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Fluctuations of red blood cell membranes: The role of the cytoskeleton
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We theoretically investigate the membrane fluctuations of red blood cells with focus laid on the role of the
cytoskeleton, viewing the system as a membrane coupled to a sparse spring network. This model is exactly
solvable and enables us to examine the coupling strength dependence of the membrane undulation. We find that
the coupling modifies the fluctuation spectrum at wavelengths longer than the mesh size of the network, while
leaving the fluid-like behavior of the membrane intact at shorter wavelengths. The fluctuation spectra can be
markedly different, depending on not only the relative amplitude of the bilayer bending energy with respect to
the cytoskeleton deformation energy but also the bilayer-cytoskelton coupling strength.
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I. INTRODUCTION

A red blood cell (RBC) has been a standard test bed
of membrane physics due to its simple structure lacking a
nucleus and organelles. Early studies, treating a RBC as a
lipid bilayer bag, already rendered insightful understanding of
various properties: to name a few, biconcave shapes [1,2],
flickering phenomenon [3], and tank-treading motion [4].
Still there are certain features signifying the role of other
substructure; a spectrin network (cytoskeleton) coupled to the
bilayer is found to be responsible for the shape transformation
sequence [5], large-scale shape changes under shear flow [6],
and crenated shapes [7]. Many attempts have been made to
provide simplified descriptions of the cytokeleton and for its
effects on nontrivial shapes and fluctuation of RBCs [8–12].

Meanwhile, theoretical works [13,14] analyzed the fluctu-
ation spectrum measured by Zilker et al. [15] and introduced
a picture of a composite membrane, that is, a lipid bilayer
sparsely connected to the cytoskeleton. In Ref. [13], through
an empirical approach, it was claimed that the coupling to
the cytoskeleton induces surface tension in such a way that
the effective bending modulus of the lipid bilayer undergoes
an abrupt jump at the crossover length [13]. This claim was
elaborated by considering the cytoskeleton explicitly as a
spring meshwork [14], where the authors examine the elastic
energy of the meshwork as a function of the membrane area
coarsely grained at the mesh size ξ and thereby conclude
that the tension contribution vanishes suddenly at length
scale ξ . Also, a model Hamiltonian was proposed, assuming
infinitely strong coupling of the membrane at sites linked to
the cytoskeleton, so as to explain the induced tension in the
long wavelength fluctuations [16].

In this regard it seems that a RBC as a composite membrane
necessarily acquires surface tension at long length scales.
However, a clear signature of the surface tension was not
always observable, and there exists subtle variance between
recent observations. Yoon et al. [17] reported the shape
dependence of the fluctuation spectrum where the tension
contribution is fairly pronounced for spherocype-shaped RBCs

*Corresponding authors: jyi@pusan.ac.kr, y.w.kim@kaist.ac.kr

but almost unnoticeable for discocytes. In contrast, Popescu
et al. observed clearly the induced surface tension irrespective
of shapes [18]. Using similar interferometric technique in
Ref. [18], many RBCs showed bending dominant fluctuations
at short wavelengths and confining dominant long wavelength
fluctuations, but the intermediate tension dominant region
could be seen from few of the samples [19]. In all those
experiments, the notion of tension jump seems to be not
evident as derived from the theories [13,14]. The origin of such
diversity is left unknown, and more experimental evidence
together with theoretical models are anticipated in order to
draw a unified picture of a RBC as a composite membrane.

In this study, we propose an exactly solvable model to
describe elastic properties of a RBC membrane, positing that
the cytoskeleton is a spring network and the membrane is
sparsely and regularly linked to the network via harmonic
coupling. Unlike as is assumed in Ref. [16], the coupling
strength is finite and may even be weak due to flexibility
of a protein complex linking the bilayer and the cytoskeleton
and due to a fast dissociation and reassociation process of
the cytoskeleton controlled by adenosine triphosphate (ATP)
concentration [20,21]. Although governing factors are not
known precisely, it is reasonable to think that the coupling
strength can vary depending on experimental conditions,
and observation results should intrinsically be diverse. In
our consideration, the coupling strength is introduced as
an essential model parameter which interplays with other
involved energy scales to determine the tension emergence.

This paper is organized as follows. In Sec. II we introduce
a model describing energies associated with fluctuations of
the membrane, deformation of the spring network, and the
coupling between them. The effective Hamiltonian for the
equilibrium fluctuation of the membrane is obtained in Sec. III,
and analytic expression of the fluctuation spectrum is derived
in Sec. IV. Section V consists of three subsections. In Sec. V A,
various kinds of the qualitatively distinctive fluctuation spectra
are analyzed. We find that at a length scale shorter than the
network mesh size, the cytoskeleton elasticity is negligible
irrespective of the coupling strength, and the fluctuation
spectrum of the membrane exhibits the fluid-like behavior.
At long wavelengths, the coupling to the cytoskeleton imparts
elasticity to the membrane, and yet resulting features in the
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fluctuation spectrum thereof are strongly dependent on the
system parameters. The effect of the confining potential is
discussed in Sec. V B. In Sec. V C, we compare our results with
previous studies, in particular related to the tension “jump”
stated in Refs. [13,14], and our conclusion follows in Sec. VI.

II. SYSTEM

We consider a lipid bilayer of a RBC as an almost flat,
symmetric (zero spontaneous curvature) fluid membrane. As-
suming small deformations without overhangs, the membrane
height can be represented by a single-valued function h(r)
where r spans the flat reference plane at h(r) = 0. The
corresponding Hamiltonian reads as

Hm[h] =
∫

dr κ(∇2h)2 + γ h2. (1)

The second term, called the confining potential, is introduced
phenomenologically to describe the long wavelength fluctu-
ations of RBC membranes [13]. Closed geometry [8,9,12],
periodic pinning [22], and excluded-volume effect [13,23]
were suggested as the physical origin of the confinement,
yet no consensus has been had. Although the term has been
widely used for many experimental studies [18,21], there
are also skeptical views on the necessity of the confining
potential [17]. To embrace every possible situation, we do not
discard this phenomenological term from the model. However,
overall discussion in this paper will be made with very weak
confinement so that the effect of the confinement is marginal
to the fluctuation spectrum; the limit γ → 0+ would not hurt
the key lessons of our research. More subtle issues on the
confining potential will be discussed in Sec. V B. We also
mention that in order to reflect the area-conserving property
of a bilayer, the bending energy usually includes effective
bare surface tension, which is dependent on the excess area
of the bilayer and ambient temperature [24,25]. However, we
intentionally discard the bare tension in the Hamiltonian Hm

in order to explicate the induced tension by the cytoskeleton.
Another ingredient comprising the system is the cy-

toskeleton, which is a two-dimensional regular network of
spectrin tetramers. We consider the cytoskeleton as a spring
network [26] and model it as a sparse square array of
beads connected by springs. Since we assumed the small
deformations, the in-plane stretching and the out-of-plane
deformation are approximately decoupled [16]. In addition,
the single-particle tracking experiment also showed that the
diffusion of the band-3 proteins which are connected to the
spectrins are significantly restricted [27]. Hence, we assume
that the in-plane position of the ith bead is fixed to form
a square lattice with uniform spacing ξ and represented by
the position vector xi = ξ (mx̂ + nŷ) with integers m and n.
On the other hand, we allow out-of-plane displacements of
the beads and express the displacement of the ith bead by
φ(xi). The imbalance in the displacements between the nearest
neighboring beads brings about either contraction or dilation of
the connecting springs. Assuming the identical spring constant
k, the elastic energy cost for such deformation of the spring
network is

He[φ] =
∑
〈xi ,u〉

k[φ(xi) − φ(xi + u)]2, (2)

where u = ξ x̂ and u = ξ ŷ are the primitive vectors for the
square lattice. In fact, the cytoskeleton is closer to a triangular
(or hexagonal) network. Yet we expect that effects of the
symmetry details must be weak on the qualitative properties
of the membrane fluctuation, and we hence pursue a simple
analytic approach, remaining in the picture of the fourfold
network.

We finally introduce an interaction between the membrane
and the spring network. The coupling between the two systems
is mediated by protein inclusions in the membrane and adaptor
proteins (for example, Ankyrin) bridging the membrane inclu-
sion and the spectrin network. Hence, the coupling must be
the consequence of various kinds of microscopic interactions
among the membrane, inclusions, adaptor proteins, and spec-
trins. Rather than deriving the coupling energy from all these
complex origins, here we approximate it under the assumption
that the separation between the membrane and the coupled
cytoskeleton |h(xi) − φ(xi)| is small. As the leading order of
Taylor expansion, we can then model the coupling energy by
harmonic potentials between the out-of-plane displacement of
the bead and the height undulation of the membrane at the
bead location xi :

V [h,φ] =
∑

xi

v[h(xi) − φ(xi)]
2, (3)

where v measures the coupling strength. Since recent numer-
ical research based on the harmonic membrane-cytoskeleton
interaction showed good agreement with experiments on RBC
membranes [28], we expect the harmonic approximation is
sufficient and ignore the higher order terms [29].

In total, the system Hamiltonian of our interest is composed
asH = Hm + He + V . In Ref. [16], the authors considered the
bilayer-cytoskeleton interaction by imposing a hard constraint
that the membrane height at the coupling site is identical
with the bead location, i.e., h(xi) = φ(xi). In our model,
this corresponds to an extreme situation of infinite coupling
(v → ∞), and the behaviors at general coupling strengths
are still to be investigated. Even though steric interaction
can also be involved to correlate the membrane and the
cytoskeleton [12], this research neglects the excluded-volume
effect and assumes the “phantom” membrane and network.

III. EFFECTIVE HAMILTONIAN FOR MEMBRANE
FLUCTUATION

Equilibrium properties of the system can be extracted from
evaluating the canonical partition function:

Z =
∫

DφDh e−βH[h,φ]

=
∫

Dh e−βHeff [h], (4)

where the second line defines the effective Hamiltonian for the
height deformation of the membrane, Heff[h], which can be
obtained by integrating the Boltzmann factor over the fields
φ(x).

For mathematical convenience, let us obtain the Hamil-
tonian in the momentum space. For the height field h(r)
of the membrane, we employ the Fourier transform in two
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dimensions:

h(x) =
∑

q

eiq·xhq/N. (5)

Here we discretize the space in units of the length b which is
a microscopic length scale, e.g., the molecular size of a lipid
molecule consisting the membrane, and let the momentum
q take values to satisfy the periodic boundary conditions,
eiqαbN = 1 for α = x,y with Nb being the lateral dimension
of the reference plane. We then obtain the bending energy of
the membrane in terms of hq as

Hm[hq] =
∑

q

Em(q)|hq|2, (6)

where the bending energy spectrum in the discrete space is
given by Em(q) = (4κ/b2)[2 − ∑

α=x,y cos(qαb)]2 + γ . Since
we are interested in the length scale much longer than the size
of a lipid molecule, we take the continuum limit and describe
the bending energy of the bilayer as Em(q) = κ|q|4 + γ .

The remaining components of the Hamiltonian are given in
terms of the fields defined only at the link sites xi , for which
we introduce the Fourier transform as

f (xi) =
∑

q

eiq·xi f̃q/M, f = h,φ. (7)

This is again the discrete Fourier transform, but the length
unit is given by ξ instead of b. In order to discern the Fourier
transform, Eq. (5), we give the tilde symbol to the function in
the momentum space. Here a commensurate condition ξ = pb

with an integer p is assumed, and M = N/p is the number
of link sites along one direction. For the periodic boundary
conditions, the values of qα are given by integer multiples of
2π/L but lie in the restricted Brillouin zone (RBZ),

−π/ξ < qα < π/ξ, (8)

where the zone boundary qc = π/ξ reflects the discrete nature
of the spring network in our theory.

With Eq. (7) applied, the elastic energy of the spring
network, Eq. (2), is diagonalized into

He[φ̃q] =
∑

q∈RBZ

Ee(q)|φ̃q|2, (9)

where
∑

q∈RBZ denotes the summation over the range given
in Eq. (8), and the energy spectrum is given by Ee(q) =∑

α=x,y 2k[1 − cos(qαξ )], which gives |q|2 behavior only in
the long-wavelength limit specified by the length scale ξ :
qαξ � 1. On the other hand, the coupling energy, Eq. (3),
is transformed as

V [φ̃q,̃hq] =
∑

q∈RBZ

v|φ̃q − h̃q|2. (10)

Given the Hamiltonian components in the momentum space
by Eqs. (6), (9), and (10), we perform integration in Eq. (4) over
the field φ̃q and obtain the effective Hamiltonian governing the
membrane height fluctuations as follows:

Heff[h] =
∑

q

Em(q)|hq|2 +
∑

q∈RBZ

vEe(q)

v + Ee(q)
|̃hq|2. (11)

The second term induced by the coupling to the spring network
describes the energy for the height deformations occurring over
length scales longer than ξ . In the infinite coupling limit, one
can find that the coefficient of |̃hq|2 becomes Ee(q), which
yields harmonic couplings in the real space representation,
[h(xi) − h(xi + u)]2, as considered in Ref. [16]. For finite
coupling strength, expanding the coefficient as a series of 1/v

gives the first-order term, −v−1E2
e (q), and the corresponding

energy is given by a lattice Laplacian, −[h(xi + u) + h(xi −
u) − 2h(xi)]2, where the negative sign indicates energy gain
to create large-scale (ξ ) curvature.

IV. FLUCTUATION SPECTRUM

Now we investigate the fluctuation spectrum of the mem-
brane in equilibrium, 〈|hq|2〉. The angular bracket denotes the
equilibrium average defined as

〈|hq|2〉 = Z−1
∫

Dhq e−βHeff [hq]hqh
∗
q, (12)

where the partition function Z and the effective Hamiltonian
Heff[hq] are given in Eqs. (4) and (11), respectively. In order to
perform the integration, we need to express h̃q in the effective
Hamiltonian (11) in terms of hq. Reciprocal lattice vectors
T = (2π/ξ )(nxx̂ + nyŷ) with integral coefficients nx and ny

are defined by the orthogonality relation for the discrete lattice
{xi}: ∑

xi

eiq·xi = (N/p)2δq,T, (13)

which gives the inverse transform of Eq. (7),

h̃q = (M)−1
∑

xi

e−iq·xi h(xi). (14)

Here we can replace h(xi) with the right-hand side of Eq. (5)
with r = xi . Then from Eq. (13) it follows that

h̃q = p−1
∑

T

hq+T, (15)

where q is restricted to the range in Eq. (8). Using this relation,
we write the effective Hamiltonian:

Heff[hq] =
∑

q∈RBZ

∑
T,T′

h∗
q+TMq(T,T′)hq+T′, (16)

where the summation over q in the bending energy term is
folded into the RBZ, and the interaction kernel is given by

Mq(T,T′) = Em(q + T)δT,T′ + C(q) (17)

with

C(q) = 1

p2

vEe(q)

v + Ee(q)
. (18)

Note that C(q) induced by the bilayer-network coupling
describes the all-to-all coupling between any deformation
fields with their wave vector difference given by the reciprocal
lattice vector of the spring network, reflecting the fact that
length scales shorter than ξ are indiscernible as far as the
network effect is concerned.
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With the effective Hamiltonian given by Eq. (16), the
integration in Eq. (12) is performed to give

〈|hq|2〉 = kBT

Em(q)

{
1 − C(q)E−1

m (q)

1 + C(q)
∑

T E−1
m (q + T)

}

= kBT

Em(q) + Ceff(q)
, (19)

with

C−1
eff (q) = C−1(q) +

∑
T �=0

E−1
m (q + T), (20)

which is the main result of our model for RBC membranes.
Two factors enter into the characteristics of the fluctuation
spectra: the all-to-all coupling energy kernel C(q) and the
bending energy kernel for wave vectors in the high-order
Brillouin zone Em(q + T). Because the effective cytoskeleton
elastic energy Ceff(q) is the harmonic mean of these two
terms, the smaller energy contributes more to the fluctuation
spectrum. This competition of two factors can result in new
kinds of fluctuation spectra of the coupled membrane, which
will be discussed in the next section.

V. RESULTS AND DISCUSSION

A. Diversity of the fluctuation spectrum

Although the phenomenological model proposed by Gov
et al. explains the long wavelength fluctuation data of Ref. [15],
the bilayer coupled to the two-dimensional meshwork may not
follow such a description for all possible sets of parameters
κ , k, and v, and it may possess potential diversity in its
fluctuation spectrum. As given in Eq. (19), the characteristics
of the fluctuation spectrum are determined by three competing
energies: Em(q), Em(q + T), and C(q). Roughly speaking, for
given q and the system parameters, one of the energy functions,
which satisfies

max[Em(q),min[C(q),Em(q + T)]], (21)

determines the main properties of the fluctuation spectrum.
Here the coupling strength v regulates the form of C(q). It
should be also mentioned that the fluctuation spectrum has
directional dependence which can be removed by angular
average. We have confirmed that the average does not show any
qualitatively different properties apart from a constant factor.
Every different type of fluctuation (e.g., nonmonotonic fluctua-
tion spectrum) can also be observed from the angular averaged
fluctuation spectra. We will thus let q = (q,0) henceforth.

Strongly coupled membrane: If the coupling energy v is
sufficiently larger than the cytoskeleton elastic energy, i.e.,
v � 4k = max Ee(q), the coupling energy function is given
by

C(q) ≈ Ee(q)/p2 ≈ kq2, (22)

where the last approximation is valid in the long wavelength
limit. Figure 1(a) shows the relevant energy functions for
various k values. Note that in the region of interest, among
Em(q + T ), the term with T = −2qc makes the best con-
tribution to the summation in Eq. (20). We only consider
Em(q − 2qc), which crosses with Em(q) at the zone boundary

FIG. 1. (Color online) Relevant energy functions and fluctuation
spectra in the strong coupling case (v = 100k), where the system
parameters γ /(κq4

c ) = 10−4 and k/(κq2
c ) = 10−2,1,102 are used. The

line types for each k values are given in (b). Competition between the
energy functions presented in (a) leads to the variety of the fluctuation
spectrum as presented in (b), depending on the network rigidity. The
inset shows the power law exponent of the fluctuation spectrum,
defined in Eq. (23). The coupling to an extremely soft network
(k = 10−2κq2

c ) yields insignificant modification of the membrane
fluctuation. For k = κq2

c , a smooth crossover from q−4 to q−2

occurs, as the exponent in the inset displays. For the stiffer network
(k = 102κq2

c ) such a crossover is interrupted by higher-order bending
energy, resulting in the nonmonotonic evolution of α.

q = qc = π/ξ , as displayed in Fig. 1(a). The magnitude of
these bending energies in relative to the elastic energy depends
not only on q but also on the spring network rigidity k, which
according to Eq. (21) results in the variety of fluctuation
spectrum as presented in Fig. 1(b). We add the inset displaying
the power-law exponent α,

α = −d ln〈|hq |2〉
d ln q

, (23)

in order to see more clearly the wave number dependence
of the fluctuation spectrum. One common feature among
fluctuation spectra for various network rigidities is that in the
short wavelength region (q � qc), the bending energy Em(q)
is dominant over Em(q − 2qc) and C(q), and the fluctuation
spectrum shows the fluidic behavior q−4.

On the other hand, qualitative behavior of the long
wavelength fluctuation (q � qc) is crucially altered by the
elasticity k. For small k/(κq2

c ) = 10−2 (the dashed lines),
we have that Em(q − 2qc) � C(q) and Em(q) � C(q) [see
Fig. 1(a)]. Reminding us of the criterion Eq. (21), we expect the

012717-4



FLUCTUATIONS OF RED BLOOD CELL MEMBRANES: THE . . . PHYSICAL REVIEW E 92, 012717 (2015)

fluctuation spectrum to be well described by the bare bending
energy Em(q), which is indeed so as shown in Fig. 1(b).
While such a soft network does not influence the mechanical
properties of the lipid bilayer, for large k there exists a wave
number region satisfying Em(q) < C(q) < Em(q + T ) [see
the curves for k/(κq2

c ) = 1,102 in Fig. 1(a)]. In this case, the
elastic energy contribution from the cytoskeleton is observable
in the fluctuation spectrum with q−2 behavior in Fig. 1(b).

Note that for k/(κq2
c ) = 102, near the zone boundary

q = qc, the higher order bending energy Em(q − 2qc) is
comparable or smaller than C(q) and yields the nonmonotonic
fluctuation spectrum. In a recent paper [30] a fluid membrane
discretely coupled to a very hard fluid membrane is found to
show nonmonotonic fluctuations, and its origin was interpreted
by negative surface tension. From our analysis it becomes
clear that the nonmonotonicity arises from the bending energy
for creating short wavelength curvature, which is less costly
than the deformation of the extremely rigid cytoskeleton, that
is, Em(q − 2qc) < C(q). The nonmonotonic behavior is also
reflected on the power law exponent α which has a deep near
q = qc, while for other k values it monotonically decreases
from α = 4 to α = 0 with α = 2 plateau for k/(κq2

c ) = 1.
Weakly coupled membrane: Let us consider that the bilayer-

cytoskeleton coupling is not strong enough, i.e., v < 4k =
max Ee(q). Defining a wave number qv at which v = Ee(qv),
we obtain the approximate form of the coupling energy
function C(q):

C(q) ≈
{
Ee(q)/p2, q � qv

v/p2, q � qv

, (24)

which well describes the behavior illustrated in Fig. 2(a). This
coupling energy should be compared with the bending energy
costs, and the fluctuation nature is again determined by the
dominant function, which follows Eq. (21).

In the short wavelength region (q � qc), the bare bending
energy Em(q) is dominant over the other relevant energy
functions and results in q−4-dependent fluctuation spectrum,
as displayed in Fig. 2(b). In the region q � qc, the network
rigidity comes into play. For small k [see the dashed lines
for k/(κq2

c ) = 10−2], Em(q) is still a dominant energy factor,
which explains well the fluctuation spectrum presented in
Fig. 2(b). For a rather rigid network, at an intermediate wave
number the coupling energy C(q) can be less than Em(q − 2qc)
and yet larger than Em(q). In the case, q-independent fluctua-
tion can be observable due to the coupling function behavior
for q � qv in Eq. (24). This coupling-induced confining effect
is more pronounced for large k, for example, k/(κq2

c ) = 102.
Such a rigid network imparts the elasticity for long wavelength
(q � qv) undulation of the membrane yielding q−2 behavior.
This is a unique consequence of the finite coupling strength,
which was not expected from the Gov model [13] and other
previous studies [16].

B. Confining potential

Fluctuation spectrum can also be influenced by the con-
fining potential γ h2 in Eq. (1). Up to now, although we have
considered only very small confining strength γ relative to the
bending energy κq4, the confining strength of RBC membranes
is not known precisely. In this section, we discuss the effect

FIG. 2. (Color online) (a) Coupling functions and (b) fluctuation
spectra for weakly coupled membranes (v = 10−2k), where the
system parameters are the same as used in Fig. 1. While for soft
networks [k/(κq2

c ) = 10−2,1] the coupling does not significantly
affect the fluctuation properties, the extremely stiff network (k =
102κq2

c ) induces the confining effect at the intermediate wavelengths
(q-independent spectrum) and manifests its elasticity in the fluctua-
tion spectrum by q−2 dependence in the long wavelength region.

of the confining potential on the fluctuation spectrum. Since
the confining potential provides a (positive) constant shift to
the bending energy Em(q), the role of the coupling can be
insignificant when the confinement is too strong compared to
the cytoskeleton elasticity. In order for the elastic contribution
from the spring network to be visible in the spectrum,
in particular the q−2 dependence, the confining should be
sufficiently weak, for which rough estimation gives a condition√

γ /k �
√

k/κ (for SC), qv (for WC). (25)

Note here that
√

γ /k is the wave number at which the elastic
energy Ee(q) in the long wavelength limit equals the confining
potential, and

√
k/κ and qv are roughly the upper boundaries

that Ee(q) dominates the bending energies for the strong
coupling (SC) and the weak coupling (WC) case, respectively.

Different microscopic models have been proposed to
understand the physical origin of the cytoskeletal confinement.
Inhomogeneous pinning due to a sparse connection with the
cytoskeleton [22] and the closed geometry of RBCs [8,9,12]
are two major candidates. Our results suggest that the two
pictures entail very different physical situations. In our model
the discrete coupling, v(h − φ)2 in Eq. (3), indeed leads to the
q-independent fluctuation at long wavelength. This coupling-
induced confinement is apparent only if the membrane is
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weakly coupled to a very rigid cytoskeleton [see Fig. 2(b)], and
in the longer wavelength region (q < qv), one should observe
the tension signature as well. For the closed geometry of RBCs,
the translational symmetry of the elastic network is broken.
This can be effectively described by adding a constant to the
elastic energy, Ee(q) → γ0 + Ee(q), which modifies only the
all-to-all coupling kernel C(q). Since the geometry-induced
confining γ0 is now part of C(q), for its observability it requires
the strong coupling and soft cytoskeleton. Such distinctive
features depending on the origin of the confinement would
help to verify which description is closer to reality.

C. Tension emergence

We next discuss the tension emergence, comparing our
results with previous studies. In Refs. [13,14], the authors
analyzed fluctuation spectra observed in Ref. [15] and focused
on the quantity κ/κq where κq , the effective bending rigidity, is
defined as 〈|hq|2〉 = kBT /(κqq

4). Assuming an abrupt increase
of surface tension in the long wavelength regime, they pointed
out that the jump occurs in κ/κq . Our model doesn’t produce
either a sudden change of tension or a jump in κ/κq curve.
Instead, the tension signature only gradually appears as q−2

dependence in 〈|hq|2〉. In order to explain the tension jump
in our model, the coupling energy function C(q) in Eq. (18)
should vanish at q = qc. However, in our approach based on the
microscopic model, the coupling to the spring network causes
all-to-all correlations between membrane deformations, as
given in Eq. (16), yielding the effective coupling energy C(q),
which does not vanish at q � qc but becomes less significant
than the bare bending energy. Therefore, introducing a sudden
change of tension at qc in Refs. [13,14] cannot be justified
within the physics explained in our model.

Induced surface tension can also be observed in 〈|hq|2〉
rather than κ/κq . The parameters in Refs. [13,14], estimated
from the fit to the experiment [15], is marginal or discordant
for observing even the gradual tension emergence in the
fluctuation spectrum. When the bending modulus κ = 2 ×
10−20J = 5kBT [3,8,13–15], the estimated parameter values
are k/(κq2

c ) ∼ O(10−2) and γ /(κq4
c ) � O(10−4), which gives√

γ κ/k2 � O(1). This does not meet the condition, Eq. (25),
and the signal of induced tension in the fluctuation spectrum
should be either weak or absent. When we use an order of
magnitude larger value of the bending modulus, κ = 50kBT ,
which is also used in recent computer simulations [31],
the nontrivial fluctuation spectrum due to the coupling with
the cytoskeleton becomes less visible. For a given k and
γ , the effect of different values of κ is absorbed to the
dimensionless parameters k/κq2

c and γ /κq4
c ; i.e., an increase

of κ is equivalent to a decrease of k/κq2
c and γ /κq4

c . In Fig. 1
the decrease of k/κq2

c makes the strongly coupled membrane’s
peculiar properties like nonmonotonic fluctuation near q = qc

and the signature of the induced tension be less visible. With
larger bending modulus,

√
γ κ/k2 becomes greater so that

the tension signature becomes more difficult to be observed.
Similarly, Fig. 2 shows that a decrease of k/κq2

c lets the size
of the region for a q-independent fluctuation decrease. This
suggests that, in order to observe the peculiar influences of the
cytoskeleton on the fluctuation spectrum, the membrane with
soft bending rigidity should be used.

In order to observe q−2 behavior, k values should be
relatively large. In fact, the spring constant can be esti-
mated in various ways. From the measured shear modulus
μ ≈ 7 × 10−6 J/m2, adopting the continuum model [8], we
obtain the spring constant as k = 4μ/

√
3 ∼ 10−5 J/m2 [32],

and correspondingly k/(κq2
c ) ∼ O(1). If treating the spectrin

tetramer as an ideal entropic spring, the spring constant is
given by kideal = 3kBT/2pLc. The persistence length of the
spectrin p = 7.5 nm [10,33] and the contour length Lc =
194 ± 15 nm [34] give k ≈ 4 × 10−6 J/m2 and k/(κq2

c ) ∼
O(10−1). These spring constants are orders of magnitude
larger than the fitting values and satisfy Eq. (25).

VI. CONCLUSION

We investigate fluctuation properties of RBC membranes
through the Gaussian model, which takes account of the finite
coupling strength between the bilayer and the cytoskeleton.
Focusing on the role of the coupling and discrete nature of the
spectrin meshwork, we obtain different types of fluctuations
for the coupled membrane. A membrane strongly coupled to a
rigid cytoskeleton presents nonmonotonic fluctuations because
of the membrane curvature deformation at length scale smaller
than the cytoskeleton meshsize. When a soft cytoskeleton
is coupled to the membrane, the system exhibits the well-
studied fluctuation spectrum described by surface tension
and the confining potential. Weakly coupled membranes have
an extra crossover and present a q-independent fluctuation
at intermediate length scales. The essential source of this
diversity is the competition among the elastic energy of the
spring network, the bilayer-cytoskeleton coupling, and the
bending energy of the membrane at short length scales.

Direct measurement of such diverse spectra must be a
difficult task, depending on instrument resolution, sample
availability, and control technique. Yet, as shown in this
work, the fluctuation spectrum is dependent on the ratio
k/κq2

c , and then controlling the bending modulus of RBC
membranes may allow us to observe nontrivial spectrum
like nonmonotonic fluctuations for rigid cytoskeleton. ATP
concentration can also change the elastic property of the
cytoskeleton as well as the coupling strength of the anchoring
proteins. More direct evidence should be provided by such
controlled experiments for better understanding the physical
properties of RBCs. Moreover, the nonequilibrium nature of
RBC flickering in relation to active coupling between the
bilayer and the cytoskeleton is also an important issue. In future
studies, we will pursue analysis of a nonequilibrium spectrum
in the presence of active coupling, based on our model with
a certain type of time dependence introduced in the coupling
strength of Eq. (3), which, we believe, is a minimal approach
to grasp the essential characteristics of the system dynamics.
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