,I,S,A}, and N is
the total number of agents. We consider the limit N → ∞, so
all densities are continuous variables and all fluctuations are
negligible. In this setting, the evolution of the agent densities
is described by the rate equations:

L̇ = rȦI ≡ (α − 1)SI,

İ = −(1 + γ r)SI ≡ −αSI,
(1)

Ṡ = S(I − γ ),

Ȧ = γ S,

where the dot denotes the time derivative and we define α ≡
1 + γ r . Since the total density is conserved, i.e., L + I +
S + A = 1, the sum of these rate equations equals zero. A
natural initial condition is a population that consists of a small
density of susceptible agents that initiate the dynamics, while
all other agents are ignorant; that is, I (0) = 1 − S(0) = I0 and
L(0) = A(0) = 0.

To solve these rate equations, it is useful to introduce the
modified time variable dτ = S(t) dt , which linearize the rate
equations to

L′ = (α − 1)I,

I ′ = −αI,
(2)

S ′ = I − γ,

A′ = γ,

with solution

L = α − 1

α
I0(1 − e−ατ ),

I = I0e
−ατ ,

(3)
S = I0

α
(1 − e−ατ ) + 1 − I0 − γ τ,

A = γ τ.

There are two basic regimes of behavior that are controlled
by the adoption rate γ , as illustrated in Fig. 2:
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(a)

(b)

FIG. 2. (Color online) Evolution of a realization of the LISA
model on a complete graph of 106 nodes with I0 = 0.8 and Luddism
parameter r = 0.9. (a) γ = 0.3 (extensive adoption); (b) γ = 1
(sparse adoption). Evenly distributed samples of the stochastic
simulation (�) are indistinguishable from the solution of Eq. (1)
(solid line). The completion times for (a) and (b) are 60 and 17,
respectively.

(a) Extensive adoption. When γ < I0, the density of
susceptibles S varies nonmonotonically in time and reaches
a maximum value Sinc at an “inception” time tinc, after which
S decays to 0. This nonmonotonicity leads to a sigmoidal curve
for the adopter density, with A increasing rapidly for t � tinc

and increasing very slowly for t � tinc. The rescaled inception
time τinc is determined by the criterion S ′ = 0, or, equivalently,
I (τinc) = γ . This gives

τinc = 1

α
ln(I0/γ ) . (4)

(b) Sparse adoption. When γ > I0, the susceptibles
quickly become adopters, leaving behind a substantial static
population of ignorants and a small fraction of adopters, as
well as Luddites.

Numerical simulations of the LISA model on a large
complete graph and numerical integration of the rate equations
(1), illustrated in Fig. 2, give results that are virtually
indistinguishable.

We can express the densities in terms of the physical
time t by inverting dτ = S(t)dt to give t = ∫ τ

0 dτ ′/S(τ ′).

Substituting S(τ ) from the third of Eqs. (3) and taking the
limits of low adoption, γ � 1 and α ≈ 1, we have2

t =
∫ τ

0

dτ ′

1 − I0e−τ ′ ≈ τ + ln[1 − I0e
−τ ]. (5)

In particular, the physical inception time tinc is

tinc ≈
∫ ln(I0/γ )

0

dτ ′

1 − I0e−τ ′ ≈ ln

[
I0

(1 − I0)γ

]
(6)

and therefore grows as ln(1/γ ).
The stationary state is reached when all susceptibles

disappear, so no further reactions can occur. This gives the
criterion S(τ∞) = 0 which defines the value of τ∞. By solving
the third line of Eq. (3), we obtain

τ∞ = 1

γ
− I0r

α
+ 1

α
W0

(
−I0

γ
eI0r−α/γ

)
, (7)

where W0(z) is the principal branch of the Lambert function
W (z), which is defined as the solution of z = WeW . Here τ∞
is a decreasing function of the adoption rate γ , with τ∞ ∼ 1/γ

in the high- and low-adoption-rate regimes.
We now determine the final densities by substituting τ∞

into Eqs. (3). For small adoption rate (γ � 1), this gives

A∞ = 1−O(γ ),

I∞ → 0,

L∞ ≈ (α − 1)I0 = O(γ ).

Similarly, the densities at the inception time are obtained by
substituting τinc into Eqs. (3). This yields A(τinc) + S(τinc) =
1 − [(α − 1)I0 + γ ]/α. Since (α − 1)I0 ∼ O(γ ), when γ �
1 and r is finite, here the stationary density of adopters
approximately equals the sum of the adopter and susceptible
densities at the inception time, A∞ ≈ A(τinc) + S(τinc). Hence,
in the low-adoption-rate regime (when r is finite), we can infer
the final level of adoption from the adopter and susceptible
densities at the inception time, i.e., well before the stationary
state.

The dependence of the final densities for different parameter
ranges is shown in Fig. 3. Again, simulation results for
the complete graph are indistinguishable from numerical
integration of the rate equations. Interestingly, L∞ varies
nonmonotonically on γ when the initial state consists mostly
of ignorants and the fixed rate of Luddism r is not too high,
as in Fig. 3 (top). This nonmonotonic dependence on γ can
be understood by noting that dL∞/dγ ∼ r(1 − e−1/γ ) > 0
for γ � 1 and dL∞/dγ ∼ −e−1/γ /γ 2 < 0 for γ 
 1. We
therefore expect that L∞ is peaked for an intermediate value
of γ on a range between the slow and quick adoption regimes. It
is also worth noting that in the absence of Luddites, complete
adoption is almost, but not completely, achieved, since the
final densities of adopters and ignorants are A∞ ≈ 1 − I∞
and I∞ ≈ e−1/γ , see Fig. 3 (bottom).

2Here the term −γ τ ′ has been neglected. This approximation
is legitimate since τ ′ is integrated from 0 to τ � τ∞ ≈ 1/γ

and therefore γ τ ′ � 1 in the regime being considered. A similar
reasoning, with γ τ � γ ln(I0/γ ) � 1, leads to (6) when γ � 1.
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FIG. 3. (Color online) Dependencies of the final-state densities
L∞, I∞, and A∞ for a complete graph of 104 nodes and I0 = 0.9.
In the top panel r = 0.9 while γ varies, whereas in the bottom panel
γ = 0.3 while r varies. Simulations (�) in complete agreement with
(3) with substitution (7) (solid line).

To assess the role of finite-N fluctuations on the dynamics,
we simulate the LISA model on complete graphs of N nodes
using the Gillespie algorithm [29]. At long times we find that
the densities of each species, NX/N , fluctuates around the
corresponding mean-field density, with a root-mean-square
fluctuation of amplitude ∼N−1/2, as expected from general
properties of this class of reaction processes [30]. We also
find that the probability distribution of NX/N is a Gaussian
of width of order N−1/2 that is centered on the mean-field
density. We also estimate the completion time TC for the
system to reach its final state by the physical criterion
that S(t =TC) = 1/N . That is, completion is defined by the
presence of a single susceptible remaining in the population
[19]. By linearizing the rate equations (1) around S∞ = 0,
the density of susceptibles asymptotically vanishes as S(t) ∼
e−(γ−I∞)t . Hence, we estimate the mean completion time to
be TC ≈ (ln N )/(γ − I∞). This prediction is confirmed by our
simulations.

IV. LISA MODEL ON RANDOM GRAPHS AND LATTICES

We now consider the behavior of the LISA model on
Erdős-Rényi random graphs and one-dimensional lattices. We

are particularly interested in uncovering dynamics that are
characterized by genuine non-mean-field effects.

A graph with N nodes can be represented by its N × N

adjacency matrix A = [Aij ], where Aij = 1 if nodes i and
j are connected and 0 otherwise. We implement the LISA
model on such a graph using the Gillespie algorithm [29].
The propensity for a susceptible to become an adopter is γ ,
independent of the local environment. The propensity for an
ignorant node i to become susceptible if it has si susceptible
neighbors is si/N . The propensity of an ignorant node i to
become a Luddite is rγ si/ki , where ki = ∑

j Aij is the degree
(number of neighbors) of node i and si/ki is the fraction of
nodes in the neighborhood of i that are in the susceptible state.
Thus the propensity of i to become a Luddite is proportional to
the sum of its susceptible neighbors’ propensities to adopt. This
rate encodes node i’s local knowledge of the rate of adoption.
These reaction rates approach those of the complete graph, de-
scribed in Sec. III, as the average degree of the graph increases.

A. Erdős-Rényi random graphs

We first study the LISA model on the class of Erdős-Rényi
(ER) random graphs in which an edge between any two
nodes occurs with a fixed probability p. This construction
leads to a binomial degree distribution for the ER graph in
which each node has, on average, k = p(N − 1) neighbors
[31]. Under the assumption of no correlations between the
degrees of neighboring nodes, the adjacency matrix may be
written as Aij ≈ kikj /(Nk) ≈ k/N . The LISA dynamics on
ER graphs can now be approximately described by a natural
generalization of the mean-field theory in which there are
suitably defined reaction rates. In particular, if Si is the
probability that a node i is susceptible and Ij is the probability
that a node j is ignorant, then the density of susceptibles S

evolves as

Ṡi = Si

⎡
⎣∑

j

(Aij/N )Ij − γ

⎤
⎦ ≈ S[(k/N)I − γ ],

since each susceptible interacts with k of its N neighbors on
average. Thus on the ER graph there is a rescaling of the rate of
the two-body contagion process I + S → S + S, whereas the
rates of the remaining one-body processes remain unaltered.
Hence we obtain the effective rate equations

L̇ = γ rSI ≡
(

β − k

N

)
SI,

İ = −
(

γ r + k

N

)
SI ≡ −βSI,

Ṡ = S

(
k

N
I − γ

)
,

Ȧ = γ S,

(8)

where, for later convenience, we define β ≡ γ r + (k/N).
As in the case of the mean-field dynamics, the above

equations predict two regimes of behavior (see Fig. 4):
(a) Slow but extensive adoption (γ < kI0/N). Here the

density of S’s peaks at a inception time tinc ∼ ln(1/γ ) before
vanishing.
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(a)

(b)

FIG. 4. (Color online) The evolution, averaged over 100 realiza-
tions, of the LISA model on an ER graph with N = 103 nodes, k = 10,
and I0 = 0.8. (a) γ = 0.002, such that γ < (k/N )I0 and (b) γ = 0.1
such that γ > (k/N )I0. Shown are the evenly distributed samples of
the stochastic simulation (�) and the solution of Eq. (8) (solid line).
The Luddism parameter r = 0.9.

(b) Rapid but sparse adoption (γ > kI0/N). The density
ofS’s vanishes quickly so the density of adopters and Luddites
quickly reach their steady-state values.

The simulation results presented in Fig. 4 indicate that
the mean-field approximation (8) correctly captures the main
qualitative features of the dynamics on large ER graphs. When
γ < kI0/N , the densities of A and L are characterized by
a sigmoidal time dependence, whereas the density of S has
a peak at the inception time tinc, with time evolution that is
slower than on complete graphs, since each agent has now a
finite neighborhood.

The stationary state can be determined by again noting that
(8) becomes linear in terms of the variable τ = ∫ t

0 S(t ′)dt ′.
Thus proceeding as in Sec. III, we find the steady state by the
condition S(τ∞) = 0. This yields

I∞ = I0e
−βτ∞

L∞ = β − k/N

β
(I0 − I∞)

A∞ = γ τ∞,

(9)

FIG. 5. (Color online) Dependence of the final densities L∞, I∞,
and A∞ on the average degree for ER graphs with N = 103 nodes. The
simulation (�) represents an average over 40 model realizations for 30
randomly generated networks. Parameters are γ = 0.005, r = 0.9,
and I0 = 0.9. The mean-field predictions (9) (solid line) match the
simulation for k � 20 (see main text).

where now

τ∞ = k

Nγβ
+ (1 − I0)

r

β

+ 1

β
W0

[
− kI0

Nγ
e−(1−I0)r−k/(Nγ )

]
. (10)

It is instructive to compare the predictions (9) with the
results of stochastic simulations, and also compare with the
equivalent results for the complete graph. Figure 5 shows
simulation results for the stationary densities as a function
of the mean degree. These results confirm that the mean-field
predictions correctly capture the functional dependence of the
steady state on the various parameters. However, the mean-
field predictions (9) are quantitatively accurate only when
k/N is large. If k/N � 1, the neighborhood of each agent
represents a small fraction of the entire network, and resulting
large demographic fluctuations invalidate the assumptions
underlying the derivation of (9). The dependence on γ and r

are qualitatively similar to those observed on complete graphs.
The influence of demographic fluctuations can be heuristi-

cally assessed by viewing ER graphs of mean degree k as a
metapopulation that consists of N/k patches each comprising
a well-mixed population of size k. According to this picture,
when N 
 k 
 1, the number of agents in each of the N/k

components fluctuates in a range of k1/2 about its average
value. Since these are independent fluctuations, the noise in the
whole population should have an amplitude ∼(N/k)1/2 k1/2 =
N1/2, which leads to fluctuations in the densities of order
N−1/2. This prediction is confirmed by our simulations—we
find that NA(∞)/N has a Gaussian probability distribution
around A∞ with a width that decays as N−1/2. The same
behavior is observed for L∞ and I∞ but not for S∞ as S∞ = 0
is a requirement for the completion of the dynamics.

The mean-field steady-state predictions (9) are summarized
in Fig. 6, where we plot the mean-field steady-state predictions
corresponding to each pair of steady-state densities being
equal. For example, the solid curve corresponds to parameter
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FIG. 6. (Color online) The mean-field steady-state predictions
(9) over the parameter space (γ,r) for k/N = 0.025 and I0 = 0.9.
The contours L∞ = I∞, L∞ = A∞, and I∞ = A∞ split the domain
into six regions which characterize the innovation (see main text).

values for which A∞ = I∞. This carves up the (γ,r) parameter
space into regions corresponding to different orderings of
the steady-state densities, labeled with Roman numerals in
Fig. 6. We can use these orderings to interpret, from a
marketing perspective, whether these would be considered
successful campaigns. In this context, the most desirable
outcome would be region (I), where adopters form the largest
steady-state group and Luddites form the smallest. While
adopters also form the largest group in region (II), Luddites
form the second largest group and so this region could
be considered a controversial success—despite the majority
adopting, a significant number of people have responded
negatively. Conversely, regions (III) and (IV) could both be
considered controversial failures because Luddites form the
largest groups. Regions (V) and (VI) represent ineffective
campaigns because ignorants form the largest steady-state
groups.

In summary, we have shown that the LISA dynamics on ER
graphs can be accurately approximated by using mean-field
assumptions, provided that the average degree is sufficiently
high (see Fig. 5).

B. One-dimensional lattices

Recent controlled experiments have shown that innovation
may spread more efficiently on clustered graphs and lattices
than on random networks [17]. To understand the effect of
regular topology on the spread of an innovation, and where
the mean-field approximation breaks down, we investigate the
LISA dynamics on one-dimensional lattices.

The two regimes of behavior predicted by the mean-field
description (8) on ER random graphs (see Sec. IV A) also
occur on one-dimensional lattices, despite the difference in
topology. Specifically with k = 2 we observe slow adoption
for γ < (2/N )I0 and fast adoption for γ > (2/N)I0. From
simulations, illustrated in Fig. 7, we observe the following
three regimes:

(a) When γ � 2I0/N , there is slow adoption as well as
a time-scale separation. First, almost all I’s are converted to

FIG. 7. (Color online) Final simulated average proportions of
adopters [red (gray) �], ignorants [green (dark gray) �], and
Luddites [blue (black) �] for varying values of γ , averaged over 100
simulations. Theoretical predictions using ignorant domain length
(see Appendix A for details) are overlaid (solid line). Parameters are
N = 1000, r = 0.5. Initially ignorants and susceptibles are randomly
distributed, with densities I0 = 0.8 and S0 = 0.2. The three regimes
discussed in the text are separated by dashed lines corresponding to
regions where (2/N )I0 � γ and (2/N )I0 
 γ . Typical realizations
of the model for N = 100 in each of the three regimes are given
(bottom). On the vertical axis the iteration corresponds to a single
step of the Gillespie algorithm, with one reaction taking place per
iteration.

S’s [32] in a time of the order of N2. When the lattice consists
almost entirely of S’s, these become adopters after a mean
time of the order of γ −1. As a consequence, when γ � N−1

the size of the adopter domains grows abruptly after a time of
order ∼N2 + γ −1, when all ignorants have disappeared and
the entire lattice is covered with adopters.

(b) When γ ∼ 2I0/N , the domains of adopters grow
initially nearly linearly in time, whereas the average size of I
clusters remains approximately constant and of a comparable
size to A domains.

(c) When γ 
 (2/N )I0, adoption occurs quickly and the
final state is reached in a time of order O(1/γ ). The final

012806-6



INFLUENCE OF LUDDISM ON INNOVATION DIFFUSION PHYSICAL REVIEW E 92, 012806 (2015)

FIG. 8. (Color online) Time dependence of the densities in each
state for a one-dimensional lattice of size N = 105 averaged over 100
realizations. The corresponding mean-field predictions from Eq. (8)
with k = 2 (solid line) deviate dramatically from the simulation
samples (�). The parameters are γ = 0.005, r = 0.9, and I0 = 0.8.

adopter density is limited by the formation of Luddites at the
ends of ignorant domains which prevent further conversion
within each domain.

While the mean-field approximation (8) predicts the correct
regimes of behavior, the agreement is only qualitative. In
Fig. 8 we compare typical simulations of the LISA model
on a one-dimensional lattice with the mean-field predictions
of (8) for the case of k = 2. The simulations and mean-
field predictions (8) systematically deviate; the latter always
overestimates the final density of adopters and underestimates
the final density of ignorants. This can be attributed to the
topological constraints on one-dimensional lattices. Initially,
the lattice comprises contiguous domains of ignorants that are
separated by domains of one or more neighboring susceptibles.
Since ignorants can only become susceptible if a neighbor is
susceptible, domains of ignorants shrink at their interfaces
with susceptibles. Crucially, the evolution of an ignorant-
susceptible interface ceases if either the susceptible at the
interface adopts or the ignorant at the interface becomes a
Luddite. Thus in one dimension both Luddites and adopters
act as barriers to the spread of adoption, an effect that is not
captured by the mean-field description.

Since domains of ignorants decrease in size and evolve
independently, we can determine analytically the expected
final length of ignorant domains 〈x〉 and hence the final
fractions of each type of agent. The details of these calculations
are given in Appendix A. Briefly, we first determine the
probability Pn(m) that a domain of ignorants of initial length
n shrinks by m. We then use Pn(m) to calculate the expected
final length of ignorant domains 〈x〉 and the final fraction
of ignorants. Since Luddites only form at the boundaries of
ignorant domains, we are able also to determine the expected
final fraction of Luddites and hence, using the conservation
relation L + I + S + A = 1, the final fraction of adopters.
The resulting final fractions of each type of agent are plotted
in Fig. 7 and agree extremely well with the corresponding
numerical simulations. In principle, this method allows us to

derive explicit formulas for the final fractions of each agent;
however, in practice these formulas prove cumbersome.

V. DISCUSSION AND CONCLUSION

Innovations are often accompanied by societal debates and
controversies that may lead to divisions between adopters of an
innovation and those who permanently reject that innovation.
Consequently, innovations are rarely adopted by the whole
population, as various examples, ranging from technology to
medicine, demonstrate. Classical models of innovation diffu-
sion, such as that proposed by Bass, assume a “proinnovation
bias” and predict the complete adoption of innovations.

Motivated by these considerations we have introduced
a multistage generalization of the Bass model, the LISA
model, that does not unavoidably lead to complete adoption.
The main new feature of our model is the introduction of
Luddites that permanently oppose the spread of innovation in
their neighborhood. In the LISA model, ignorant individuals
can successively become susceptibles and then adopters or
turn to Luddism in response to a high rate of adoption and
permanently reject the innovation.

We carried out a detailed analysis of the properties of the
LISA model on complete graphs and Erdős-Rényi random
graphs, as well as on one-dimensional lattices. In particular,
we focused on the steady states and completion time (time
to reach stationarity). We showed that significant insights
can be gained from a simple mean-field analysis that aptly
captures the qualitative aspects of the two basic regimes of
the LISA dynamics. When the rate of adoption is low, the
population slowly converges to a final state that consists of
a high concentration of adopters. In the converse case, the
stationary state is reached much more quickly, but the final
fraction of adopters is much lower and is severely limited by
the significant densities of Luddites and ignorants.

Since most models of innovation diffusion are formulated
at mean-field level, an important aspect of this work has
also been to reveal the limitations of the mean-field approx-
imation. In particular, for Erdős-Rényi random graphs with
low mean degree and one-dimensional lattices, the mean-field
approximation proves inaccurate. This is due to the formation
of Luddites which isolate domains of ignorants from the
innovation, an effect particularly apparently in one dimension.
It would be worthwhile to investigate the LISA model on
modular networks, where Luddism has the potential to block
the spread of innovation to entire communities. In addition
to the work described in this paper, we also found that the
mean-field approximation proves better on two-dimensional
lattices than on one-dimensional lattices.

In summary, the LISA model is a simple, but nontrivial,
innovation diffusion model that accounts for the possibility
that the promotion of an innovation may be tempered by
the alienation of some individuals. These in turn affect the
spread of the innovation. Interestingly, our model outlines two
possible marketing scenarios: If one is interested in reaching a
high level of adoption, then this can be achieved only over long
time scales, since the rate of adoption must be low. However,
if the priority is to attain a finite level of adoption as quickly as
possible regardless of the alienation that this may cause, then
a high rate of adoption is preferable.
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APPENDIX: ANALYSIS OF ONE-DIMENSIONAL
DYNAMICS

In this Appendix we describe the calculation of the final
fractions of each type of agent on one-dimensional lattices.
These results are compared with simulations in Fig. 7 of
Sec. IV B.

1. Analysis of ignorant domains

Initially, the nodes on the one-dimensional lattice are either
ignorant, with probability I0, or susceptible, with probability
S0 = 1 − I0. Thus the initial configuration consists of con-
nected domains of ignorant nodes bordered by susceptibles.
Moreover, since ignorants can only become susceptible if a
neighbor is susceptible, domains of ignorants only evolve at
their ignorant-susceptible interfaces. We will refer to these as
“active interfaces.” At an active interface one of three events
can occur:

(i) The ignorant node becomes susceptible, thus reducing
the domain length by 1, with probability

pS = 1/N

1/N + rγ /2 + γ
.

(ii) The ignorant node becomes a Luddite, thus reducing
the length of the domain by 1 and causing the interface to
become inactive, with probability

pL = rγ /2

1/N + rγ /2 + γ
.

(iii) The susceptible node becomes an adopter, thereby
terminating the interface evolution, with probability

pA = γ

1/N + rγ /2 + γ
.

For an isolated ignorant node with two susceptible neigh-
bors, these probabilities respectively become

p̂S = 2/N

2/N + rγ + γ
,

p̂L = rγ

2/N + rγ + γ
,

p̂A = γ

2/N + rγ + γ
.

Let Qn(m) be the probability that a domain of ignorants
of initial length n with a single ignorant-susceptible interface
has a final length n − m, with 0 � m � n. We can determine
Qn(m) as follows: If the final length of ignorants is n − m,
with 0 < m < n, then either m ignorant nodes must become
susceptible before a susceptible node at the interface adopts
or m − 1 ignorant nodes must become susceptible before an
ignorant node at the interface becomes a Luddite. These events
occur with probabilities pApm

S and pLpm−1
S , respectively.

Using similar reasoning for the cases m = 0 and m = n, we
thus find

Qn(m) =

⎧⎪⎨
⎪⎩

pA if m = 0

pApm
S + pLpm−1

S if 0 < m < n

pn
S + pLpn−1

S if m = n

. (A1)

By summing over m, it can be shown that Qn(m) is normalized.
We now consider the case where a connected region

of n ignorant nodes initially has two ignorant-susceptible
interfaces. The probability Pn(m) that a region of ignorants
of initial length n with two active interfaces has final length
n − m is given by the recursion relation

Pn(m) = Qn(m)pA + Qn−1(m − 1)pL

+ Pn−1(m − 1)pS, (A2)

where the terms Qn(m) are given by (A1). Equation (A2)
captures the three possible events that can occur at the
interface. If a susceptible node at the interface adopts, which
occurs with probability pA, then the region of ignorants
only has one remaining active interface left and there will
be n − m remaining ignorants with probability Qn(m), as
given in (A1). If an ignorant node at the interface becomes
a Luddite, which occurs with probability pL, then again the
region of ignorants will only have one active interface. Since
there will be one ignorant less the probability there will be
n − m remaining ignorants is Qn−1(m − 1). Finally, if an
ignorant node at the boundary becomes susceptible, which
occurs with probability pS , then the probability that there are
n − m ignorants remaining is the same as if we had started
with n − 1 ignorant nodes, i.e., Pn−1(m − 1).

To solve the recursion relation (A2) we need Pn(0) and
P1(1). The probability that a region of ignorants of initial
length n remains of length n is given by

Pn(0) =
{

pAp̂A if n = 1

p2
A if n > 1

.

Also, the probability that a single ignorant node that initially
has two susceptible neighbors becomes a susceptible or
Luddite is given by

P1(1) = p̂A(pL + pS) + p̂L + p̂S.

Thus the solution to the recursion relation (A2) for 0 < m <

n − 1 is given by

Pn(m) = (m + 1)p2
Apm

S + 2mpApLpm−1
S

+ (m − 1)p2
Lpm−2

S .

For m = n − 1 we have

Pn(n − 1) = pA[p̂A + (n − 1)pA]pn−1
S

+ 2(n − 1)pApLpn−2
S + (n − 2)p2

Lpn−3
S ,

and for m = n we have

Pn(n) = [p̂A(pL + pS) + p̂L + p̂S]pn−1
S

+ (n − 1)
(
pApn

S + 2pLpn−1
S + p2

Lpn−2
S

)
.
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Again it is possible to check, by summing (A2) over m

and solving the resulting recursion relation, that Pn(m) is
normalized.

We can use Pn(m) to calculate the expected final length
of ignorant domains 〈x〉. First note that since I0 is the initial
probability of being ignorant, the probability that a domain of
ignorants initially has length n > 0 is given by p0(n) = I n−1

0 S0

for large N . Thus we find that

〈x〉 =
N∑

n=0

np0(n) −
N∑

n=0

p0(n)
n∑

l=0

lPn(l).

In principle, we may use the above to obtain an explicit
expression for 〈x〉. In practice, however, we use the solutions
to (A2) to calculate 〈x〉 numerically.

2. Calculation of population densities

Initially, the mean number of ignorants is given by I0N

and so dividing by the mean length of ignorant domains,
1/(1 − I0), yields the expected number of ignorant domains,
(1 − I0)I0N . Thus the final density of ignorants is

I∞ = (1 − I0)I0〈x〉.
The probability that an ignorant domain survives is

q = 1 −
∞∑

n=0

p0(n)Pn(n).

Surviving ignorant domains have two interfaces, which are
either ignorant-adopter or ignorant-Luddite, with probabilities
pA/(pL + pA) and pL/(pL + pA), respectively. Thus the
expected number of Luddites at the interfaces of nonvanishing
ignorant domains is given by

η+ = 2pL

pL + pA

q(1 − I0)I0N. (A3)

It is also possible for Luddites to arise when a domain
vanishes. By identifying the terms in Pn(n) that result in
Luddites, it is possible to determine that the expected number
of Luddites that arise when a domain of initial size n > 1
vanishes is given by

ln = (
p̂ApL + p̂L

)
pn−1

S + (n − 1)
(
2pLpn−1

S + p2
Lpn−2

S

)
and l1 = p̂ApL + p̂L. Thus the expected number of Luddites
that arise from domains of ignorants that vanish is

η0 = (1 − I0)I0N

∞∑
n=0

p0(n)ln. (A4)

Summing Eqs. (A3) and (A4) and dividing by N , we arrive at
the final density of Luddites,

L∞ = I0(1 − I0)

(
2pL

pL + pA

q +
∞∑

n=0

p0(n)ln

)
.

Since the dynamics cease when S = 0, the number of adopters
can be found using the conservation law A∞ = 1 − L∞ − I∞.
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