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Shadows of the susceptible-infectious-susceptible immortality transition in small networks

Petter Holme*

Department of Energy Science, Sungkyunkwan University, 440–746 Suwon, Republic of Korea;
Department of Physics, Umeå University, 90187 Umeå, Sweden;

and Department of Sociology, Stockholm University, 10961 Stockholm, Sweden
(Received 6 March 2015; published 9 July 2015)

Much of the research on the behavior of the SIS model on networks has concerned the infinite size limit; in
particular the phase transition between a state where outbreaks can reach a finite fraction of the population, and
a state where only a finite number would be infected. For finite networks, there is also a dynamic transition—the
immortality transition—when the per-contact transmission probability λ reaches 1. If λ < 1, the probability that
an outbreak will survive by an observation time t tends to zero as t → ∞; if λ = 1, this probability is 1. We
show that treating λ = 1 as a critical point predicts the λ dependence of the survival probability also for more
moderate λ values. The exponent, however, depends on the underlying network. This fact could, by measuring
how a vertex’s deletion changes the exponent, be used to evaluate the role of a vertex in the outbreak. Our work
also confirms an extremely clear separation between the early die-off (from the outbreak failing to take hold in the
population) and the later extinctions (corresponding to rare stochastic events of several consecutive transmission
events failing to occur).
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I. INTRODUCTION

The susceptible-infectious-susceptible model captures the
dynamics of an infectious disease spreading in a population
where infected people, upon recovery, become susceptible
again. It has a long history, both as practical tool for predicting
and understanding real outbreaks (e.g., Ref. [1]), and as
a problem in applied mathematics (as a special case of
stochastic logistic processes) [2–12], statistical physics, and
computational science [8–13]. The theoretical development
has, for example, focused on fully connected topologies (or
well-mixed models in epidemiological jargon) where every
individual is equally likely to meet everyone else, at every
unit of time. One of the recent advances is to calculate
the exact value of the average extinction time in a finite
system [2–4]. In parallel, one of the greatest advances of
theoretical epidemiology the last two decades is to move
away from the well-mixed assumption and model the contact
over which the disease spreads as a network [12,14,15]. In
this direction, researchers have, for example, calculated the
epidemic threshold for a given network [8,9,11,12]—i.e., the
critical value of the per-contact transmission probability λ,
below which a disease cannot reach a finite fraction of the
population in the N → ∞ limit.

For finite sized networks, there is also a phase transition,
at least a threshold phenomenon albeit one whose value is
trivial. If λ < 1, any outbreak will eventually die out in a finite
network; if λ = 1, they will live forever. This immortality
transition may be an epidemiological curiosity, as assumptions,
such that the underlying network is relatively static, would
break down for large enough λ values. It is also trivial in the
sense that it is not an emergent phenomenon. Still, it could be
the case that the increasingly unlikely extinction events as λ

grows follow the same statistics as the critical slowing down
around thermodynamic phase transition. In other words, we
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cannot a priori exclude the possibility of something like a
critical behavior of the immortality transition. So, since we
cannot rule it out, we will assume that it is indeed true and see
where it leads us.

In the remainder of this paper, we will investigate the
scaling of the survival probability ξ—the chance, as a function
of λ, that an outbreak survives past an observation time t .
We look at the size dependence of the time constant of
the exponential decay of ξ and find that it is consistent
with a scaling form from the theory of critical phenomena.
Furthermore, we will investigate the contribution of individual
vertices to the behavior of ξ . This, we will argue, gives a
different way of looking at importance of vertices in the
susceptible-infectious-susceptible (SIS) model on networks.

II. PRELIMINARIES

We use the constant-duration version of the SIS model
defined as follows. Assume an underlying network represented
as a simple graph G = (V,E), where V is a set of N vertices
and E is a set of M edges. At the beginning of the simulation,
all vertices are susceptible except one vertex that is infectious
(or rather, becomes infectious at this very time step). Then, for
every edge between an infectious and a susceptible vertex, the
susceptible one will become infectious with a probability λ the
following time step. An infectious vertex becomes susceptible
again δ time steps after becoming infectious. When there are
no infectious vertices, the outbreak is dead. For large enough,
δ this is effectively a one-parameter model—the product λδ

determines the entire behavior of the model, their actual values
only set the time scale. If δ is smaller than the shortest time
for an outbreak to spread through the graph, there might be
other effects arising. Ref. [16] discusses this issue and argues
that for practical purposes the constant-duration version of
compartmental models is equivalent to the constant-recovery
rate version (the latter being more common in the mathematical
literature). (But a disclaimer is that Ref. [16] did not deal with
extreme events such as extinctions.) We use δ = 5, which is
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around the radius of the graphs we study (and thus of the order
of the fastest times of the disease to spread across the network).
Lower δ would make the simulations faster but change the
meaning of the model as the discretization of time makes the
model closer to a Reed-Frost type model [17], where there are
no recovery events during the infectious period of an individual
(all infection and recovery events happen simultaneously).

Our core quantity for monitoring the outbreaks is the
survival probability f (λ,t)—the fraction of outbreaks that
are dead by time t . df/dt gives the probability distribution
of extinction times, which is perhaps a more a commonly
studied property [2,3,5–7]. All simulations are averaged over
106 independent simulation runs.

For the purpose of this paper, any kind of small and
somewhat heterogeneous network would suffice. But since
there are such empirical networks in the epidemiology lit-
erature, we will take two of them as our study objects.
Both networks represent sexual networks of men who have
sex with men (MSM) and were collected to study the HIV
epidemics. Of course, other compartmental models are more
appropriate than SIS for modeling HIV [18], but there are other
infections that spread over these networks—like chlamydia,
syphilis, and gonorrhea—that fits the SIS picture. Since these
infections have different transmission pathways among MSM,
epidemiologists typically treat MSM as a special case; also for
diseases other than HIV [19].

The first example network is based on contact tracing
(following infection chains backward in time) in the early HIV
outbreak in Canada and the United States [20] (we refer to these
data as America). It has N = 40 and M = 41. Note that contact
tracing induces structures in the sampled networks that do not
have to be present in the underlying sexual networks [21].
Then again, this networks serves well as an example. Another
network represents the MSM network of Iceland in the early
1990s and probably suffers less from sampling bias than the
previous network [22]. Here, N = 75 and M = 115. We refer
to these data as Iceland. Both networks are visualized in Fig. 1.

III. RESULTS

A. Scaling of the survival probability

We start our exposé of numerical results by plotting the
survival probability for fixed observation times t as a function
of λ (Fig. 2). This type of plot is reminiscent of the average
outbreak size � as a function of λ, which for infinite systems
shows a threshold phenomenon. � (precisely defined as the
fraction of individuals that at some time are infected) changes,
at a critical λ value, from zero to � > 0. At a first glance, it
seems like the same thing happens in Fig. 2. At a certain λ

value, ξ increases very rapidly from a value close to zero. The
increase becomes steeper the larger the t value is, so t seems to
take the role of N in finite-size analysis of the phase transition
in �. As mentioned, we already know that there is a threshold
behavior in this case, but at λ = 1. At a closer look, we can
see that the rise of the ξ curves happens later for every larger t

value. Since we use an exponential progression of t values this
increase is in effect very slow. Another conspicuous feature of
these curves is that they all group into one for large enough
t values. This envelope of curves (or, rather, pseudoenvelope,
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FIG. 1. The two networks that we study (with the tree vertices of
largest ai values marked). Panel (a) shows a sexual network from
the beginning of the American HIV outbreak of the late 1970s
from Ref. [20]; (b) shows a sexual network of Icelandic MSM from
Ref. [22].
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FIG. 2. In panels (a) (for the America data) and (b) (for the Iceland
data), we see the survival probability ξ as a function of λ for an
exponentially growing set of observation times t = 200 × 2ν in (a)
and t = 50 × 2ν in (b), where ν = 0, . . . ,9 for both panels. The lower
t value a curve has, the more to the left it is.
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FIG. 3. Fits of the extinction time data to an exponential func-
tional form to determine the time constant τ . Panel (a) shows graphs
for America; panel (b) is a corresponding plot for Iceland. Error bars
are smaller than the symbol sizes.

since it will disappear as t → ∞) corresponds to the early
die-off seen in many epidemic models. More precisely, 1 minus
the ξ value of the envelope gives the fraction of outbreaks that
fail to take hold in the population. The remaining runs do
reach some quasiendemic state, but will eventually die due to
the fluctuations in a finite network.

Next we look closer at ξ as a function of t for fixed λ

values; see Fig. 3. We chose λ values to get a large range in
ξ (i.e., around where curves are the steepest in Fig. 2), but for
both networks and all λ the observation is the same—except
very small t , ξ (t) follows an exponential function exp(−t/τ )
quite accurately. This has been found analytically for fully
connected networks [2,4,7], and we guess that it holds for all
connected networks. The exact functional form of the early die-
off [where ξ (t) decays faster than an exponential] could depend
both on the heterogeneities of the networks around the seed and
the discrete time. We will not go deeper into this, but focus on τ .
There are plenty of articles on the behavior of the average τ in
fully connected networks in the large-N limit [3,5–7]. Perhaps
the theories in these references could be extended to the finite-
N and derive τ (λ). As mentioned, we take a computational
physics approach. Our next step is to construct a scaling ansatz
for τ (λ). Assuming two independent scaling regimes where the
large-λ one is dominated by fluctuations similar to a critical
point from the λ = 1 transition, τ ∼ (1 − λ)−ζ where ζ is an
exponent corresponding to a critical exponent. For the low-
λ part, the fully connected, N → ∞ case predicts a linear
dependence [4], but that does not fit our numerical results,
which seem to be exponential. We combine (more precisely,
add, assuming they stem from independent mechanisms) this
observation with the finite-size scaling form to get

τ = A exp(λ/l) + B(1 − λ)−ζ , (1)

where A and B are constants, l controls the small λ behavior,
and ζ determines the dynamics close to the immortality
transition. Fitting to the form given by Eq. (1) is very accurate
(Fig. 4). Fits to other four-parameter functional forms (with
a linear or power-law scaling of the low-λ term) is visibly
worse (failing at low λ). Unfortunately, only limited regions
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FIG. 4. The time constant of the decay of ξ , τ , as a function of λ.
Panel (a) gives results for the America data, panel (b) for the Iceland
data. The curves are fits to the form A exp(λ/l) + B(1 − λ)−ζ . The
parameter values for the fit are A = 0.94(7), l = 0.0307(8), B =
2.9(5) × 10−4, and ζ = 78.6(6) for America, and A = 1.22(2), l =
0.0132(1), B = 8.2(4) × 10−4, and ζ = 197(6) for Iceland (the digits
in the parentheses are the standard errors in order of the last digits).

of λ are accessible—for small λ, the disease dies too fast to
get reliable data; for large λ, the simulations take too much
time. The accuracy of the scaling form is probably higher than
many numerical phase transition studies, which makes this
somewhat more tolerable. Our conclusion from Fig. 4 is that it
is consistent with a critical scaling around the λ = 1 transition
affecting the dynamics at much lower λ. At the same time,
we hope future studies could derive both terms of Eq. (1) in
a more systematic way. As a final note, the values of ζ are
both high (compared to critical exponents) and different for
the two networks. These both observations suggest that the
network topology determines the exponent. This is different
from the universality classes of spin systems on lattices where
the exponents take rather few values.

B. Vertex-vise contribution to ζ

We have seen that ζ depends on the network, but how?
Now we turn to examining the contribution of each vertex
to the scaling behavior of ζ . We quantify the contribution of
vertex i by the ratio a between ζ after and before i is removed.
Let Gi represent G with i deleted, then

ai = ζ (Gi)/ζ (G). (2)

For all the vertices in our networks, ζ (Gi) is less than ζ (G), or
within one standard error from it. It is easy to understand that
adding a vertex is like making the road to extinction one step
longer and thus even harder to reach, but how this translates to
the more dramatic divergence for large λ is not clear. We leave
the observation that a larger graph has larger ζ as a conjecture
and focus on the network structural predictors of ai .

First, we investigate parameter-free descriptors of i’s
position in the network, such as degree ki , the number of
vertices ni , and edges mi in the largest connected component
of Gi , coreness, closeness, betweenness, and the eigenvector
centrality εi . The latter comes from the idea that a vertex’s
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TABLE I. Pearson’s correlation coefficient between ai—
capturing a vertex’s influence on ζ—and standard descriptors of the
position of a vertex in a network. The number in the parentheses
is the standard error (obtained through jackknife resampling) in the
order of the last digit. For the one-parameter quantities we also show
the optimizing parameter values (α for Katz centrality and d for
PageRank).

Measure America Iceland

0 param. ki 0.73(4) 0.974(2)
ni 0.82(4) 0.75(5)
mi 0.83(3) 0.965(2)
εi 0.64(4) 0.917(6)

1 param. max Ki 0.76(5) 0.98(2)
for α 0.17(8) 0.038(5)

max Ri 0.72(6) 0.97(4)
for d 0.99(1) 0.99(1)

centrality is, recursively, proportional to the sum of its
neighbors’ centralities. This leads to εi being the ith element
of G’s adjacency matrix (where the element on the ith row
and j th column is one of i and j form an edge, and zero
otherwise). All the quantities we use are discussed in network
theory textbooks such as Ref. [23]. We will consider the ones
that have the highest explanatory power (measured through
the absolute value of Pearson’s correlation coefficient r) with
respect to ai , namely ki , ni , mi , and εi . The r values between
these measures and ai are presented in Table I. Even though the
quantities that we do not list (closeness, etc.) are consistently
worse, the two data sets show quite different results for the
listed quantities. Note, from Fig. 1, that the Iceland network
is still connected into one large component no matter which
vertex is deleted. In the America data, on the other hand,
deleting the vertices with the largest ai values disconnects the
network. For this latter data set, the quantities that capture
the fragmentation of the network, i.e., ni and mi , are the best
predictors of ai . In Fig. 1, we plot the three vertices of largest ai

for the two networks, which illustrates this point well. For the
other network, Iceland, degree and mi (that in this case—
with little fragmentation), strongly correlated with degree,
are the ones with highest correlation with ai . Interestingly
eigenvector centrality is performing poorly, highlighting the
difference between indirect interaction in the SIS model and
the linear coupling that the eigenvector centrality builds on.
We note the ranges of ai are [1.06(7),1.9(1)] for America
and [1.004(2),1.24(5)] for Iceland (where the numbers in
parentheses are standard errors in the order of the last digit).

In addition to the zero-parameter importance measures
above, we also measure the best possible correlation for two
one-parameter measures—Katz centrality Ki and PageRank
Ri . These measures are related to the eigenvector centrality—
Katz centrality also assume the centrality is proportional to
the sum of the centrality of the neighbors, but also plus a
constant α for the vertex itself. PageRank is proportional to
the occupation probability of an unbiased random walker that
with a probability d moves to a neighbor of its current vertex,
and otherwise it moves to a random vertex. The fact that a
disease can spread from one vertex to many others make Katz

centrality seem more appropriate. We include PageRank for
comparison. The optimal correlation with Katz centralities is
indeed always stronger than for the PageRank. The PageRank
is optimized in the small-d limit and the Katz centrality
for an intermediate α value. For the Iceland data the Katz
centrality shows the highest correlation of all, meaning that
there are measurable higher order structures that capture ai

better than degree. For the America data, ni and mi are still
the measures with the highest correlation with ai , but after
those comes the Katz centrality. In summary, for our somewhat
sketchy analysis, how much deleting a vertex would fragment
the network seems to be the most important structure for
explaining ai ; degree is the second most important (but not
the only other) factor.

IV. DISCUSSION

We have numerically investigated extinction events in the
SIS model on small networks. Our observations are consistent
with the assumption that the transition at λ = 1—below which
an outbreak would always die out in a finite-sized network—
can be treated with standard finite-size scaling theory, but
with the size replaced by time (not an entirely new idea,
cf. Ref. [24]). Using this assumption, we find exponents that
are dependent on the network topology. The fact that the ζ

depend on the topology is different from critical phenomena
where exponents are groped into universality classes. One
interpretation is to see the network as an integral part of the
model—after all, we have already accepted to drop size scaling
from the picture. On the other hand, we could see this as an
indication not to push the analogy between the immortality
transition and critical behavior further. We argue that ζ can
be used as a parameter-free index of a vertex’s role in the SIS
extinction dynamics. We define the index as the exponent for
the network without the vertex, divided by the exponent with
the vertex present. This index, we show, depends much (but not
only) on how deleting the vertex would fragment the network.

The extinction time for large λ is extremely long. Even
though our networks are small, if λ > 1/2, one would have to
wait more than 10106

time steps for the survival fraction to go
below 50%, even in the smallest networks. In our analysis, a
time step represents a fifth of the duration of the disease. This
means that for diseases lasting a week or so, we would have to
wait 105 times the age of the universe (and many more times
an average lifespan, let alone the typical lifetime of an edge
in the network) to see more than half of the outbreak die out.
In addition, the extinction times grow fast with N (for fully
connected networks, the growth of the average is exponential
[4]). From this discussion, we understand that no real outbreak
would ever come close to the immortality transition without
violating the assumption of a stable underlying network.
Indeed, no direct SIS simulation comes close either.

For practical purposes, the most important observation is
the extremely clear separation between the early die-off of
outbreaks that fail to take hold in the population, and the later
extinction events from rare stochastic events. This is maybe
most clearly visible as the envelope of the curves in Fig. 1. This
observation has been made before—e.g., Ref. [3] argues for
the relevance of the quasistationary stage of the SIS dynamics.
Since awareness and countermeasures can, effectively, rewire
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the network fairly quickly only the early extinction events are
of practical interest. The fraction of early extinctions is thus,
from a modeling point of view, very well defined, which makes
it easier to make conclusive statements from simulations. From
a theoretical point of view, the crossover from exponential to
power-law divergence scaling [Eq. (1)] is also interesting and
open for future investigations.
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Newman, J. Saramäki, and T. Takaguchi. The author was
supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the
Ministry of Education (Grant No. 2013R1A1A2011947).

[1] H. W. Hethcote and J. A. Yorke, Gonorrhea Transmission
Dynamics and Control (Springer, Berlin, 1984).

[2] R. H. Norden, Adv. Appl. Probab. 14, 687 (1982).
[3] R. J. Kryscio and C. Lefévre, J. Appl. Probab. 26, 685
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