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Fluctuation and noise propagation in phenotypic transition cascades of clonal populations

Qi-ming Pei,1,2 Xuan Zhan,1,* Li-jian Yang,1 Jian Shen,1 Li-fang Wang,1 Kang Qui,1 Ting Liu,1 J. B. Kirunda,1

A. A. M. Yousif,1 An-bang Li,1 and Ya Jia1,†
1Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China

2School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
(Received 3 February 2015; revised manuscript received 22 April 2015; published 29 July 2015)

Quantitative modeling of fluctuations of each phenotype is a crucial step towards a fundamental understanding
of noise propagation through various phenotypic transition cascades. The theoretical formulas for noise
propagation in various phenotypic transition cascades are derived by using the linear noise approximation of
master equation and the logarithmic gain. By virtue of the theoretical formulas, we study the noise propagation in
bidirectional and unidirectional phenotypic transition cascades, respectively. It is found that noise propagation in
these two phenotypic transition cascades evidently differs: In the bidirectional cascade, a systemic random
environment is provided by a correlated global component. The total noise of each phenotype is mainly
determined by the intrinsic noise and the transmitted noise from other phenotypes. The intrinsic noise enlarged by
interconversion through an added part shows a novel noise propagation mechanism. However, in the unidirectional
cascade, the random environment of each downstream phenotype is provided by upstream phenotypes. The total
noise of each downstream phenotype is mainly determined by the transmitted noises from upstream phenotypes.
The intrinsic noise and the conversion noise can propagate in both bidirectional and unidirectional phenotypic
transition cascades.
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I. INTRODUCTION

Phenotypic diversity exists in a variety of species, from
unicellular organisms such as Salmonella enterica [1], Es-
cherichia coli [2], or Bacillus subtilis [3] to plants [4] and
animals [5]. Many previous research works about cellular
phenotypic diversity refer to the stochastic cell fate decisions
modulated by random gene expressions [6–9] or generated by
environmental changes [2,10–13]. Under fixed physiological
conditions, however, the interconversion between distinct
phenotypes which can constitute various phenotypic transition
cascades [14,15] or the self-proliferation of each phenotype
can maintain phenotypic equilibrium in clonal populations. For
instance, phenotypic equilibrium is observed in various cancer
cells in distinct states in in vivo and in vitro cultures [16,17].
The phenotypic transition processes around the equilibrium
state may be hindered by stochastic fluctuations arising
from the variations of interconversion or self-proliferation
rate.

A significant problem in populations is to understand how
noise propagates in various phenotypic transition cascades
around the equilibrium state. Similar problems were inves-
tigated in some biological cascades or network systems. For
example, ultrasensitive signaling cascades operating near satu-
ration show that output signal fluctuations are bounded in mag-
nitude even if the noisy cascade length is large and the noise
in these fluctuation-bounded cascades can be attenuated [18].
A gene-regulatory network of single cells [19] explains the
noise propagation through the gene network and predicts the
correlations as the network is systematically perturbed. In gene
regulation in terms of a two-state model, where the promoter
of a gene can stochastically switch between an on and an off
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state, noise in gene expression to promoters described by state
transition diagrams with multiple states, the experimentally
accessible noise characteristics for these complex promo-
ters, and the channel capacities of complex promoter architec-
tures are studied in detail, respectively [20]. It was found that
adding internal states to the promoter can generically decrease
the channel capacity, except in certain cases. A network of
interactions between genes and proteins [21] shows that the
positive feedback as a central motif allows for the buffering
of propagated noise while maintaining sensitivity to long-term
changes in input signals.

In order to investigate noise propagation through various
phenotypic transition cascades, in this paper we start by con-
structing a general model of populations in which the conver-
sion rate between distinct phenotypes and the self-proliferation
rate of each phenotype are assumed as arbitrary functions of
subpopulations. The theoretical formulas for noise propagation
in phenotypic transition cascades are derived by using the
linear noise approximation of a master equation [22,23]. The
theoretical formulas for noise propagation obtained here can
be widely applied to investigate the fluctuations and noise
propagation in various phenotypic transition cascades (or
interaction networks).

To maintain the phenotypic equilibrium, there are two
regulation mechanisms: First, the phenotypic equilibrium can
be maintained through intercellular signals that modulate the
proliferation rates of distinct states in the absence of intercon-
version between two states. Second, the phenotypic states can
interconvert between different states in a manner that maintains
phenotype equilibrium in the absence of proliferation rate
variations. On the other hand, there are two conceivable
phenotypic transition ways. One is the bidirectional transition
cascade, such as the transitions between two species in a
bacterial community with exploitative competition [24] and
the interconversion between three cell states in breast cancer
lines [16]. The other is the unidirectional transition cascade,
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such as the differentiation from stem cell to semidifferentiated
cell and then to fully differentiated cell in a colonic crypt [17].

Interesting questions now arise: How does noise propa-
gate in bidirectional and unidirectional transition cascades
respectively? What are the effects of the interconversion
or self-proliferation rates of one phenotype on noise prop-
agation in the two phenotypic transition cascades around
the equilibrium state? To address these issues, by virtue of
our theoretical formulas for noise propagation in transition
cascades, we study a model of two species with exploitative
competition in a bacterial community [24], which is a case of
the bidirectional phenotypic transition cascade with the first
regulation mechanism, and a model of three cell compartments
in a colonic crypt [17], which is a case of the unidirectional
phenotypic transition cascade with the second regulation
mechanism, respectively. We found that both the mechanisms
of noise propagation and the effects of the interconversion or
self-proliferation rate on noise propagation significantly differ
in the bidirectional and unidirectional transition cascades.

The paper is arranged as follows. We start by constructing
a general model of populations in which the conversion
rates between distinct phenotypes and the self-proliferation
rate of each phenotype are assumed as arbitrary functions
of subpopulations in Sec. II, and the variances and covari-
ances of fluctuations are obtained by using the linear noise
approximation of the master equation [22,23]. In Sec. III,
the theoretical formulas for noise propagation in phenotypic
transition cascades are derived by using the logarithmic
gain [19,21,25–27]. By virtue of these theoretical formulas,
the fluctuations and noise propagation in a bidirectional [24]
and in unidirectional [17] phenotypic transition cascades
are respectively studied in Secs. IV and V. We end with
conclusions and discussions in Sec. VI.

II. GENERAL MODEL

We consider a general phenotypic transition cascade model
with R phenotypes and L transitions that encompasses both
self-proliferation and transition from one phenotypic state
to another. The subpopulation kinetics of population vector
N(t) = [N1(t),N2(t), . . . ,NR(t)] is given by allowing it to
change with time in accordance with self-proliferation, death,
and phenotypic transitions among different phenotypes:

dNi

dt
= aiNi − biNi +

∑
j �=i

αjiNj −
∑
j �=i

αijNi, (1)

where ai and bi are the self-proliferation and death rates of the
ith phenotype and αij is the interconversion rate between the
ith and the j th phenotypes.

In general, all rates in Eq. (1) depend on the number
of involved phenotypes. Here we assume that (i) the self-
proliferation (or self-growth) rates are arbitrary functions
of subpopulations in the form of ai = ai(gi,Ni,Nj ) with a
maximal growth rate (MGR) gi , e.g., the logistic growth
fashion in the bacterial competition strategies of two species
community due to the limited nutrition [12,24]. (ii) The
conversion rates are arbitrary functions of subpopulations in
the form of αij = αij (si,Ni,Nj ) with an inherent transition rate
(ITR) si , e.g., the linear feedback or the saturating feedback

mechanism of transition between three cell phenotypes in a
colonic crypt [17,28]. (iii) The death rate bi of each phenotype
is considered a constant here.

The joint probability distribution P (N1,N2, . . . ,NR,t) of
population kinetics Eq. (1) obeys the following master equa-
tion [22,23,29]:

∂P

∂t
=

R∑
i=1

[(
E−1

i − 1
)
aiNi + (

E1
i − 1

)
biNi

+
∑
j �=i

(
E1

jE
−1
i −|,1)

αjiNj +
∑
j �=i

(
E1

i E
−1
j −1

)
αijNi

]
P,

(2)

where Ei and Ej are the step operators acting on Ni and
Nj , respectively. For a function f (Ni,Nj ) with two integer
arguments, the step operator E±m

i (or E±m
j ) increases Ni

(Nj ) by an integer ±m, i.e., E±m
i f (Ni,Nj ) = f (Ni ± m,Nj ),

E±m
j f (Ni,Nj ) = f (Ni,Nj ± m).
The master equation cannot be solved exactly, so it is

necessary to have a systematic approximation method. By
using van Kampen’s �-expansion method [22], the subpop-
ulation is approximated by setting Ni(t) = �xi(t) + √

�ξi(t)
for large system size �, and the joint probability distribution is
written by P (N1,N2, . . . ,NR,t) = �−R/2�(ξ1,ξ2, . . . ,ξR,t).
Collecting the terms of �1/2 in the expansion of Eq. (2)
reproduces the concentration form of the macroscopic rate
equation,

dxi

dt
= aixi − bixi +

∑
j �=i

αjixj −
∑
j �=i

αij xi, (3)

and the terms of �0 form a linear Fokker-Planck equation,

∂

∂t
� = −

R∑
i,k

Aik

∂

∂ξi

(ξk�) + 1

2

R∑
i,k

Bik

∂2�

∂ξi∂ξk

, (4)

where A is the drift matrix and B is the diffusion matrix. A
and B depend on the stoichiometry of the transitions and the
macroscopic rates.

Under the steady state (xs
1,x

s
2, . . . ,x

s
R) of the macroscopic

rate Eq. (3), the matrix elements of A and B in Eq. (4) are
defined by

Aik =
L∑

l=1

sil

∂υl

∂xk

, Bik =
L∑

l=1

silsklυl,

in which the transition l occurs with the microscopic rate υl to
produce subpopulation sil of phenotype i and subpopulation
skl of phenotype k. Taking into account Eq. (3), we have the
expressions for matrix elements Aik and Bik as follows:

Aii = ∂

∂xi

(
aixi − bixi −

∑
j �=i

αij xi

)
, (5)

Aik = ∂

∂xk

(aixi − bixi + αkixk), (6)

Bii = 2

(
aixi +

∑
j �=i

αjixj

)
, (7)

Bik = −(αikxi + αkixk), (8)
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with k �= i. For stationary variances, the linear noise approxi-
mation is summarized by [30,31]

AC + CAT + �B = 0, (9)

where matrix C contains both the variance Cii which charac-
terizes the fluctuation in population of the ith phenotype and

the covariance Cik which represents the degree of correlation
between the noise in the ith subpopulation and that in the
kth subpopulation. Substituting Eqs. (5)–(8) into Eq. (9),
the variances Cii and covariances Cik of the fluctuations are
obtained as

Cii =
∑

j �=i Cij
∂

∂xj
(aixi − bixi + αjixj ) + �

(
aixi + ∑

j �=i αjixj

)
1
xi

∑
j �=i αjixj − xi

∂
∂xi

(
ai − bi − ∑

j �=i αij

) , (10)

Cik =
∑

j �=k Cij
∂

∂xj
(akxk − bkxk + αjkxj ) + ∑

j �=i Ckj
∂

∂xj
(aixi − bixi + αjixj ) − �

(
αikxi + αkixk

)
1
xi

∑
j �=i αjixj + 1

xk

∑
j �=k αjkxj − xi

∂
∂xi

(
ai − bi − ∑

j �=i αij

) − xk
∂

∂xk

(
ak − bk − ∑

j �=k αkj

) , for k �= i. (11)

III. THEORETICAL FORMULAS FOR
NOISE PROPAGATION

To quantify the noise propagation in phenotypic transition
cascades around the steady state, Eq. (9) is normalized as

MV + (MV)T + D = 0, (12)

with

Vik = Vki = Cik

〈Ni〉〈Nk〉 , Mik = Aik

〈Nk〉
〈Ni〉 , Dik = �Bik

〈Ni〉〈Nk〉 .

By using Eqs. (7) and (8) and Ni(t) = �xi(t) + √
�ξi(t), we

have

Dii = 2
[
ai〈Ni〉 + ∑

j �=i αji〈Nj 〉
]

〈Ni〉2
, (13)

Dik = −
(

αik

〈Nk〉 + αki

〈Ni〉
)

, with k �= i. (14)

To measure how the balance between production and elimi-
nation of Ni is affected by Nk , the logarithmic gain [19,21,25–
27] is defined by

Hik = ∂ln(J−
i /J+

i )

∂ln(Nk)
,

where J+
i = aiNi + ∑

j �=i αjiNj is the pure production rate
of phenotype i and J−

i = biNi + ∑
j �=i αijNi is the pure

elimination rate of phenotype i. In fact, Hik represents a
common measure of the sensitivity of a response to variation
in parameter Nk , which is also called the logarithmic gain [32],
sensitivity amplification [33,34], or susceptibility [35]. Taking
into account the population kinetics [Eq. (1)], we have

Hii =
∑

j �=i αjiNj + N2
i

∂
∂Ni

(
bi − ai + ∑

j �=i αij

)
aiNi + ∑

j �=i αjiNj

, (15)

Hik = Ni

akNk + ∑
j �=k αjkNj

∂

∂Ni

(bkNk − akNk − αikNi),

for k �= i. (16)

Under the steady state (i.e., J+
i = J−

i = Ji), the average
lifetime is determined by the subpopulation divided by the
total rate of elimination, τi = Ni/J

−
i = Ni/Ji . Thus, the drift

matrix A is rewritten as

Aik = − 〈Ni〉
〈Nk〉

Hki

τi

.

Then its normalized formation M is represented by

Mik = Aik

〈Nk〉
〈Ni〉 = −Hki

τi

. (17)

Substituting Eqs. (13), (14), and (17) into Eq. (12), we obtain

R∑
j=1

HjiVji = 1

〈Ni〉 , (18)

R∑
j=1

(
HjiVjk

τi

+ HjkVji

τk

)
= −

(
αik

〈Nk〉 + αki

〈Ni〉
)

, (19)

with k �= i.
The solution Vii of the theoretical formulas Eqs. (18)

and (19) represents the total noise in the ith phenotypic state,
which may include the intrinsic noise in the ith phenotypic
state, the transmitted noise from the other phenotypes, and
the interconversion noise. The solution Vij represents the
correlation between fluctuations in the ith phenotype and in
the j th phenotype. By virtue of above theoretical formulas one
can investigate fluctuations and noise propagation in various
transition cascades (or networks) around equilibrium state
when the conversion rates between distinct phenotypes and
the self-proliferation rate of each phenotype are provided.

In order to study how the noise propagates in various
phenotypic transition cascades and the effects of the inter-
conversion rates or self-proliferation rates on noise propaga-
tion in phenotypic transition cascades, under given detailed
expressions of the conversion rates and the self-proliferation
rate, we discussed a model of two species with exploitative
competition in a bacterial community [24], which is a case of
the bidirectional phenotypic transition cascade with the first
regulation mechanism, and a model of three cell compartments
in a colonic crypt [17], which is a case of the unidirectional
phenotypic transition cascade with the second regulation
mechanism in Secs. IV and V, respectively.
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FIG. 1. The bidirectional phenotypic transition cascade. A
schematic diagram of transitions between species A and species B in
bacterial community.

IV. FLUCTUATIONS AND NOISE PROPAGATION IN THE
BIDIRECTIONAL TRANSITION CASCADE

A. Model and noise propagation formulae

Consider a model of a bacterial community (including
species A and species B) with exploitative competition [24].
This is a case of bidirectional phenotypic transition cascade
(see Fig. 1) with the first regulation mechanism. In the
deterministic description, the evolution functions are

dN1

dt
= a1N1 − b1N1 + α21N2 − α12N1, (20)

dN2

dt
= a2N2 − b2N2 + α12N1 − α21N2, (21)

where N1 and N2 are the population numbers of species
A and B. In this model, the self-proliferation rates of two
species are a1 = g1[1 − (N1 + N2)/N0] with MGR g1 and
a2 = g2[1 − (N1 + N2)/N0] with MGR g2, in which N0 refers
to the carrying capacity of the community constrained by
nutrient limitation. The ITRs between different phenotypes

are s1 = α12 and s2 = α21, respectively. It is the classical
competitive Lotka-Volterra equations [36–38] when α12 =
α21 = 0. Here we take the dimensionless parameters g2 =
0.121, α21 = 0.001, and b1 = b2 = 0.02 [12,24].

The concentration forms of the macroscopic rate equations
Eqs. (20) and (21) are

dx1

dt
= a1x1 − b1x1 + α21x2 − α12x1, (22)

dx2

dt
= a2x2 − b2x2 + α12x1 − α21x2. (23)

The steady state can be obtained as follows:

Ns
1 = �xs

1 = ρ1β2 + α12

g2

N0

ρ1(1 + ρ1)
, (24)

Ns
2 = �xs

2 = ρ1β2 + α12

g2

N0

1 + ρ1
, (25)

with

β1 =g1 − b1 − α12,

β2 =g2 − b2 − α21,

ρ1 ≡ Ns
2

Ns
1

= g1β2 − g2β1 +
√

(g1β2 − g2β1)2 + 4g1g2α12α21

2g2α21
.

Here β1 and β2 denote the inherent net (per-capita) growth rates
of two species, respectively. ρ1 is the ratio of the population
of species B to that of species A.

Because the death rates bi(i = 1,2) and the transition rates
αij (i, j = 1,2) are constant in this model, Eqs. (10) and (11)
can be simplified as

Cii =
∑

j �=i Cij

(
αji + xi

∂
∂xj

ai

) + �
(
aixi + ∑

j �=i αjixj

)
1
xi

∑
j �=i αjixj − xi

∂
∂xi

ai

,

Cik =
∑

j �=k Cij

(
αjk + xk

∂
∂xj

ak

) + ∑
j �=i Ckj

(
αji + xi

∂
∂xj

ai

) − �(αikxi + αkixk)
1
xi

∑
j �=i αjixj + 1

xk

∑
j �=k αjkxj − xi

∂
∂xi

ai − xk
∂

∂xk
ak

, for k �= i.

The stationary population number can be replaced by its mean number, i.e., Ns
i ≡ 〈Ni〉(i = 1,2). From the macroscopic

description of Eqs. (22) and (23), we obtain

C11 = a1〈N1〉 + α21〈N2〉 + (α21 − ρ2〈N1〉)C12

ρ1α21 + ρ2〈N1〉 , (26)

C22 = a2〈N2〉 + α12〈N1〉 + (α12 − ρ3〈N2〉)C12

α12/ρ1 + ρ3〈N2〉 , (27)

C12 = C21 =
(α21−ρ2〈N1〉)(a2〈N2〉+α12〈N1〉)

α12/ρ1+ρ3〈N2〉 + (α12−ρ3〈N2〉)(a1〈N1〉+α21〈N2〉)
ρ1α21+ρ2〈N1〉 − (α12〈N1〉 + α21〈N2〉)

α12/ρ1 + ρ3〈N2〉 + ρ1α21 + ρ2〈N1〉 − (α12−ρ3〈N2〉)(α21−ρ2〈N1〉)
α12/ρ1+ρ3〈N2〉 − (α12−ρ3〈N2〉)(α21−ρ2〈N1〉)

ρ1α21+ρ2〈N1〉
. (28)

Considering the constant death rates bi(i = 1,2) and the constant transition rates αij (i, j = 1,2), Eqs. (15) and (16) can be
simplified as

Hii =
∑

j �=i αjiNj − N2
i

∂
∂Ni

ai

aiNi + ∑
j �=i αjiNj

,

Hik = − Ni

akNk + ∑
j �=k αjkNj

∂

∂Ni

(akNk + αikNi), for k �= i.
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Therefore,

H11 = ρ1α21 + ρ2〈N1〉
a1 + ρ1α21

, (29)

H22 = α12/ρ1 + ρ3〈N2〉
a2 + α12/ρ1

, (30)

H12 = ρ3〈N2〉 − α12

ρ1a2 + α12
, (31)

H21 = ρ2〈N1〉 − α21

a1/ρ1 + α21
. (32)

Here ρ2 = g1/N0 and ρ3 = g2/N0. It can be shown that
the logarithmic gains are H11,H22,H12 > 0 if g1 ∈ [0,0.24],
H21 � 0 if g1 ∈ [0,0.022], and H21 > 0 if g1 ∈ (0.022,0.24].

In order to study noise propagation in species A and B,
expanding the theoretical formulas Eqs. (18) and (19) and
solving them for V11, V12, V21, and V22 here, we have

V11 = 1

〈N1〉H11
− V12

H21

H11
, (33)

V22 = 1

〈N2〉H22
− V21

H12

H22
, (34)

V12 = V21 = −
H12
τ2

1
〈N1〉H11

+ H21
τ1

1
〈N2〉H22

+ α12
〈N2〉 + α21

〈N1〉
H11
τ1

+ H22
τ2

− H21
τ1

H12
H22

− H12
τ2

· H21
H11

, (35)

where the average lifetimes are τ1 = 1/(b1 + α12), τ2 =
1/(b2 + α21), respectively. Thus,

V11 =

Intrinsic noise in species A︷ ︸︸ ︷
1

〈N1〉H11︸ ︷︷ ︸
Pure

+ H21

H11

H12

τ2
ε

1

〈N1〉H11︸ ︷︷ ︸
Added

+

T ransmitted noise f rom species B︷ ︸︸ ︷
H21

H11

H21

τ1
ε

1

〈N2〉H22
+

interconversion noise︷ ︸︸ ︷
H21

H11
ε
( α12

〈N2〉 + α21

〈N1〉
)

, (36)

V22 =

Intrinsic noise in species B︷ ︸︸ ︷
1

〈N2〉H22︸ ︷︷ ︸
Pure

+ H12

H22

H21

τ1
ε

1

〈N2〉H22︸ ︷︷ ︸
Added

+

T ransmitted noise f rom species A︷ ︸︸ ︷
H12

H22

H12

τ2
ε

1

〈N1〉H11
+

interconversion noise︷ ︸︸ ︷
H12

H22
ε
( α12

〈N2〉 + α21

〈N1〉
)

, (37)

with

ε =
(

H11

τ1
+ H22

τ2
− H21

τ1

H12

H22
− H12

τ2

H21

H11

)−1

.

Because V12 < 0 even if H21 < 0 when g1 ∈ [0,0.022], it is
the negative correlation between the fluctuations in species
A and B. It is found from Eq. (35) that the correlation V12

is determined by the intrinsic fluctuations in two species
(〈Ni〉Hii)−1(i = 1,2), the mutual interactions α12,α21, the
susceptibilities Hij (i,j = 1,2), and the average lifetimes
τi(i = 1,2).

Equations (33) and (34) show that the noises have a
correlated global component through Vij [Eq. (35)] modulated
by the growth fashion. The interconversion between different
states provides a systemic fluctuation environment in this
cascade. Equations (36) and (37) show that total noise of
each species Vii can be decomposed into intrinsic noise,
transmitted noise, and interconversion noise. It is found that
the intrinsic noise includes a pure intrinsic noise and an added
one. The existence of an added part in intrinsic noise is
unexpected, which differs from that of the gene regulatory
networks [19] where there is no added part. The pure intrinsic
noise (〈Ni〉Hii)−1 arises from low number of species and
depends on both the average number of species 〈Ni〉 and
how systematic adjustments (rate Hii/τi) quench spontaneous
fluctuations (rate 1/τi) [25]. But the added part in intrinsic
noise depends on the interconversion between two species
and the growth fashion. The transmitted noise comes from
the intrinsic noise of other species. The interconversion noise
originates from the transitions between different states. All

noises (except pure intrinsic noise) depend on the logarithmic
gains, the average lifetimes, and the interconversions.

B. Effects of MGR g1 on fluctuations and noise propagation in
two species

Under the initial condition N1(0) = N2(0) = 20, Fig. 2(a)
shows that the populations of species A and B can reach steady
states (or homeostasis) as time goes on. This equilibrium is
attained by regulating each proliferation rate of two species
with logistic growth feedbacks. Meanwhile, the steady states
of species A and B are changed with the change of systemic
parameters, seeing Eqs. (24) and (25).

The stationary populations as a function of MGR g1 with
g1 ∈ [0,0.24] are presented in Fig. 2(b). For a given value of

FIG. 2. (a) Time courses of species A and B with the initial
conditions N1(0) = N2(0) = 20 at MGR g1 = 0.1. (b) Stationary
populations of species A and B as a function of MGR g1 as
ITR s1 = 0.001: Lines are theoretical predictions with Eqs. (24)
and (25), and solid markers are from simulations using the Gillespie
method [39]. The other parameter values are given in the text. All the
parameters are dimensionless.
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FIG. 3. Effects of MGR g1 on (a) the normalized covariance V12

and (b) the normalized variations Vii(i = 1,2) as ITR s1 = 0.001.
Lines are theoretical predictions with the definition of Vij (i,j = 1,2),
in which the detailed expressions of C are given by Eqs. (26) and (28).
Solid markers are from simulations using the Gillespie method [39].
The other parameter values are given in the text. All the parameters
are dimensionless.

the carrying capacity N0 = 1000, the stationary population of
species A is increased as a sigmoid shape with the increasing
of g1, while that of species B is decreased as a reversed sigmoid
shape. Moreover, the stationary populations of species A and
B exhibit an approximately threshold behavior as a function
of g1, and the threshold is around g1 = 0.121. That is, the
reproductions of species A and B can be classified into three
regimens: controlled (g1 � 0.121), crossover (g1 ∼ 0.121),
and controlled (g1 
 0.121). The threshold behaviors of the
stationary populations of both species A and B found here are
similar to that of post-transcriptional gene regulation by the
small noncoding RNA [27,40–42].

The effects of MGR g1 on the normalized covariance V12 =
C12/(〈N1〉〈N2〉) is given in Fig. 3(a). It is found that there is a
minimum for the correlation between species A and B when
g1 = 0.121, which exactly equals to the value of MGR g2. It
means that the larger the discrepancy between the proliferation
capacities of species A and B, the stronger the correlation
between their fluctuations. Moreover, the correlation was
decreased with the increasing of g1 when g1 < g2, while it
increased when g1 > g2. Figure 3(b) gives the effects of g1 on
the normalized variations Vii = Cii/〈Ni〉2(i = 1,2). It shows
that the fluctuation in species A displays a reverse sigmoidal
response to the changes of g1, while that in species B exhibits a
sigmoidal response. Such a inverse behavior can be attributed
to the negative correlation between the fluctuations in species
A and B.

The effects of MGR g1 on noise propagation are discussed
by using Eqs. (36) and (37). With the increase of MGR g1,
Fig. 4(a) shows that the pure intrinsic noise in species A is very
large at beginning and then decreases rapidly in the crossover

FIG. 4. Effects of MGR g1 on noise propagations in bacterial
community, s1 = 0.001. All the parameters are dimensionless.

FIG. 5. Stationary populations of species A and B as a function
of ITR s1 as MGR g1 = 0.121. All the parameters are dimensionless.

region due to the rapidly increasing of its average number [see
Fig. 2(b)] and, finally, reaches a constant. The added intrinsic
noise and transmitted noise in species A increase first, reach
a maximum, and then decrease to a constant. The total noise
of species A is decreased in a reversed sigmoid shape, and it
is mainly determined by its intrinsic noise and the transmitted
noise from species B since the interconversion noise is very
small. The variation of each decomposed noise of species B is
opposite to that of species A as shown by Fig. 4(b), and the
total noise of species B is mainly determined by its intrinsic
noise and the transmitted noise from species A.

C. Effects of ITR s1 on fluctuations and noise propagation in
two species

The stationary populations as a function of ITR s1 with
s1 ∈ [0,0.02] are presented in Fig. 5. Here the MGR of species
A is taken to be equal to that of species B, i.e., g1 = g2 =
0.121. It is found that the stationary population of species
A is decreased rapidly with the increasing of s1 at first and
then reaches a constant, whereas the stationary population
of species B increases at first and then reaches a constant.
Moreover, the stationary populations of species A and B also
exhibit an approximately threshold behavior, and the threshold
is around s1 = 0.001.

The effects of ITR s1 on the normalized covariance V12 =
C12/(〈N1〉〈N2〉) is given in Fig. 6(a). We can observe that it
is a negative correlation between the fluctuations in species A

FIG. 6. Effects of ITR s1 on (a) the normalized covariance V12

and (b) the normalized variations Vii(i = 1,2) as MGR g1 = 0.121.
Lines are theoretical predictions with the definition of Vij (i,j = 1,2),
in which the detailed expressions of C are given by Eqs. (26) and (28).
Solid markers are from simulations using the Gillespie method [39].
The other parameter values are given in the text. All the parameters
are dimensionless.
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FIG. 7. Effects of ITR s1 on noise propagations in bacterial
community, g1 = 0.121. All the parameters are dimensionless.

and B. Moreover, the correlation is increased monotonically
before reaching a constant with the increasing of s1. Figure 6(b)
gives the effects of s1 on the normalized variations Vii =
Cii/〈Ni〉2(i = 1,2). It shows that the fluctuation in species
A is increased monotonically with the increasing of s1, while
that in species B is decreased. Such an inverse behavior can
be attributed to the negative correlation between fluctuations
in two species.

The effects of ITR s1 on noise propagation are discussed
by using Eqs. (36) and (37). It can be found from Fig. 7(a)
that the pure intrinsic noise of species A is almost-linearly
increased since the stationary population of species A is rapidly
decreased with the increasing of s1 (see Fig. 5). The change
of interconversion noise is not obvious. However, there is
a maximum value for added intrinsic noise and transmitted
noise. Thus the total noise of species A is increased nonlinearly
and mainly determined by its intrinsic noise and the transmitted
noise from species B. Figure 7(b) shows that four decomposed
noises of species B are decreased with the increasing of ITR
s1, and the total noise of species B is mainly determined by its
intrinsic noises and the transmitted noise from species A.

V. FLUCTUATIONS AND NOISE PROPAGATION IN THE
UNIDIRECTIONAL TRANSITION CASCADE

A. Model and noise propagation formulae

Consider a model of differentiations of cell states (including
three states) in a colonic crypt [17]. This is a case of a
unidirectional phenotypic transition cascade [see Fig. 8) with
the second regulation mechanism. It can be seen that the stem
cells (SCs) are the top phenotype, and the transit amplifying
cells (TACs) and fully differentiated cells (FDCs) are the
downstream phenotypes. The time evolutions of SCs, TACs,
and FDCs in a normal colonic crypt with a saturating feedbacks
mechanism [17] are written as

dN1

dt
= a1N1 − b1N1 − α12N1, (38)

dN2

dt
= a2N2 − b2N2 + α12N1 − α23N2, (39)

dN3

dt
= −b3N3 + α23N2, (40)

where N1, N1, N3 are the number of SCs, TACs, and
FDCs, respectively. In this model, the self-proliferation rates
for the three cell states are a1 with MGR g1 = a1 for
SCs, a2 with MGR g2 = a2 for TACs, and g3 = a3 = 0 for
FDCs. The transition rates among the different phenotypes

FIG. 8. The unidirectional phenotypic transition cascade. A
schematic diagram of differentiations from SCs to TACs and then
to FDCs in a colonic crypt.

are α12 = s1[1 + k0N1/(1 + m0N1)] with ITR s1 and α23 =
s2[1 + k1N2/(1 + m1N2)] with ITR s2, in which ki and mi

are non-negative constants, where ki represents the speed
of response of the feedback and mi represents feedback
saturation. As m0 = m1 = 0, then α12 = s1(1 + k0N1) and
α23 = s2(1 + k1N2), the feedback mechanism corresponds
to a linear feedback model studied in Ref. [43]. Here we
take the dimensionless parameters a2 = 0.35, b1 = b2 = 0.1,
b3 = 0.139, s2 = 0.3, k0 = 0.4, m0 = 0.1, k1 = 0.001, and
m1 = 0.0004 [17,28].

The concentration forms of the macroscopic rate equations
Eqs. (38)–(40) are

dx1

dt
= a1x1 − b1x1 − α12x1, (41)

dx2

dt
= a2x2 − b2x2 + α12x1 − α23x2, (42)

dx3

dt
= −b3x3 + α23x2. (43)

The steady states are obtained as follows:

Ns
1 = �xs

1 = β1

s1k0 − m0β1
, (44)

Ns
2 = �xs

2 = β2 + m1κ +
√

(β2 − m1κ)2 + 4s2k1κ

2(s2k1 − m1β2)
, (45)

Ns
3 = �xs

3 = s2N
s
2

b3

(
1 + k1N

s
2

1 + m1N
s
2

)
, (46)

with

β1 = a1 − b1 − s1,

β2 = a2 − b2 − s2,

κ = α12N
s
1 = (β1 + s1)Ns

1 .

Here β1 and β2 denote the inherent net (per-capita) growth rates
of SCs and TACs, respectively. κ is the stem-cell differentiation
rate at the steady state. Equations (44)–(46) show that the
steady states of SCs, TACs, and FDCs change with changes in
systemic parameters.

According to the linear stability analysis, ITR of SCs s1 can
be determined as

a1 − b1

1 + k0/m0
< s1 < a1 − b1.

For the normal physiological condition, the number of SCs per
crypt is small in a colonic crypt, meanwhile, the population of
each phenotypic state (SCs, TACs, and FDCs) must maintain
the stationary level.
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Because the self-proliferation rates ai(i = 1,2,3) and the death rates bi(i = 1,2,3) are constant in this model, Eqs. (10)
and (11) can be simplified as

Cii =
∑

j �=i Cij
∂

∂xj
(αjixj ) + �

(
aixi + ∑

j �=i αjixj

)
1
xi

∑
j �=i αjixj + xi

∂
∂xi

∑
j �=i αij

,

Cik =
∑

j �=k Cij
∂

∂xj
(αjkxj ) + ∑

j �=i Ckj
∂

∂xj
(αjixj ) − �(αikxi + αkixk)

1
xi

∑
j �=i αjixj + 1

xk

∑
j �=k αjkxj + xi

∂
∂xi

∑
j �=i αij + xk

∂
∂xk

∑
j �=k αkj

, for k �= i.

The stationary population number can be replaced by
its mean number, i.e., Ns

i ≡ 〈Ni〉(i = 1,2,3). Based on the
kinetics described in Eqs. (41)–(43), we have

C11 = a1〈N1〉
β1 − m0

s1k0
β2

1

, (47)

C22 =
(
s1 + 2β1 − m0

s1k0
β2

1

)
C12 + a2〈N2〉 + κ

ω1
, (48)

C33 = ω2C23

b3
+ 〈N3〉, (49)

C12 = C12 =
(
s1 + 2β1 − m0

s1k0
β2

1

)
C11 − κ

β1 − m0
s1k0

β2
1 + ω1

, (50)

C13 = C31 = ω2C12

b3 + β1 − m0
s1k0

β2
1

, (51)

C23=C32=
(
s1 + 2β1 − m0

s1k0
β2

1

)
C13 + ω2C22 − b3〈N3〉

b3 + ω1
. (52)

with

ω1 = β2 + 2κ

〈N2〉 − m1

s2k1

(
β2 + κ

〈N2〉
)2

,

ω2 = s2 + β2 + ω1.

Taking into account the constants of both the self-
proliferation rates ai(i = 1,2,3) and the death rates bi(i =
1,2,3), Eqs. (15) and (16) can be simplified as

Hii =
∑

j �=i αjiNj + N2
i

∂
∂Ni

( ∑
j �=i αij

)
aiNi + ∑

j �=i αjiNj

,

Hik = − Ni

akNk + ∑
j �=k αjkNj

∂

∂Ni

(αikNi), for k �= i.

Therefore, H13 = H21 = H31 = H32 = 0, H33 = 1, and

H11 = β1

a1

(
1 − m0

s1k0
β1

)
, (53)

H22 =
β2 + 2κ

〈N2〉 − m1
s2k1

(
β2 + κ

〈N2〉
)2

a2 + κ
〈N2〉

, (54)

H12 = −
s1 + 2β1 − m0

s1k0
β2

1

a2
〈N2〉
〈N1〉 + s1 + β1

, (55)

H23 = −
s2 + 2

(
β2 + κ

〈N2〉
) − m1

s2k1

(
β2 + κ

〈N2〉
)2

s2 + β2 + κ
〈N2〉

. (56)

It can be shown that H11,H22 > 0 and H12,H23 < 0.
To study the noise propagation in three phenotypic states

in colonic crypt, expanding the theoretical formulas Eqs. (18)
and (19) with Vij = Vji(i, j = 1,2,3) here, we can obtain

V11 = 1

〈N1〉H11
, (57)

V22 = 1

〈N2〉H22
− H12

H22
V12, (58)

V33 = 1

〈N3〉H33
− H23

H33
V23, (59)

V12 = V21 = −H12V11/τ2 + α12/〈N2〉
H11/τ1 + H22/τ2

, (60)

V13 = V31 = − H23/τ3

H11/τ1 + H33/τ3
V12, (61)

V23 = V32 = −H12V13/τ2 + H23V22/τ3 + α23/〈N3〉
H22/τ2 + H33/τ3

, (62)

where the average lifetimes are τ1 = 1/a1, τ2 = 1/(b2 + α23),
τ3 = 1/b3, respectively. Solving these equations for Vij , then

V11 =

Intrinsic noise in SCs︷ ︸︸ ︷
1

〈N1〉H11
, (63)

V22 =

Intrinsic noise in T ACs︷ ︸︸ ︷
1

〈N2〉H22
+

T ransmitted noise f rom SCs︷ ︸︸ ︷
V11

(
H12

H22

)2
H22/τ2

H11/τ1 + H22/τ2
+

Conversion noise between SCs and T ACs︷ ︸︸ ︷
H12

H22

α12/〈N2〉
H11/τ1 + H22/τ2

, (64)
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V33 =

Intrinsic noise in FDCs︷ ︸︸ ︷
1

〈N3〉H33
+

T ransmitted noise f rom SCs︷ ︸︸ ︷
V11

(
H12

H22

)2(
H23

H33

)2
H22/τ2

H11/τ1 + H22/τ2

H22/τ2

H22/τ2 + H33/τ3

H33/τ3

H11/τ1 + H33/τ3

+

T ransmitted noise f rom T ACs︷ ︸︸ ︷
V22

(
H23

H33

)2
H33/τ3

H22/τ2 + H33/τ3
+

Conversion noise between T ACs and FDCs︷ ︸︸ ︷
H23

H33

α23/〈N3〉
H22/τ2 + H33/τ3

+

Conversion noise between SCs and T ACs︷ ︸︸ ︷
H12

H22

(
H23

H33

)2
H22/τ2

H22/τ2 + H33/τ3

H33/τ3

H11/τ1 + H33/τ3

α12/〈N2〉
H11/τ1 + H22/τ2

, (65)

V12 = V21 = −V11
H12

H22

H22/τ2

H11/τ1 + H22/τ2
− α12/〈N2〉

H11/τ1 + H22/τ2
, (66)

V13 = V31 = −V12
H23

H33

H33/τ3

H11/τ1 + H33/τ3
, (67)

V23 = V32 = −V13
H12

H22

H22/τ2

H22/τ2 + H33/τ3
− V22

H23

H33

H33/τ3

H22/τ2 + H33/τ3
− α23/〈N3〉

H22/τ2 + H33/τ3
. (68)

It can be shown that V12,V13,V23 > 0, it is a positive
correlation between any two fluctuations in three phenotypic
states. Meanwhile, Eq. (66) shows that V12 is determined by
the intrinsic fluctuation in SCs V11, the relative susceptibility
H12/H22, the time-averaging H22/τ2

H11/τ1+H22/τ2
, and the direct

interaction between SCs and TACs α12. It is found from
Eq. (67) that the correlation can be transmitted from SCs to
FDCs by TACs, though there is no direct interaction between
them. The transmitted correlation V13 also can influence the
correlation between TACs and FDCs V23, seeing Eq. (68). In
addition, V23 is dependent on the intrinsic fluctuation in TACs
V22 and the direct interaction between TACs and FDCs α23.

Equations (58) and (59) show that a fluctuation environment
in each downstream state is provided by upstream states
through the correlation between fluctuations Vij modulated
by the feedback mechanisms. The noise in upstream states
can propagate in this cascade. For the top phenotype, SCs,
Eq. (63) shows that the total noise in SCs is only a pure
intrinsic noise, and there is no random fluctuation environment
provided by other compartments. Eqs. (64) and (65) show that
the total noises of TACs and FDCs can be decomposed into
intrinsic noise, transmitted noise, and conversion noise. The
pure intrinsic noise (〈Ni〉Hii)−1 of TACs or FDCs depends
on its low numbers. The transmitted noise in TACs comes
from the intrinsic noise of SCs, and the conversion noise in
TACs is caused by the transition from SCs to TACs. However,
the transmitted noise in FDCs includes two parts, one is the
intrinsic noise of SCs and the other is the total noise of TACs.
Meanwhile, the conversion noise in FDCs is also composed of
two parts: One comes from the transition from TACs to FDCs
and the other originates from the transition from SCs to TACs,
respectively.

B. Effects of ITR s1 on fluctuations and noise propagation in
three phenotypic states

Under the initial condition of cell populations N1(0) =
N2(0) = N3(0) = 100, Fig. 9(a) shows that the populations of
SCs, TACs, and FDCs can reach steady states (or homeostasis)

as time goes on. The above results demonstrate that the
saturation feedbacks of SCs and TACs can control the switch-
ing rates and make the system maintain a stable equilibrium.
Meanwhile, the steady states of SCs, TACs, and FDCs are
changed with changes in systemic parameters. Only the effects
of s1 on the system are considered in the following. The
stationary populations as a function of s1 with s1 ∈ [0.15,0.45]
are presented in Fig. 9(b). It is shown that each stationary
population decreases with the increasing of s1. At a given
value of s1, the stationary population of FDCs is the highest
and that of SCs is the lowest, which agrees with the natural
physiological phenomenon.

The effects of ITR s1 on the normalized variations Vii =
Cii/〈Ni〉2(i = 1,2,3) and the normalized covariances Vij =
Cij /(〈Ni〉〈Nj 〉)(j �= i) are given in Fig. 10. It is found from
Fig. 10(a) that the responses of V12, V13, and V23 to the
change of the value s1 are analogous. Each one increases
monotonically with the increasing of s1. Meanwhile, at a given
value of s1, V23 > V12 > V13. It means that the correlation
between TACs and FDCs is the strongest because FDCs are
produced completely by the differentiation of TACs, while that
between SCs and FDCs is the weakest since there is no direct

FIG. 9. (a) Time courses of SCs, TACs, and FDCs with the
initial conditions N1(0) = N2(0) = N3(0) = 100 at ITR s1 = 0.25.
(b) Stationary populations of SCs, TACs, and FDCs as a function
of ITR s1 as MGR g1 = 0.69: Lines are theoretical predictions with
Eqs. (44)–(46) and solid markers are from simulations using the
Gillespie method [39]. The other parameter values are given in the
text. All the parameters are measured in hours−1.
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FIG. 10. Effects of ITR s1 on (a) the normalized covariance Vij

and (b) the normalized variations Vii as MGR g1 = 0.69. Lines
are theoretical predictions with the definition of Vij (i,j = 1,2,3),
in which the detailed expressions of C are given by Eqs. (47)–(52).
Solid markers are from simulations using the Gillespie method [39].
The other parameter values are given in the text. All the parameters
are measured in hours−1.

relationship between them. Due to the positive correlation
between any two fluctuations in three phenotypic states, each
variation increases monotonically with the increasing of s1,
shown in Fig. 10(b). Meanwhile, V11 > V22 > V33 at a given
value of s1.

The effects of ITR s1 on noise propagation in three cell
states are discussed by using Eqs. (64) and (65). With the
increasing of ITR s1, Fig. 11 shows that both intrinsic noises
and transmitted noises in TACs and FDCs are increased, but
the conversion noises in TACs and FDCs are decreased. The
total noise in TACs is mainly dependent on the transmitted
noise from SCs, while the total noise in FDCs mainly relies
on the transmitted noise from TACs and SCs.

C. Effects of MGR g1 on fluctuations and noise propagation in
three phenotypic states

The stationary populations as a function of MGR g1 with
g1 ∈ [0.25,0.50] are presented in Fig. 12. Here we choose
s1 = 0.1 when the inherent differentiation of SCs is slower
than that of TACs. It is found that the stationary populations
of SCs, TACs, and FDCs are increased fast with the increasing
of g1.

The effects of MGR g1 on the normalized variations
Vii = Cii/〈Ni〉2(i = 1,2,3) and the normalized covariances
Vij = Cij/(〈Ni〉〈Nj 〉)(j �= i) are given in Fig. 13. It is found
from Fig. 13(a) that the responses of V12, V13, and V23

to the change of the value g1 are analogous. Each one
decreases monotonically with the increasing of g1. Due to
the positive correlation between any two fluctuations in three

FIG. 11. Effects of ITR s1 on noise propagations in cell states
cascade in colonic crypt, g1 = 0.69. All the parameters are measured
in hours−1.

FIG. 12. Stationary populations of SCs, TACs, and FDCs as a
function of MGR g1 as ITR s1 = 0.1. All the parameters are measured
in hours−1.

phenotypic states, each variation decreases monotonically with
the increasing of g1, shown in Fig. 13(b).

The effects of MGR g1 on noise propagation in three cell
states are discussed by using Eqs. (64) and (65). It is found
from Fig. 14 that the intrinsic noises and transmitted noises in
both TACs and FDCs are decreased, but the conversion noises
in TACs and FDCs are increased with the increasing of MGR
g1. The total noise in TACs or FDCs mainly relies on the
transmitted intrinsic noise from the upstream cell states since
the intrinsic noises and the conversion noises in TACs or FDCs
are comparatively small.

VI. CONCLUSIONS AND DISCUSSIONS

Understanding how noise propagates through various phe-
notypic transition cascades around the equilibrium state is a
significant problem in populations. In this paper we started by
constructing a general model of populations, the theoretical
formulas for noise propagation in various phenotypic transition
cascades are derived by using the linear noise approximation
of master equation and the logarithmic gain. The solution Vii

of theoretical formulas Eqs. (18) and (19) represents the total
noise in the ith phenotypic state, which may include the in-
trinsic noise in the ith phenotypic state, the transmitted noise
from the other phenotypes, and the interconversion noise. The
solution Vij represents the correlation between fluctuations in
the ith phenotype and in the j th phenotype.

FIG. 13. Effects of MGR g1 on (a) the normalized covariance
Vij and (b) the normalized variations Vii as ITR s1 = 0.1. Lines
are theoretical predictions with the definition of Vij (i,j = 1,2,3), in
which the detailed expressions of C are given by Eqs. (47)–(52). Solid
markers are from simulations using the Gillespie method [39]. The
other parameter values are given in the text. All the parameters are
measured in hours−1.
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FIG. 14. Effects of MGR g1 on noise propagations in cell states
cascade in colonic crypt, s1 = 0.1. All the parameters are measured
in hours−1.

To uncover the effects of interconversion rate between
distinct phenotypes or self-proliferation rate of one phenotype
on the noise propagation in various phenotypic transition
cascades, we studied a model of two species with exploitative
competition in a bacterial community [24] which is a case of
the bidirectional phenotypic transition cascade with the first
regulation mechanism, and a model of three cell compartments
in a colonic crypt [17] which is a case of the unidirectional
phenotypic transition cascade with the second regulation
mechanism, respectively. It was found that the mechanisms
of noise propagation and the effects of the interconversion or
self-proliferation rate on noise propagation differ remarkably
in the bidirectional and unidirectional transition cascades.

In the bidirectional cascade, the systemic random environ-
ment is provided by all phenotypes in this cascade, and the
total noise of each phenotype is determined by its intrinsic
noise, the transmitted noises from other phenotypes, and
the interconversion noise. The existence of an added part in
intrinsic noise shows a novel noise propagation mechanism,
which differs from that of gene regulatory networks [19] in
which there is no added part. In the unidirectional cascade,
however, the random environment for each downstream phe-
notype is provided only by the upstream phenotypes. The total
noise of each phenotype (except the top phenotype) is mainly
determined by the transmitted noises from other phenotypes,
rather than by its intrinsic noise. It should be pointed out that
above theoretical results are coincident with those obtained by
the Gillespie algorithm [39] in the region of given parameter
values as shown in Figs. 2(b), 3, 6, 9(b), 10, and 13.

Although our theoretical formulas Eqs. (18) and (19) had
been applied to study fluctuations and noise propagation in
the model of bacterial community with exploitative compe-
tition [24] and the model of differentiations of cell states
in a colonic crypt [17], the theoretical formulas can also be
applied to investigate the noise propagation in other transition
cascade (or interaction network) models since the conversion
rates between distinct phenotypes and self-proliferation (or
self-growth) rate of each phenotype (or component) in the
starting general model Eq. (1) are assumed as arbitrary
functions of subpopulations. Here we provide some applicable
models in which the self-growth rate of each component and
the conversion rates between distinct components are known.
For example, (i) for the case of αij = 0 (i.e., no interconversion
between distinct components), the self-growth rate and death
rate of each component are a1 = β1n0/K11

1+n1/K11+n2/K12
+ l

n1
, a2 =

β2n1/(K2n2)
1+n1/K21+(n2/K22)2 , b1 = α1, and b2 = α2 in the model of

interactions between genes and proteins [21]; a1 = λ1 − λ3,
a2 = λ2 + 2λ3, b1 = 0, and b2 = � in the single progenitor
cell model for skin cell proliferation [28]; and a1 = αs/S,
a2 = αm/M , b1 = βs + kM , and b2 = βm + kS in the model
of post-transcriptional gene regulation by small noncoding
RNA [27,40] where the sRNA and its target gene mRNA
degrade together, and both per-capital death rates are not
constant. (ii) For the case of αij �= 0, we have a1 = μn, b1 = 0,
a2 = μp, b2 = 0, α12 = a, and α21 = b in the model of E. coli
persistence [12]. By the way, we can obtain the theoretical
results in the model of gene-regulatory networks [25] by
solving Eqs. (18) and (19) through setting the conversion rates
α12 = α21 = 0.

The goal of this paper is to investigate the fluctuation and
noise propagation in various phenotypic transition cascades
around the steady state of subpopulations. Our results show
that the noise propagation in various phenotypic cascades
depends mainly on the mechanisms of interconversion be-
tween distinct phenotypes, which accords with the biological
experimental findings that a rapid progression toward equi-
librium proportions of human breast cells in various states
is not due to differential self-growth rates of cells in the
basal, stemlike, or luminal states but rather to interconversion
between states [16]. Unfortunately, the theoretical formulas
Eqs. (18) and (19) cannot be applied to the dynamics of
phenotypic equilibrium proportions in breast cancer cell lines,
and there are two insuperable obstacles in the application of
our theoretical formulas: (i) there is no experimental data
about fluctuations and noise propagation in the phenotypic
transition cascade of breast cancer. In fact, Ref. [16] showed
that subpopulations of cells purified for a given phenotypic
state return towards equilibrium proportions over time, and
these observations were explained by a Markov model in which
cells transition stochastically between different states; (ii) one
cannot obtain an analytical steady state of subpopulations from
the model of Ref. [16].

It should be emphasized that the theoretical formulas
Eqs. (18) and (19) for noise propagation were derived at the
cellular level [see Eq. (1)], and the bidirectional cascade and
the unidirectional cascade are two basic ways in phenotypic
transitions. The differentiations from SCs to TACs and then
to FDCs in a normal colonic crypt (as shown in Fig. 8)
forms the unidirectional phenotypic transition cascade. Many
experimental data showed that the number of stem cells (SCs)
in a normal (or healthy) colonic crypt is often very limited. For
instance, Potten and Loeffler [44] reported that the numbers
are discrepant due to different measurements or considerations
and concluded they may be approximately 4–40. Cai et al. [45]
showed that the number of stem cells is between 5 and 10.
By using chemical mutagenesis, radiation regeneration, or
other experimental techniques, the experimental data from
Refs. [46–50] demonstrated that the number of stem cells is
about 4–6. Therefore, the highly relative intrinsic fluctuations
in populations of SCs, TACs, and FDCs cannot be neglected
due to the very small number of SCs. However, it seems
very difficult to quantitatively compare our theoretical results
with the experimental data. There are a few very different
experimental data only referring to the number of SCs, while
any real data about the numbers of TACs and FDCs could
not be found in published papers up to now. In addition, for
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different fates of cells, Momiji and Monk [51] investigated
the impact of local feedback loops in a model of lateral
inhibition based on the Notch signaling pathway, elucidating
the roles of intracellular and intercellular delays in controlling
the overall system behavior. The bidirectional phenotypic
transition cascade shown in Fig. 1 is a typical cascade motif,
thus, it would be highly interesting to investigate the effects
of time delays of conversion rates on the fluctuation and noise
propagation in our future works.

The conversion between different phenotypes plays a
very important role in fluctuations of phenotypic transition
cascades. It leads to an added intrinsic noise in the bidirectional
phenotypic transition cascade. The intrinsic noise and the

conversion noise can propagate in both bidirectional and uni-
directional phenotypic transition cascades. Therefore, it is nec-
essary to understand and consider the effects of conversion and
noise propagation on natural phenotypic transition cascades.
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