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Short-range interactions versus long-range correlations in bird flocks
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3Initiative for the Theoretical Sciences, The Graduate Center, 365 Fifth Avenue, New York, New York 10016, USA
4Dipartimento di Informatica, Università Sapienza, 00198 Rome, Italy
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Bird flocks are a paradigmatic example of collective motion. One of the prominent traits of flocking is the
presence of long range velocity correlations between individuals, which allow them to influence each other over
the large scales, keeping a high level of group coordination. A crucial question is to understand what is the
mutual interaction between birds generating such nontrivial correlations. Here we use the maximum entropy
(ME) approach to infer from experimental data of natural flocks the effective interactions between individuals.
Compared to previous studies, we make a significant step forward as we retrieve the full functional dependence
of the interaction on distance, and find that it decays exponentially over a range of a few individuals. The fact
that ME gives a short-range interaction even though its experimental input is the long-range correlation function,
shows that the method is able to discriminate the relevant information encoded in such correlations and single out
a minimal number of effective parameters. Finally, we show how the method can be used to capture the degree
of anisotropy of mutual interactions.
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I. INTRODUCTION

Large groups of animals—such as bird flocks, fish schools,
and insect swarms—display a remarkable degree of col-
lective coordination. Several experimental studies since the
mid-2000s have quantified the spontaneous emergence of
global order [1–3], the presence of strong behavioral corre-
lations between individuals [4,5], and the swift transfer of
information through the group [2,6–8]. Such findings stimu-
lated a multidisciplinary interest in these kinds of systems. On
the one hand, animal groups can be considered as instances
of active matter [9,10] and can be expected to display some
of the nontrivial properties observed and predicted for several
living, soft, and granular active systems on the microscale.
On the other hand, there are important features that make
animal groups more complicated to understand. First, the
way individuals coordinate with one another is determined
not only by physical mechanisms, as for rods or hard disks,
but also (and often mainly) by exquisitely biological processes
(including cognitive). As a consequence, any speculation about
the nature of mutual interactions in a group cannot be taken
for granted. Besides, animal aggregations form large, but not
infinitely large, groups: They are not in the thermodynamic
limit but rather live in an intermediate regime where finite-
size effects can be important [5]. Understanding collective
animal behavior therefore implies understanding the nature
of interactions and the effective features of such interactions
that are relevant on the scale of natural groups and how they
determine the collective properties that we observe.

One of the most intriguing features of collective animal
motion is the presence of long-range correlations. The corre-
lation function of the velocity fluctuations has been found to be
long-range both in polarized groups such as bird flocks [4] and
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in disordered ones, such as insect swarms [5]. These results
suggest that, rather than ordering, what is truly characteristic
of collective behavior in biological systems is the ability of
individuals to correlate changes in behavior and influence
each other over the large scales. It is therefore important to
understand the features of the interactions granting such strong
correlations.

We know from statistical physics that short-range interac-
tions are sufficient to produce spontaneous symmetry breaking
and system-level coordination. Models of self-propelled par-
ticles [3,11–15] and hydrodynamic flocking theories [10,16]
have shown numerically and analytically that also in active
systems short-range interactions can produce global ordering
and long-range correlations. Indeed, there now seems to be
some consensus in the field of collective animal behavior
that interactions are short ranged [17]. However, long-range
interactions do exist in nature, so we cannot rule them out
a priori. Moreover, to create long-range correlations out of
short-range interactions one normally needs some special
conditions: either there is a continuous spontaneously broken
symmetry (Goldstone theorem) or the system is in the scaling
region of a critical point. From a biological perspective,
one could legitimately object that a reasonable long-range
interaction is a better explanation of long-range correlations
than some arcane physical theorem, not to mention criticality.
For example, birds’ vision is likely to span the entire size of a
flock. It is worth noticing that, despite the short-range con-
sensus, it has been recently proposed that a long-range
interaction is at the basis of flocking behavior [18]. Hence, the
notion that short-range interactions rule collective behavior,
albeit reasonable, is still far from being an established fact,
even in those systems that have been most intensively studied
experimentally.

The recent access to large-scale empirical data on animal
groups has considerably advanced our understanding of the
problem. However, a direct and unbiased proof of whether
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interaction is short or long ranged has been lacking so far.
Significant results have been obtained by fitting biological
models to the data [19–22]. Yet the problem with model fitting
is that it may be tricky to distinguish the intrinsic properties
of the system under investigation from the a priori ingredients
of the model used to fit the data. Alternatively, the interaction
has been assessed by using some structural proxy of it. For
example, in Ref. [23] the authors measured experimentally the
anisotropy in the spatial distribution of the neighbors around
a given bird and found it to decay over a range of a few
individuals (∼7). Since this anisotropy can be determined only
by the interaction, the authors concluded that interactions must
be short range and decaying over approximately the same
range. However, through this kind of structural proxy one does
not attain direct access to the interaction.

In this paper we follow a different approach and use
the maximum entropy method [24] to infer the interactions
directly from the data. The philosophy of this method differs
from standard model fitting in that, as we will discuss, the
model it designs for the system is dictated by the available
experimental observables and it is not assumed a priori.
For bird flocks, we started this program in Ref. [25], with
encouraging results. Using a very simple experimental input,
we inferred the effective number of individuals with which
each bird is interacting and the average strength of such
interactions. Hence, in Ref. [25] a steplike shape of the
interaction was assumed in order to keep the mathematical
complexity to a minimum. Here we make a significant step
forward and derive the full functional dependence on distance
of the effective alignment interaction between individuals. We
call this function J (n), where n is the topological distance
between birds, i.e., their order of neighborhood [23]. We find
that J (n) decays exponentially, on scales much smaller than
the system size, indicating that alignment interaction within a
flock is short range. The experimental input of our calculations
is the velocity correlation function, which is long range. We
show, however, that much of the information captured by the
correlation function is redundant and only correlations on a
short scale are sufficient to retrieve the interaction J (n). Hence,
not only can we infer the effective interaction, but we only need
a small number of local experimental measurements. Thanks
to the new method we are also able to study the angular
dependence of the interaction with respect to the direction
of motion of the flock and shed some light on the aniso-
tropic spatial arrangement of neighboring birds found in past
experimental studies [23,26].

The paper is organized in the following way. In Sec. II
we introduce and describe the maximum entropy approach,
we outline the mathematical structure of the computation
and apply it to the case of flocks. In Sec. III we show the
results of the computation for the flocking events in our
data set, we compare them with previous work [25], and we
further generalize the method to capture the possible angular
anisotropy of the interactions. In Sec. IV we discuss what
are the effects of changing the number of experimental input
parameters in the calculation and show that a fair result is
achieved when the inferred interaction does not depend on the
number of input parameters anymore. Finally, in Sec. V we
discuss our results.

II. MAXIMUM ENTROPY APPROACH TO FLOCKS

Collective phenomena and ordering transitions have been
widely studied in condensed matter. From the perspective
of statistical physics, one usually knows the microscopic
interactions between particles and wants to predict their large-
scale properties. When dealing with biological systems we
often face the opposite situation. We have access to collective
observables through experiments, but have scarce knowledge
on the effective interactions generating them. The problem is
in this case an inverse one: to build a microscopic statistical
model starting from the macroscopic data. As mentioned in the
Introduction, several approaches have been developed to deal
with this task, from model fitting to Bayesian inference [27].
Here we consider the maximum entropy (ME) approach. This
method was originally established by E. T. Jaynes in 1957 [24]
and has strong connections with classical statistical physics.
Since the mid-2000s, it has been widely used to describe
the collective behavior of biological networks, from neural
assemblies to amino acids in proteins, biochemical and genetic
networks, and flocks of birds [25,28–39].

The main idea of the ME method is to build the least-
structured statistical model—the maximum entropy model—
which is consistent with a given set of measured observables. In
this section we explain how to construct a ME model and how
the method can be applied to the case of birds flocks. Before
doing this, however, we make two remarks on the method,
which are useful to understand its philosophy, appreciate its
results, and evaluate its performance.

(i) As compared to other approaches, the ME principle has
the remarkable feature whereby it does not rely on a priori
assumptions on the system under study; this means that ME
does not assume any form of the microscopic interactions (at
variance with model fitting). This does not mean that the ME
does not make approximations in the description of the system;
in fact, it does, but we have a way to control and evaluate them.
As we shall see in detail in this section, the kind of model we get
from the ME approach crucially depends on the experimental
observables we consider as input. Were we able to perform
good measurements of many observables we would retrieve
in an accurate way the full probability distribution of the
microstates of our system. This is not, however, what happens
in real experiments, where typically only a few quantities can
be measured and not always in a robust statistical way. What
we know is that, given some observables, the ME model is
the one that describes them best with the least number of
assumptions. In this sense, the effective interactions appearing
in a ME model only come from the experimental behavior of
the system. Besides, once we construct an ME model based on
some experimental input, we have a way to test its predictive
power. We can, for example, use the model to predict quantities
other than the ones used to build it and compare to experiments.
More systematically, we can compute the predictive gain
acquired when providing new experimental input and assess
the information content of the ME model. What happens in
some cases is that a few experimental input observables give
significant gains and adding further experimental input makes
weak progress. We will discuss an example of this procedure
in Sec. IV.
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(ii) If we consider as input observables quantities that are—
at least on certain time scales—stationary, the ME method
provides a static ME model. As we shall see, in this case
the ME distribution has the form of a Boltzmann measure,
which is particularly useful from a mathematical point of
view to perform computations. This does not mean, however,
that the system is in equilibrium or that the ME distribution
is an equilibrium one. In fact, the system can have an
arbitrary off-equilibrium dynamics. In this case the ME method
simply captures the effect of this dynamics on the statistical
distribution of a given set of observables. What is relevant to
us in this paper is that this distribution encodes how certain
degrees of freedom effectively interact due to the microscopic
behavior of the system. We note that the ME approach is not
bound to produce static Boltzmann-like measures. If we con-
sider as input observables time-dependent quantities (such as
multipoint time correlation functions), the resulting ME model
will consist of a time-dependent distribution [38,40–42].
Computations and inference of effective interactions can be in
this case much more complicated. For polarized self-propelled
systems we showed that, as long as the network of positions
does not rearrange too fast (which is the case of natural
flocks [43]), static and dynamic ME models give a very similar
inference of the interaction parameters [38].

A. The general ME scheme

Consider a system whose microstate at any instant of time
is described by a set of variables {x1,x2, . . . ,xi , . . . ,xN } ≡ X.
When the size of the system N becomes large, the space of the
X increases exponentially and it is experimentally impossible
to directly sample and reconstruct the probability distribution
P (X). On the contrary, it is usually possible to accurately
measure aggregate observables, which require fewer statistics.
Let us assume that we can measure several observables
f1(X),f2(X), . . . ,fM (X), and let us denote their experimental
averages by 〈f1〉expt,〈f2〉expt, . . . ,〈fM〉expt, respectively. The
ME method consists of finding the most random probability
distribution P (X) that is consistent with the observed ex-
perimental data. The distribution must therefore satisfy the
following constraint:

〈fμ〉expt = 〈fμ〉P , (1)

for all μ = 1,2, . . . ,M and where 〈fμ〉P = ∑
X P (X)fμ(X)

denotes the expectation value computed using the probability
distribution P (X). Many distributions satisfy Eq. (1). The
maximum entropy principle [24] aims to find the one which
has as little structure as possible, i.e., is the most random, so
one can derive the minimal consequences of the experimental
observations on 〈fμ〉expt. As a measure of randomness of a
given distribution we consider its Shannon entropy [44,45],

S[P ] = −
∑

X

P (X) log P (X). (2)

In order to get the desired probability distribution, we then
need to maximize S[P ] under the constraints given by Eq. (1).
Besides the experimental constraints, there is an additional
constraint, namely that the probability distribution should be
normalized

∑
X P (X) = 1. This is equivalent to say that we

add to our list of observables an extra function, the constant

f0(X) = 1. This constraint maximization problem can be
solved with the Lagrange multiplier method [46] by finding
the optimum of the generalized entropy function,

S[P ; {λν}] = S[P ] −
M∑

μ=0

λμ(〈fμ〉P − 〈fμ〉expt), (3)

where each Lagrange multiplier λμ is associated with a
constraint equation. Maximizing S[P ; {λν}] with respect to
P (X), we get

P (X) = 1

Z({λν}) exp

⎡⎣−
M∑

μ=1

λμfμ(X)

⎤⎦, (4)

where Z({λν}) enforces the normalization and is obtained
optimizing with respect to λ0,

Z({λν}) = exp(1 + λ0) =
∑

X

exp

⎡⎣−
M∑

μ=1

λμfμ(X)

⎤⎦. (5)

Using Eq. (4) the generalized entropy (3) can be written as a
function of the Lagrange parameters only,

S({λν}) = log Z({λν}) +
M∑

μ=1

λμ〈fμ〉expt. (6)

One can now easily optimize with respect to λμ to recover the
original constraint equation (1),

− ∂ log Z({λν})
∂λμ

=
∑

X

P (X)fμ(X) = 〈fμ〉expt. (7)

As we can see from Eq. (4), the maximum entropy distri-
bution has the form of a Boltzmann distribution P (X) =
exp[−βH (X)]/Z with an effective “Hamiltonian” H (X) =∑M

μ=1 λμfμ(X) and temperature kBT = 1. As we previously
discussed, this does not mean that the system we are looking
at is in equilibrium nor that this Hamiltonian is the true
microscopic Hamiltonian of the system (if it exists). Never-
theless, one must not forget that the optimal values of the
Lagrange parameters, through Eq. (7), enforce consistency
with experimental data. They describe the effect of the micro-
scopic dynamics on the statistics of the input observables. In
this sense, they represent effective interactions and mirror the
structure of the microscopic behavior of the system through the
filter of our experiments. In this respect, the choice of which
experimental observables to consider as input of the method
is very important: The more representative the set of {fμ(X)}
is of the collective behavior of the system, the more predictive
the ME model (4) turns out to be and the more informative
the effective parameters are on the microscopic features of the
system that determine its behavior at the collective scale.

Keeping these considerations in mind, to investigate the na-
ture of interactions in our system, we need to select a good set
of experimental input observables, compute the corresponding
ME model, investigate its predictive content, and, finally, look
at the structure of the effective ME interactions.

From a mathematical point of view, to compute the ME
model, we need to solve Eqs. (4) and (7). This means
computing Z({λν}), which represents the partition function of

012705-3



ANDREA CAVAGNA et al. PHYSICAL REVIEW E 92, 012705 (2015)

the Boltzmann-like distribution (4), a problem we are fairly
well equipped to deal with (at the level of schemes and
approximations) in statistical physics. There is, however, a
further obvious difficulty: Z is not a number but a function
of the Lagrange parameters and must be computed for any
possible value of the {λν}. This is the essence of the inverse
problem. In most cases this is a hard step, which is achieved
numerically. For flocks, which are very polarized groups, one
can resort to a high-order expansion and compute Z({λν})
analytically. Once this function is known, we can fix the values
of the Lagrange parameters by enforcing the constraint, i.e.,
by optimizing Eq. (7).

Interestingly, we note that the generalized entropy (7) is
related to the likelihood of the experimental data L({λν}), i.e.,

logL({λν}) = 〈log P 〉expt = − log Z({λν}) −
M∑

μ=1

λμ〈fμ〉expt

= −S({λν}). (8)

Hence, optimizing the generalized entropy (which—as can
be shown—corresponds to a minimum in the parameters’
space) is equivalent to maximize the log-likelihood of the
experimental data.

B. ME distribution for flocks

Let us now apply the ME method to flocks of birds. The
first step is to identify the set of variables that defines the
microstate of the system under investigation (i.e., the variables
{X} of the previous section). We are interested in the interaction
that is responsible for the alignment of the directions of motion
of the birds. Hence we consider as microscopic variables the
orientation vectors �si ≡ �vi/|�vi |, where �vi is the velocity of bird
i = 1, . . . ,N .

The second step is to select a set of observables, function
of the variables �si , whose experimental value will be used to
constrain the probability distribution of the orientation vectors,
P ({�si}). The standard way to proceed is to use moments
(i.e., correlations) of this distribution, 〈�s〉,〈�s · �s〉, . . . . As one
can easily see from Eq. (4), each one of these m-point
correlations will generate m-point interaction terms in the
effective Hamiltonian. One could naively think that the more
correlations we consider, the better the corresponding ME
model. In fact, this is not true for several reasons. On the
experimental side, the larger m is the larger the statistics needed
to get good experimental estimates (in terms of number of
measurements and sample size). Thus, using large m-point
correlations typically enhances the experimental noise. From
a more conceptual point of view, not all correlations are, in
general, equally important. By considering too many of them
we can introduce redundant information and risk overfitting
the parameters. The most economic prescription is therefore
to use up to the minimum m-point correlation that allows us
to predict the m + 1-point correlation.

Previous studies have shown that in flocks (as in other
collective systems [29]) the use of pairwise interactions
(m = 2) allows us to accurately predict the four-points correla-
tions [25,28]. We then focus on pairwise correlations. In a flock
of birds we can in principle define the mutual correlation of the
flight directions Cij = �si · �sj for any single pair of individuals.

However, these quantities wildly fluctuate in time and never
reach a steady state. The reason is obvious: Birds are not
on a fixed lattice; they move in space to change position with
respect to each other. Therefore, the mutual distance of i versus
j changes in time; but any reasonable social force (i.e., interac-
tion) will depend on the relative distance between individuals
rather than on their absolute identity. Hence, distance, rather
than identity, should be used as a label. The experimental
proof of that is that the correlations computed as a function of
distance are stable in time over appreciable intervals. Besides,
they exhibit a nontrivial scale-free dependence, a signature of
the collective behavior of the flock [4], which makes them a
very good choice for our purposes.

We therefore consider as our experimental input observable
the two-point correlation function,

Ĉ(n; {�si}) = 1

N

N∑
i,j=1

�si · �sj δ(kij − n). (9)

This quantity is the average correlation between a bird and its
nth nearest neighbor (we use the hat notation to distinguish
this full correlation from the connected one—see below).
Compared to previous studies [4], we measure the correlation
as a function of the topological distance (i.e., order of
neighborhood), n, rather than of the metric distance, r [23]. In
Eq. (9) kij is the topological distance of bird j relative to bird i:
If j is the first nearest neighbor of i, kij = 1; if j is the
second nearest neighbor of i, kij = 2; and so on (kij is
nonsymmetric). This implies

∑
i,j δ(kij − n) = N , and this

is why the normalization in (9) is easier than in its metric
counterpart [4,47].

As explained in the previous section, the ME method
consists of finding the probability distribution P ({�si}) that
maximizes the entropy S[P ] under the constraint that the
distribution reproduces the experimental observables (9),
which in our case read

〈Ĉ(n; {�si})〉expt = 〈Ĉ(n; {�si})〉P . (10)

This constrained maximization is achieved by introducing
one Lagrange multiplier, J (n), for each experimental quantity
that we are fixing, Ĉ(n). It is convenient to define J (n) as
an intensive parameter so, in the notation of Sec. II A, J (n)
corresponds to λμ/N and Ĉ(n) corresponds to fμ. As we have
explained, the distribution obtained in this way has the form
of an exponential of the product of the Lagrange multipliers
times the observables,

P ({�si}) = 1

Z
eN

∑
n J (n)Ĉ(n) 1

Z
e
∑

ij J (kij ) �si ·�sj , (11)

where Z is the normalizing partition function and J (kij ) =∑
n J (n)δ(n − kij ). The probability distribution (11) corre-

sponds to the effective Hamiltonian,

H = −
∑
ij

J (kij ) �si · �sj . (12)

Therefore, the (discrete) function J (n) represents the strength
of the effective alignment interaction between pairs of birds at
topological distance n. Once we solve the ME model and we
compute J (n), we can therefore investigate the nature of such
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interaction, how it decays in distance, and understand whether
it is short or long ranged.

Inferring the full function J (n) is a significant step forward
compared to our previous ME calculations [25,38], where we
assumed a steplike shape of the interaction. By doing that
we only had to infer two parameters, intensity and range of
the interaction, so we had no information about the form of
the interaction. For this reason, the question of short- versus
long-range interaction in Ref. [25] was addressed in a rather
indirect way, namely by checking that the interaction range
did not scale with the system size. Here, on the contrary, we
will be able to calculate directly how the interaction decays
and to see explicitly that it is short range.

C. Maximization of log-likelihood

To retrieve the interaction function J (n) we need to solve the
ME equations enforcing the constraints (10) or, equivalently,
maximize the log-likelihood of the data. In our case the log-
likelihood function Eq. (8) is given by

logL = 〈log P ({�si})〉expt

= − log Z[J (n)] + N
∑

n

J (n)〈Ĉ(n; �si)〉expt. (13)

We therefore need to compute the partition function Z[J (n)]
and then perform the maximization with respect to J (n). This
is a nontrivial program. There are, however, a few tricks we can
exploit to facilitate the task. We outline here the main steps,
and details can be found in the Appendixes.

(a) The expression of the effective Hamiltonian can be
simplified further. We can indeed rewrite H by introducing
the symmetrized interaction matrix Jij ,

H = −
∑
ij

Jij �si · �sj , (14)

where Jij ≡ [J (kij ) + J (kji)]/2. Interestingly, Eq. (14) de-
scribes the Hamiltonian of an Heisenberg model on a network,
whose topology is described by the interaction matrix Jij . In
the strongly ordered phase—as flocks are—this model can
be solved using a well-known low-temperature expansion,
the spin-wave approximation (see Appendix). As a result,
Z can be computed analytically and is entirely given in
terms of the eigenvalues {ak} of a discrete Laplacian matrix
Aij = δij

∑
k Jik − (1 − δij )Jij , giving

log Z[J (n)] = −
∑
k>1

log ak + N
∑

n

J (n). (15)

(b) In principle, we need to consider all possible values
of mutual distances n = 1 · · · N and optimize over N distinct
Lagrange parameters. This number, however, can be severely
reduced. It turns out (see the next section) that correlations
C(n) for n > nmax are redundant and do not improve the
computation. Thus, all the sums appearing in Eq. (13) can
be extended only up to nmax. Besides, one can “bin” the
integer values of topological distances n in discrete intervals
of size �n, much as one would do with real values of the
metric distance (see Appendix B). In this way the number of
effective variational parameters can be reduced even further,
speeding up the maximization procedure. The expression of

the log-likelihood then becomes

logL =
∑
k>1

log ak − N�n
∑

n

′
J (n)(1 − 〈Ĉ(n)〉expt), (16)

where the primed sum indicates that we are summing over
discrete bins, up to nmax.

(c) The derivatives of the second term of the log-likelihood
with respect to the J (n) are trivial. However, differentiating
the partition function is far less trivial, as the eigenvalues ak

are very complicated functions of the {J (n)}. Luckily, we can
use perturbation theory (see Appendix C) and derive the exact
expressions for the derivatives with respect to J (n).

In this way we finally get the ME equations

〈Ĉ(n)〉expt = 1 − 1

N�n

∑
k>1

1

ak

∂ak

∂J (n)
= 1 − Tr[A−1γ (n)]

N�n
,

(17)

where the matrix γ is given by

γij (n) = 1

2
δij

{∑
m

[δ(kim − n) + δ(kmi − n)]

}

− 1

2
(1 − δij )[δ(kij − n) + δ(kji − n)]. (18)

These equations can be exploited to efficiently maximize the
log-likelihood (16) numerically (see Appendix D for details
on the numerical procedure) and find, for each value of n, the
optimal J (n). The results of this procedure are discussed in
the next section.

III. RESULTS

A. Short-range interactions versus long-range correlations

Let us summarize the procedure explained so far. We
considered a set of experimentally measured observables,
the velocity correlation functions Eq. (9), and built the ME
distribution consistent with these observables. This distribu-
tion is expressed in terms of effective alignment interactions
between individuals, whose dependence in mutual distances is
described by the function J (n). The ME allows us to retrieve
J (n) by maximizing the log-likelihood, given the experimental
input 〈Ĉ(n)〉expt.

Let us now discuss the results of this procedure. We used
an experimental data set of 22 flocking events (see Table I
and Appendix E). Data were obtained from stereoscopic
experiments in the field: large flocks of starlings (from
hundreds to thousands birds) were filmed with high-resolution
stereo cameras and—thanks to innovative computer vision
techniques—individual three-dimensional (3D) tracking was
performed [4,23,48]. Given the difficulty of the problem, this
data set represents to date the largest experimental data set on
large animal groups moving in three dimensions.

For each event, we measured the correlations 〈Ĉ(n)〉expt and
used them as input for the ME computation. The resulting J (n)
is plotted in Fig. 1 for two distinct flocks. As we can see from
the figure, the interaction function (red line) clearly decays
to zero on a topological scale of few (order 10) individuals.
To fully appreciate the result and its consequences we also
plotted in the same figure the connected correlation function
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FIG. 1. (Color online) Left: Connected correlation function C(n)
compared to the interaction J (n) (both normalized by their n = 0
value to be displayed on the same scale). Right: Close-up of the
interaction, J (n). The full line is an exponential fit to the data
(see text). Inset: Semilog plot of the same quantity. Top: Event
31-01, N = 2126; J0 = 5.63, and nc = 6.11. Bottom: Event 21-06,
N = 717; J0 = 25.63, and nc = 7.41.

(blue line), which measures the decay of correlations between
birds. So far we always considered the nonconnected velocity
correlation function Ĉ(n), Eq. (9). Flocks are, however, in the
ordered phase (they have nonzero polarization), hence Ĉ(n)
does not decay to zero. This is simply a consequence of the
emergence of long-range order: All birds fly on average in
the same direction and there is a trivial contribution of the
center-of-mass motion to the full correlation function. For this
reason, if we want to describe how correlations decay, we
need to consider the connected correlation function, which is
defined by using the velocity fluctuations

C(n) = 1

N

∑
i,j

δ�si · δ�sj δ(kij − n), (19)

where δ�si = �si − (1/N )
∑

k �sk . C(n) is basically the full
correlation minus the order parameter squared and measures
how much individual deviations from the average motion are
correlated with each other.

For very large systems (i.e., in the thermodynamic limit)
C(n), unlike Ĉ(n), decays to zero for large distances, signaling
the physical fact that fluctuations must be uncorrelated when
their distance tends to infinity. In finite systems, however,
the behavior of the connected correlation function depends
on the nature of the correlation in the system. In systems
with short-ranged correlations, namely systems where the
correlation length ξ is always smaller than the systems size,
C(n) decays to zero as in an infinitely large system; this means
that the function not only reaches the zero axis at a distance of
the order of the correlation length but also stays zero beyond
this distance and the correlation function does not depend
much on the system’s size. Bird flocks, however, have been
found to belong to a very different class, namely systems with

long-range correlations, also called scale-free systems [4]: In
this case, the correlation length ξ scales with the system’s
size and the infinite size form of the correlation function is
a power law. This fact that has several implications; first,
in a scale-free system the zero of the connected correlation
function, which is the best proxy of a correlation length, scales
with the systems size; second, because of the definition of
connected correlation, where fluctuations are calculated by
subtracting the spatial average, the function C(n) crosses the
zero axis in correspondence to the correlation length without
leveling to zero after this point (for an extended discussion of
this point see Ref. [4]). Only for very large systems would one
see the power law for of the correlation function.

In Figs. 1(a) and 1(c) we can compare the behavior of
C(n) (the input) with the inferred effective interaction strength,
J (n) (the output). What we find is that, in contrast with the
correlation, the interaction J (n) is very much short ranged.
The difference between C(n) and J (n) is quite striking
[Fig. 1 (left)]. We find that J (n) decays exponentially with
the topological distance [Figs. 1(b) and 1(d)],

J (n) = J0 e−n/nc , (20)

where the decay constant nc provides a measure of the
interaction range. The mean value of nc over all 22 analyzed
flocks is

nc = 8.0 ± 0.5 (std error), (21)

to be compared with the estimate nc = 6.5 ± 0.9 (std error)
given in Ref. [23] using spatial structure as a proxy of the
interaction. Plots of J (n) for several other analyzed events
are displayed in Fig. 2, while the values of nc for all
events can be found in Table I. In all cases the interaction
decays exponentially and the interaction range nc is much
smaller than—and not dependent on—the system’s size N (see
Table I). In terms of metric distances, in all cases these ranges
correspond to distances much smaller than the extension of
the flock (and well below its shorter dimension)—see Table I.
We therefore find that the effective alignment interaction in
starling flocks is short ranged [49].

We notice another interesting aspect of Fig. 2: These plots
all have the same scale on the abscissa, meaning that in
all flocks the interaction decays over a similar range of the
topological distance n. But these flocks have significantly
different densities, therefore if we wanted to plot J as a
function of the physical, metric distance r we would need
widely different scales. This is yet another demonstration of
the previously discovered fact [23,25] that interaction in bird
flocks is based on topological, rather than metric, distance [49].

B. Comparison with the step-interaction case

As mentioned in the Introduction, a first, simpler, maximum
entropy computation on bird flocks was performed by some
of us in Ref. [25]. Let us now compare the present approach
with the one of Ref. [25] and discuss the present step forward
compared to previous results.

The experimental input used in Ref. [25] was also related
to velocity correlations. However, it was not the correlation as
a function of distance Ĉ(n), as in the present paper. Rather, we
considered a single scalar, Ĉint, describing the average degree
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FIG. 2. (Color online) The alignment interaction strength J (n) for six events differing from those in Fig. 1: event 57-03 (a), event 58-06
(b), event 63-05 (c), event 69-10 (d), event 20111125-2 (e), and event 20111215-1 (f) (see Table I for the details of the events). Circular symbols
(red) are the result of the ME method, while black solid lines are the exponential fit to the data. Step functions (blue) are the interaction strengths
computed using the ME method described in Ref. [25]. Insets are semilog plots of J (n) for the respective events. All of them show reasonably
clear exponential decays.

of correlation between a bird and its interacting neighbors

Ĉint = 1

N

∑
i

1

nc

nc∑
j∈i

�si · �sj , (22)

where the sum is carried out over the first nc neighbors of i.
We can recast this quantity in the language of the present paper
by noting that

Ĉint =
∑N

i,j=1 �si · �sj 
(kij − nc)∑N
i,j=1 
(kij − nc)

, (23)

where 
(x) is the Heaviside step function. By using the
formalism that we developed above, it is easy to see that
this construction is equivalent to assume that the interaction
function has a steplike behavior, being constant up to neighbor
nc and zero beyond that, namely

J (n) = J0 
(nc − n). (24)

In Ref. [25] J0 [the (average) strength of the interaction]
naturally appeared as the Lagrange multiplier associated to
Cint, so the entropy was maximized with respect to it. On the
other hand, nc (the width of the steplike interaction) was not
the Lagrange multiplier of any given observable, so it remained
in the likelihood even after maximization with respect to J0

and was determined through a maximum-likelihood principle.
This means that the calculation of Ref. [25] in fact assumed
some parameter-dependent form of the model [namely the
step interaction from Eq. (24)] and did not exclusively rely on
entropy maximization.

How does the calculation of Ref. [25] compare to the one
we developed above? First, we see from Fig. 2 that the old
step interaction is always compatible with the new exponential
interaction, so there is a nice consistency between the two

cases. For a more quantitative comparison, let us call J
step
0 and

n
step
c the strength and the range of the interaction of the step

model of Ref. [25] and J
exp
0 and n

exp
c the parameters of the

exponential fit of the J (n) that we calculated in the present
work. It is reasonable to expect two things:

(1) the total interaction strength, that is,
∑

n J (n), should
be the same in the two cases. From this condition we get
n

exp
c J

exp
0 = n

step
c J

step
0 ;

(2) if we interpret w(n) = J (n)/
∑

m J (m) as the (nor-
malized) weight of the nth neighbor, the average of n, i.e.,∑

n w(n)n, should be the same in the two cases.
These two conditions give

nexp
c = nstep

c /2, (25)

J
exp
0 = 2J

step
0 . (26)

The data in Fig. 3 indicate that these two relations are indeed
satisfied. Notice that the fact that the steplike parameter n

step
c
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FIG. 3. (Color online) (a) Interaction range nc and (b) interaction
strength J0: Comparison of the step model vs the present work; the
full lines are the predictions of Eqs. (25) and (26).
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is twice as large as the exponential decay range can (at least
partially) explain the discrepancy between n

step
c (which was

found to be = 21.6 in Ref. [25]) and the previous estimate of
the interaction range given in Ref. [23] (nc = 6.5 ± 0.9).

C. Longitudinal versus transverse interaction

In natural flocks the distribution of neighbors around a given
individual was found to be anisotropic [23]. This suggests that
there might be a certain degree of anisotropy in the interactions
between birds. We can use the ME approach to investigate this
question. We know that the more detailed the experimental
input we use, the more detailed will be the corresponding ME
model. In the previous section we discussed how increasing
the amount of experimental information can lead to an increase
in knowledge about the interactions: Using only Ĉint [25]
allows to infer an effective interaction range and strength,
while using the correlation function Ĉ(n) allows us to infer the
full dependence of interaction on distance. In the same way, to
probe the angular dependence of interactions we now consider
correlation functions, which depend not only on distance but
also on the angle with respect to the direction of motion.

Given a bird, i, we partition the space around it into two
sectors, the longitudinal one and the transverse one: Consider
a neighbor j of i, and let θij be the angle formed by �rij (the
vector joining i to j ) and the flock’s direction of motion �V .
Then j is in the longitudinal sector of i if | cos(θij )| > 1/2;
otherwise it falls into the transverse sector (this relationship
is symmetric). Notice that with this definition the two sectors
have the same 3D volume. We then define the longitudinal (L)
and transverse (T) correlation functions, which are simply the
average correlations in their relative sectors,

ĈL,T (n) =
∑

i,j �si · �sj δ(kij − n)
(±| cos(θij )| ∓ 1/2)∑
i,j δ(kij − n)
(±| cos(θij )| ∓ 1/2)

, (27)

where 
(x) is the Heaviside step function. When computing
these correlations on flocks data, we find that the trans-
verse correlation is slightly but systematically larger than its
longitudinal counterpart at small topological distances: The
percentage of times where CT (n = 1) > CL(n = 1) is 64%
(over all frames and events) and is above 50% in 91% of
events. Starting from these new observables, one can apply
the maximum entropy method as explained in the previous
sections and get a ME distribution with effective Hamiltonian,

H = −N
∑

n

[pL(n)JL(n)ĈL(n) + pT (n)J T (n)ĈT (n)], (28)

Here the Lagrange multipliers JL(n) and J T (n) represent the
alignment interaction strengths of a bird with its nth neighbor
in the longitudinal and transverse directions, respectively. The
pL,T are the fraction of neighbors that lie in the longitu-
dinal and transversal sectors and are defined as pL,T (n) =
(1/N )

∑
i,j δ(kij − n)
(±| cos(θij )| ∓ 1/2). These quantities

of course satisfy the relation pL(n) + pT (n) = 1. We note that,
despite the constraints

Ĉ(n) = pL(n)ĈL(n) + pT (n)ĈT (n), (29)

the link between J (n) and JL,T (n) is not trivial. In this case
we match at the same time ĈL(n) and ĈT (n) and in the

4 16 64

J
L

4

16

64

J
T

n = 1
n = 2

FIG. 4. (Color online) Log-log plot of J L vs J T for n = 1 and
n = 2 for all the analyzed flocks. The full line is the identity. The
computation of both correlations and inferred interactions in the
anisotropic case requires a larger statistics, because only half of birds
pairs are on average used to get J L,T (n) and ĈL,T (n). For this reason,
events where the size is too small, or that are too short in time, are
too noisy and have been excluded from the analysis (events 77-07,
72-02, 1214-4-1,1214-4-2, and 58-07—see Table I).

isotropic case Ĉ(n) only. However, there are many different
combinations of ĈL(n) and ĈT (n) that correspond to the
same global Ĉ(n) [Eq. (29)]. This means that we can have
many combinations of JL,T (n) consistent with the same J (n).
Special cases occur only when the correlation functions of
the two sectors are the same ĈL(n) = ĈT (n) [in this case
JL(n) = J T (n) = J (n)] or when there are no neighbors in one
of the sectors [if pT (n) = 1, then J T (n) = J (n) and JL(n) is
indeterminate and vice versa—as it should be].

To find the JL,T (n) consistent with experimental data we
proceed along the lines explained in the previous sections. Also
in this case the Hamiltonian (28) can be recast in a Heisenberg-
like form, which allows us to compute analytically the partition
function to get an explicit expression of the log-likelihood in
terms of JL(n) and J T (n) (see Appendix B). The transverse
and longitudinal interaction functions can then be retrieved by
maximizing the log-likelihood.

The result is shown in Fig. 4, where we plot the values
of J T (n) and JL(n) for n = 1 and n = 2 for all the analyzed
flocking events. The interaction between nearest neighbors
in the transverse direction is detectably stronger than that
in the longitudinal direction. On average, J T (n = 1) is 20%
larger than JL(n = 1). More precisely, J T (1) and JL(1) are
linearly correlated with Pearson correlation coefficient ρ >

0.99, the best linear fit giving J T (1) = (1.208 ± 0.058)JL(1)
(statistical confidence p value < 1.0e − 6). This anisotropic
character of the interaction is very short ranged, though,
as it already disappears by the second-nearest neighbor,
J T (n = 2) 
 JL(n = 2) (Fig. 4).

The anisotropy that we find is not strong, but it is interesting.
Let us discuss in more in detail its possible origins and
consequences.

First, remember that we are studying the alignment interac-
tion, hence our result tells us that a bird is more keen to align
its direction of motion with the neighbor on the side rather
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than with that directly in the front. One may speculate that this
is due to the fact that misalignment with a side neighbor has
more severe consequences (in terms of collision) than that with
someone along the direction of motion. On the other hand, for
what concerns speed control one would expect the opposite:
A stronger interaction in the longitudinal direction would be
more useful to avoid bumping into each other. Some recent
progress has been made in working out the speed interaction
in flocks [28]; it would therefore be interesting to extend the
present calculation to the case of speed.

Even though the anisotropy concerns the directional degrees
of freedom (the velocities) it can have an impact on the spatial
arrangement of neighbors. One can argue that individuals
who better coordinate flight directions tend to keep the same
mutual distance and consistently maintain their neighborhood
relationship. In this respect, our result is consistent with the
finding of Ref. [23], where it was found that the closest
neighbors of a bird are more easily found in the transverse
than in the longitudinal direction (i.e., the nearest neighbors
are typically on the side rather than in the direction of motion).
Understanding how interactions between flight directions are
related to the spatial structure of the group is a complex
problem. There could be positional attraction-repulsion forces
between birds, which we did not consider in our ME analysis,
and that can influence the spatial arrangement of individuals
(see Refs. [15,50] for a discussion in numerical models).
Recent analysis [39], however, suggests that in systems with
topological interactions velocity alignment has an important
role in the structure, which is why our result can help to
understand this issue.

Finally, a word of caution is required. There is an im-
portant anisotropy present in polar active systems, which
is a consequence of symmetry breaking and dynamics and
is not due to anisotropic microscopic interactions. Flocks
are polarized groups, and, as such, velocity fluctuations
orthogonal to the global velocity are much stronger than
longitudinal fluctuations, due to the presence of soft modes (see
Appendix A). In self-propelled systems this causes anisotropic
diffusion exponents and a nontrivial scaling of correlations
in the large-scale hydrodynamic regime [51]. Natural flocks
exhibit their collective behavior on much shorter scales—in
terms of both size and time [7]. Still, it might be that the
anisotropy captured by the ME model in part describes the
effect of the microscopic anisotropic diffusion on the scale of
the experimental observations.

IV. DEPENDENCE ON THE NUMBER
OF INPUT VARIABLES

When we introduced the ME approach in Sec. II we briefly
discussed the role of the number of input experimental observ-
ables. The more observables we consider, the more detailed the
corresponding ME model. Indeed, the number of parameters
that we infer through the method is equal to the number
of experimental observables that we use to constrain the
entropy maximization. In principle, increasing the amount of
experimental input should lead to a more complete knowledge
of the effective interactions in the system (see, e.g., Secs. III B
and III C). This is not, however, always true. There are cases
where the relevant information is captured by a small number
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FIG. 5. (Color online) (a) The interaction strength J (n) is plotted
for different nmax (event 21-06). With increasing nmax, the form of
J (n) saturates. (b) Entropy S vs nmax for the same event. In the
large-n regime the entropy decays very weakly; in this regime we are
merely fitting the noise.

of observables, and one just needs these few observables to get
a very effective description of the system. Our case is precisely
of this kind and offers a very nice example where the predictive
power of a ME model can be clearly quantified.

In our work we use the correlation function Ĉ(n) as a
reference observable. The topological distance n between two
birds can go up to nmax = N . This means that the correlation
function (9) is a set of N numbers, so we should, in principle,
use N Lagrange multipliers, J (n) with n = 1, . . . ,N , to max-
imize the entropy. The very long range nature of C(n) seems
to suggest that there is indeed information to be exploited in
this whole function, up to the maximum possible values of the
topological distance. In fact, the situation differs substantially.

What we find is that if we use values of Ĉ(n) up to a
maximum distance nmax, the inferred interaction stabilizes for
nmax � N . To see this we maximized the entropy for different
numbers of Lagrange multipliers, that is, we calculated J (n),
with n = 1, . . . ,nmax, for different values of nmax [Fig. 5(a)].
What we see is that for very small nmax the function J (n) is
unstable, so the whole interaction changes drastically when
increasing nmax. However, when nmax becomes large enough
the full interaction J (n) stops depending on nmax and the only
effect of feeding more correlations and adding new parameters
to the calculation is to obtain negligible and noisy couplings.
This means that beyond a certain distance, the ME calculation
simply refuses to switch on any more couplings, even though
the long-range correlation function that we feed as an input still
seems full of information at that distance. This is an indication
that the ME method works with remarkable economy.

The role of nmax can be understood also at the level of the
entropy. The value of the entropy as a function of nmax after
maximization tells us how much information we gain [45] by
adding more experimental data [Ĉ(n)] and by inferring more
parameters [J (n)]. We can see from Fig. 5(b) that the entropy
decays very fast up to a certain nmax 
 15, and then the decay
becomes slower and linear. This means that we are gaining real
information for nmax � 15, but after that we are simply fitting
the noise and there is no more useful information to be gained
by increasing nmax. For infinitely large N , that is, for infinitely
accurate experimental averages, we expect the large-n weak
decrease of the entropy to become a real plateau, signifying
that there is really nothing to gain (not even in terms of noise
fitting) by adding more parameters than those really required
by the short-range interaction.
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To better understand the role of the entropy and fully
appreciate the meaning of the change of behavior displayed
in Fig. 5 we need a Bayesian analysis. If we want to infer
a good model, a model that tells us something about the
behavior of the system, then our purpose is not simply to
fit well the data. Rather, our goal is to find the minimal
set of parameters able to reproduce the experimental data.
Within a Bayesian framework this goal can be mathematically
formalized. Let us call P (nmax|D) the probability of a model
with nmax parameters, given a certain data set D. It can be
shown that [27]

P (nmax|D) = P (D|nmax)V (nmax) ∼ e−S(nmax)e−αnmax . (30)

The first term in the right-hand side is the maximized
likelihood, i.e., the probability of getting the data with a
model with nmax parameters, and is given by the exponential
of the ME entropy [Eq. (13)]. The second term, which is
called Occam factor, V (nmax), is equal to the ratio between
the posterior accessible volume in the space of parameters
and the prior accessible volume [27]. Typically, the Occam
factor decays exponentially with the number of parameters,
V (nmax) ∝ e−αnmax .

Hence, in general when we increase the number of
parameter nmax of the model we have a trade-off: On one
hand, it improves the fit, hence it increases the likelihood; on
the other hand, it decreases the Occam factor. Because of this
trade-off, when the number of parameters increases beyond
a certain value, the suppressing contribution of the Occam
factor compensates the decay of the entropy and therefore the
growth of the likelihood. For this reason P (nmax|D) reaches
a maximum for a finite value of parameters, nmax = n

opt
max

[Fig. 6(b)].
Unfortunately, the Occam factor depends on the prior

probability of the parameters, which is always an obscure
thing. For this reason the position of this maximum is not
clearly defined. However, it is possible to show that this fact

produces only a small ambiguity in the location of n
opt
max.

First, the contribution of the Occam factor to P (nmax|D)
depends only logarithmically on the prior probability: Major
changes in the prior probability leads to a small change
in Occam factor. Moreover, when we increase nmax after
we reach the optimal value, the slope of entropy changes
suddenly: In fact, we move from the regime nmax < n

opt
max,

where adding each new observable implies a considerable
increase of information, to the regime nmax > n

opt
max, where

instead adding new observables only marginally increases
the total information. The value for n

opt
max is determined by

the condition ∂S/∂nmax = ∂ log V (nmax)/∂nmax, which means
that the solution is the crossing point between the red and blue
lines in Fig. 6(c). Varying the prior probability, the blue line
moves up and down and this moves n

opt
max by an amount �nmax.

As we can see from the figure, the faster the change of slope of
entropy, the smaller the range �nmax. Then, typically, larger
changes in the prior probability lead to smaller change in n

opt
max.

V. CONCLUSIONS

In this paper, using the ME approach, we have provided
rather direct evidence that the effective alignment interaction
between starlings within real flocks is short range. This result
is interesting for two reasons.

First, from a biological perspective, we believe this is
the first time that a short-range interaction is found without
being an a priori ingredient of the model used to fit the
data. In general, it is difficult to formulate a model where
a qualitative crossover from short- to long-range interaction
occurs by tuning a parameter. Hence, what is normally done
is that a certain, fixed, functional form is assumed, and its
parameters fitted. Here, on the other hand, we assumed no a
priori functional form of the interaction, so the final result is
completely ruled by the experimental data. We believe that
short-range interaction (at least in starling flocks) can now be
considered a rather well-established fact.

Second, our result is relevant for the maximum entropy
method itself, which is increasingly used in biological in-
ference [29–37,52]. A common objection to the ME method
is that it is just another kind of model fitting procedure, so,
ultimately, one is prone to obtain as a qualitative output of the
method what one feeds into the method. We believe that what
we have found here proves otherwise. The difference between
long-range and short-range interactions is a qualitative one,
with deep consequences on the physics of the system. Yet we
have seen that long-range correlation is turned into short-range
interaction by the ME method, with the entropy pointing out
the minimal number of parameters that need to be switched
on, given the data. This suggests that the maximum entropy
method manages to extract information from a data set with
minimal bias.
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APPENDIX A: PARTITION FUNCTION
IN SPIN-WAVE APPROXIMATION

In order to calculate the log-likelihood we need to compute
the partition function Z [Eq. (13)]. In general, the exact
analytical calculation of the partition functions is very difficult.
In the case of flocks, however, this can be done thanks to the
spin-wave approximation [25]. Flocks are very ordered, with
magnetization (i.e., polarization) close to 1; we can therefore
expand the Hamiltonian in the small fluctuations around the
mean direction of motion. The partition function can be written
as

Z =
∫

D�s
[∏

i

δ(| �si | − 1)

]
exp

⎡⎣∑
i,j

Jij �si · �sj

⎤⎦, (A1)

where D�s = ∏
i d �si and the δ function is enforcing the

constraint that each spin has unit length. We define the global
order parameter, �V = ∑

i �si/N = � n̂, where n̂ is the unit
vector and � = | �V | is the polarization of the flock. Each spin
�si can be rewritten in terms of the global orientation direction
n̂ and a perpendicular component to n̂, that is, �si = sL

i n̂ + �πi .
By construction, they satisfy the following relations:

�πi · n̂ = 0,
1

N

∑
i

sL
i = �,

∑
i

�πi = 0. (A2)

The partition function can be rewritten as

Z =
∫

DsLD �π
{∏

i

δ
[√(

sL
i

)2 + |�πi |2 − 1
]}

δ

(∑
i

�πi

)

× exp

⎡⎣∑
i,j

Jij

(
sL
i sL

j + �πi · �πj

)⎤⎦, (A3)

where DsL = ∏
i dsL

i and D �π = ∏
i d �πi . The δ functions are

taking care of the constraint on the length of each spin and of
the global constraint on the �πi . For strongly ordered flocks,
� 
 1 and | �πi | � 1. Then, at second order, sL

i 
 1 − |�πi |2/2.
Performing the integral over sL, the partition function becomes

Z =
∫

D �π
(∏

i

1√
1 − |�πi |2

)
δ

(∑
i

�πi

)

× exp

⎛⎝−
∑
i,j

Aij �πi · �πj +
∑
i,j

Jij

⎞⎠, (A4)

where

Aij = δij

(∑
k

Jik

)
− (1 − δij )Jij . (A5)

For strongly ordered flocks, the product
∏

i 1/
√

1 − |�πi |2 can
be neglected (we have explicitly checked that the corrections
due to this term are indeed negligible). Therefore, we can write

Z =
∫

D �π δ

(∑
i

�πi

)
exp

⎛⎝−
∑
i,j

Aij �πi · �πj +
∑
i,j

Jij

⎞⎠.

(A6)

Since Jij = Jji (and then Aij = Aji) we benefit from the
spectral theorem for symmetric matrices. The matrix Aij is
diagonalizable, its eigenvalues are real and its eigenvectors
form an orthonormal basis. Moreover, the condition

∑
j Aij =

0 means that the matrix Aij is a positive semidefinite
matrix having the smallest eigenvalue a1 = 0, and all other
eigenvalues positive. Let ak be the eigenvalue corresponding
to the eigenvector wk . The eigenvector wk satisfies the usual
relation, ∑

j

Aijw
k
j = akw

k
i . (A7)

It can be easily seen that the eigenvector w1 corresponding to
a1 is constant and it is given by (1/

√
N,1/

√
N, . . . ,1/

√
N ).

We can rewrite the integral in the orthonormal basis defined
by w1,w2, . . . ,wN :

Z =
∫

D �π ′ δ( �π ′
1) exp

⎛⎝−
N∑

k=1

ak| �π ′
k|2 +

∑
i,j

Jij

⎞⎠, (A8)

where �π ′
k = ∑

i w
k
i �πi . From this form it is clear that the role

of the δ function over the �π ′
1 is exactly to eliminate the zero

mode from the integral. Performing the Gaussian integral in
two dimensions, we obtain

log Z = −
∑
k>1

log ak +
∑
i,j

Jij , (A9)

where the irrelevant constant terms have been neglected.

APPENDIX B: COARSE GRAINING

The experimental observable we consider in flocks is
the correlation function Ĉ(n). In principle, this correlation
function can be computed for each value of the topological
distance n but, as discussed in the paper, it is safe to consider
only Ĉ(n) up to n = nmax � N . Furthermore, in order to
decrease the number of parameters and speed up the numerical
task, we can consider a “coarse graining,” that is, a binning of
n with generic increment �n � 1. This means that we include
in the same observable Ĉ(n) contributions from the distances
n,n + 1, . . . ,n + �n − 1. Hence, we have

Ĉ(n) =
∑

i,j �si · �sj δ(kij − n)∑
i,j δ(kij − n)

, (B1)

where { �si} are unit vectors and kij = n if j is the nth neighbor
of i. δ(k − n) is a “modified” Kronecker’s δ that takes into
account the binning of n,

δ(k − n) =
{

1 if n � k < n + �n,

0 otherwise. (B2)

Note that for �n = 1 the model reduces to the one described
in the main text.

For each observable Ĉ(n) the associated Lagrange multi-
plier is denoted by λn. The maximum entropic Hamiltonian
consistent with these observables is

H =
∑

n

′
λnĈ(n), (B3)
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where the symbol
∑′

means that the sum stops at nmax and
that we sum only over the “bins” of the coarse graining, that is,
n = 1,1 + �n,1 + 2�n, . . . ,nmax. Physically, λn is the total
interaction strength for bin n for a flock (extensive), whereas
the interaction strength J (n) defined in the main text is the
strength for an individual pair within bin n (intensive) and
hence J (n) = −λn/(N�n). Using coarse-grained variables
does not change formally the computation, as outlined in the
main text.

Indeed, if we define Ĵ (kij ) such that

Ĵ (kij ) =
∑

n

′
J (n)δ(kij − n), (B4)

[note that with �n = 1, Ĵ (kij ) ≡ J (kij )], we can easily verify
that Eq. (B3) reads as a classical Heisenberg model

H ({ �si}) = −
∑
i,j

Ĵ (kij ) �si · �sj ≡ −
∑
i,j

Jij �si · �sj . (B5)

where the symmetrized interactions matrix Jij are given by

Jij ≡ 1

2
[Ĵ (kij ) + Ĵ (kji)]

= 1

2

∑
n

′
J (n)[δ(kij − n) + δ(kji − n)], (B6)

The partition function can be computed using the spin-wave
expansion, as described in Appendix A, where now the
eigenvalues ak refer to the matrix Jij in Eq. (B6). The
log-likelihood takes the form

logL = − log Z −
∑

n

′
λn〈Ĉ(n)〉expt

= − log Z + N�n
∑

n

′
J (n)〈Ĉ(n)〉expt. (B7)

The coarse-graining procedure can be easily generalized to the
anisotropic case. We consider the transverse and longitudinal
coarse-grained correlations [see Eq. (27)]

ĈL(n) =
∑

i,j �si · �sj δ(kij − n)
[| cos(θij )| − 1/2]∑
i,j δ(kij − n)
[| cos(θij )| − 1/2]

, (B8)

ĈT (n) =
∑

i,j �si · �sj δ(kij − n)
[1/2 − | cos(θij )|]∑
i,j δ(kij − n)
[1/2 − | cos(θij )|] , (B9)

where, we note, that θij is the angle formed by �rij = (�rj − �ri)
and the flock’s direction of motion �V = 1/N

∑
i �si . 
(x) is

the Heaviside step function and the factor 1/2 divides the
space evenly between the two sectors. The δ function bears the
same meaning as in Eq. (B2) and identifies pairs belonging to
the same bin centered around the topological distance n and
of width �n.

Following the same method as above, when using coarse-
grained correlations we need to introduce different Lagrange
multipliers λL,T

n for each bin (rather than for each discrete
value of n). The ME Hamiltonian then reads

H =
∑

n

′
λL

n ĈL(n) + λT
n ĈT (n). (B10)

Also this Hamiltonian can be written as an Heisenberg-like
Hamiltonian. The procedure is slightly more complicated than
in the isotropic case.

We first define the fraction of neighbors that lie in the
longitudinal and transversal sector for each bin around n,

pL(n) = 1

N�n

∑
i,j

δ(kij − n)
[| cos(θij )| − 1/2], (B11)

pT (n) = 1

N�n

∑
i,j

δ(kij − n)
[1/2 − | cos(θij )|], (B12)

These quantities of course satisfy the relation pL(n) +
pT (n) = 1. At this point, we can express the Lagrange
multipliers λL,T

m (defined for a given bin) in terms of the
effective longitudinal and transversal interactions JL,T (n)
(defined for each pair of individuals at distance n). We
have JL,T (n) = −λL,T

n /(pL,T (n)N�n). Then, as above, we
introduce the pairwise interactions Ĵ L,T (kij )

Ĵ L,T (kij ) =
∑

n

′
JL,T (n)δ(kij − n)
L,T

ij , (B13)

where 

L,T
ij ≡ 
(±| cos (θij )| ∓ 1) and selects pairs that

contribute to, respectively, the longitudinal and the transverse
sectors. With these substitutions the Hamiltonian acquires a
Heisenberg form,

H ({ �si}) = −
∑
i,j

[Ĵ L(kij ) + Ĵ T (kij )]�si · �sj

≡ −
∑
i,j

Jij �si · �sj , (B14)

where Jij is now the symmetric part of the matrix Ĵ L(kij ) +
Ĵ T (kij ).

The log-likelihhood then becomes

logL = − log Z −
∑

n

′[
λT

n 〈ĈT (n)〉expt + λL
n 〈ĈL(n)〉expt

]
= − log Z + N�n

∑
n

′
[pT (n)J T (n)〈ĈT (n)〉expt

+pL(n)JL(n)〈ĈL(n)〉expt]. (B15)

All figures displayed in this paper are obtained using a
coarse graining with �n = 2 for n = 2, . . . nmax and �n = 1
for n = 1. We also used �n = 1, and the results are fully
consistent with the larger coarse graining but are more noisy.

APPENDIX C: COMPUTING THE DERIVATIVES
OF THE LOG-LIKELIHOOD

Using the analytical expression of the partition function
Eq. (A9), we can write the expressions of the log-likelihood
[Eq. (8)] for the case of full interaction,

logL = − log Z + N�n
∑

n

′
J (n)〈Ĉ(n)〉expt

=
∑
k>1

log ak − N�n
∑

n

′
J (n)(1 − 〈Ĉ(n)〉expt). (C1)
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Similarly, the log-likelihood function for the anisotropic case
is given by

logL =
∑
k>1

log ak−N�n
∑

n

′
pT (n)J T (n)(1 − 〈ĈT (n)〉expt)

−N�n
∑

n

′
pL(n)JL(n)(1 − 〈ĈL(n)〉expt). (C2)

The condition for maximizing the log-likelihood is
∂logL/∂J (n) = 0. Let us consider, for the moment, the
isotropic case. The derivative of the second term of the log-
likelihood with respect to J (n) is trivial. However, differenti-
ating the partition function is far less trivial, as the eigenvalues
ak are very complicated functions of the {J (n)}. We will
calculate ∂ak/∂J (n) by using perturbation theory. Suppose
that we perturb J (n) by some small amount, J (n) → J (n) + ε,
where ε is infinitesimal. The perturbation makes Aij change
into

Ãij (ε) = Aij + εγij (n), (C3)

where we introduced a symmetric matrix

γij (n) = ∂Aij

∂J (n)
=

∑
l,m

∂Aij

∂Jlm

∂Jlm

∂J (n)
. (C4)

Due to this small perturbation the eigenvalue ak and its
eigenvector wk change by small amount,

ãk(ε) = ak + εξk + O(ε2), (C5)

w̃k
i (ε) = wk

i + εgk
i + O(ε2). (C6)

For the Ã(ε) matrix we can write∑
j

Ãij (ε)w̃k
j (ε) = ãk(ε)w̃k

i (ε). (C7)

Through some algebra it is quite straightforward to show
that

ãk(ε) = ak + ε
∑
ij

γij (n)wk
i w

k
j + O(ε2). (C8)

Therefore, the derivative of the eigenvalue ak can be written
as

∂ak

∂J (n)
= lim

ε→0

ãk(ε) − ak

ε
=

∑
i,j

γij (n)wk
i w

k
j . (C9)

To obtain the form of matrix γij (n) we use first Eqs. (A5) and
(B6) from which

∂Aij

∂Jlm

= δil[δij − (1 − δij )δjm],

∂Jlm

∂J (n)
= 1

2
[δ(klm − n) + δ(kml − n)], (C10)

and then, from Eq. (C4),

γij (n) = 1

2
δij

{∑
m

[δ(kim − n) + δ(kmi − n)]

}

− 1

2
(1 − δij )[δ(kij − n) + δ(kji − n)]. (C11)

In the same way, using the expression for the anisotropic Jij

we obtain γ
L,T
ij (n) for the anisotropic case,

γ
L,T
ij (n) = 1

2
δij

{∑
m

[δ(kim − n) + δ(kmi − n)]
L,T
im

}

− 1

2
(1 − δij )[δ(kij − n) + δ(kji − n)]
L,T

ij .

(C12)

Now, using Eq. (C9), it becomes easy to calculate the
derivatives of the log-likelihood [Eq. (C1)] with respect to each
of its variable J (n). Imposing its maximization we obtain

1 − 〈Ĉ(n)〉expt = 1

N�n

∑
k>1

1

ak

∂ak

∂J (n)
= Tr[A−1γ (n)]

N�n
.

(C13)

Similarly, for the anisotropic case the maximization of Eq. (C2)
gives

1 − 〈ĈL,T (n)〉expt = 1

pL,T (n)N�n

∑
k>1

1

ak

∂ak

∂JL,T (n)

= Tr[A−1γ L,T (n)]

pL,T (n)N�n
. (C14)

APPENDIX D: NUMERICAL MAXIMIZATION
OF THE LOG-LIKELIHOOD

The analytical expressions of the partition functions and
its derivatives are not enough to analytically optimize the log-
likelihood [Eq. (16), Eq. (C2)]. The reason is the following:
The partition function and its derivatives are functions of the
eigenvalues and eigenvectors of the network matrix Aij and
it is not possible to diagonalize such an N×N matrix (N
is the number of birds of the flock) without the help of any
numerical method. However, as we discuss in this section,
knowing explicitly the derivatives enormously simplifies the
numerical procedure.

Finding numerically the optimum of a multidimensional
function is always tricky. Two practical issues must be
addressed. First, the solution must be stable, i.e., different
initial guesses should lead to the same solution. Second,
the computation should be numerically efficient. There are
two ways to approach such problem: (i) without providing
the analytical expressions of the derivatives and (ii) providing
the analytical expressions of the derivatives. In the first case the
number of iterations needed for the optimization is much larger
than in the second case, as we provide less information. The
reason is the following: Given an initial guess (i.e., a set of
{J (n)}), the numerical optimization algorithm must explore
the space of the parameters J (n) around the initial values to
find the direction leading to the maximum. This practically
means computing the derivatives of the log-likelihood. To
compute numerically such derivatives the algorithm must
evaluate the log-likelihood not only at the starting point but also
for for small increments of the {J (n)}. Since the log-likelihood
depends on the eigenvalues of Aij , this in turn implies that this
matrix must be diagonalized more than once. On the contrary, if
the analytical expressions of the derivatives are provided, only
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FIG. 7. (Color online) Stability and convergence of the numer-
ical method: Three very different initial guesses lead to the same
value of J (1) [this is generically true for all other J (n)]. Inset: The
log-likelihood reaches the same asymptotic value with different initial
conditions. This implies that there exists a stable and unique global
maximum of the log-likelihood.

the eigenvalues and the eigenvectors of Aij at the starting point
are required (see Appendix C) and A must be diagonalized
only once. During each optimization step the most time-
consuming part is precisely the diagonalization of the matrix
Aij . Therefore, the optimization time is significantly smaller
with method (ii) than with (i), and the whole computation
gets much more efficient. Furthermore, as the dimension
of the log-likelihood function gets larger, the number of
iterations in the first case increases very rapidly. Finally,
among all optimization algorithms currently available the most
performing ones (in terms of robustness and speed) are the ones
that use the analytical derivatives. Practically speaking, for the
largest flocks method (ii) is more than 10 times faster than (i).
Therefore, the analytical expressions of the derivatives that we
have (painfully) worked out in the previous sections are very
useful to obtain a stable numerical solution in an efficient way.

We use the minimizing routine GSL MULTIMIN FMINIMIZER

NMSIMPLEX2, belonging to the gnu scientific library [53].
This optimization algorithm is based on the Broyden-Fletcher-
Goldfarb-Shanno algorithm [54]. We provide as an input of the
routines the analytical expressions of Z and of the derivatives
of Z with respect to J (n) [or to JL(n) and J T (n)]. For the
diagonalization, we use GSL EIGEN SYMMV, belonging to the
gnu scientific library [53].

In Fig. 7, we plot the behavior of the parameter J (1) and of
the log-likelihood versus the iteration time for three different
initial conditions of J (1). It is clear that the solution is very
stable and it is also reached very quickly.

APPENDIX E: DATA SET

Experimental data were obtained from field observations on
large flocks of starlings (Sturnus vulgaris) in the field. Three-
dimensional trajectories of positions and velocities of each bird
are obtained using stereometric photography and computer
vision techniques [4,7,23,26,48,55,56]. As summarized in
Table I, we have analyzed 22 distinct flocking events, with sizes
ranging from 122 to 3242 individuals and linear extensions
from 9.1 to 85.7 m. All these events belong to two different sets.

TABLE I. Flocks data: Each line represents a different flocking
event. N is the number of individuals in the flock, � the average
polarization, L the size of the flock (maximum distance between
two birds), nexp

c the exponential decay range computed in this work,
and nstep

c the interaction range of the step model of [25]. Finally, rexp
c

represents the typical metric distance corresponding to the topological
distance nexp

c : It can be seen that it is always much smaller than the
flock’s size.

Event N � L (m) nexp
c nstep

c rexp
c (m)

21-06 717 0.973 32.1 7.41 11.73 2.00
25-10 1047 0.991 33.5 9.56 14.30 1.93
25-11 1176 0.959 43.3 12.01 15.03 1.99
28-10 1246 0.982 36.5 4.92 10.21 1.27
29-03 440 0.963 37.1 4.46 7.67 1.94
31-01 2126 0.844 76.8 6.11 12.37 2.97
32-06 809 0.981 22.2 7.43 12.50 1.39
42-03 431 0.979 29.9 7.79 14.60 2.08
49-05 797 0.995 19.2 6.18 11.25 1.24
57-03 3242 0.978 85.7 8.51 14.19 2.67
58-06 442 0.984 23.1 7.39 12.89 1.63
58-07 554 0.977 19.1 7.23 13.79 1.63
63-05 890 0.978 52.9 5.26 10.21 1.98
69-09 239 0.985 17.1 10.56 16.91 1.92
69-10 1129 0.987 47.3 9.11 15.30 2.39
69-19 803 0.975 26.4 14.76 21.56 1.97
72-02 122 0.992 10.6 8.62 11.37 1.32
77-07 186 0.978 9.1 5.97 12.36 1.17
20111125-2 505 0.972 34.4 11.31 16.36 1.84
20111214-4-1 139 0.985 32.8 5.24 9.97 1.64
20111214-4-2 156 0.983 31.5 8.13 10.23 2.52
20111215-1 394 0.994 49.8 8.48 20.62 1.68

The first set (events from 21-06 to 77-07 in Table I) was taken in
the period 2005–2008, with cameras shooting at 10 frames per
second (fps) [23,26]. The second set (last four events in Table I)
was collected in the period between 2010 and 2012, with
cameras shooting at 170 fps [7,48]. All the events correspond to
strongly ordered flocks, with polarization between � = 0.844
and � = 0.995, hence justifying the spin-wave expansion. The
duration of the observed events is on average 6 s and it ranges
between 2.8 and 11.6 s. The number of frames varies between
14 and 58 frames per event (with mean 30). These scales are
set by experimental constraints. In a stereoscopic experiment
a flocking event is filmed by several machine vision cameras
located at different positions. To reconstruct the individual 3D
trajectories the flock must be in the common field of view
of all the cameras: given the flock’s typical distance from the
apparatus (100–300 m), after 10–12 s at most the flock is out of
the field of view (this time being shorter the larger or closer the
flock). Besides, the amount of digital information per second
that can be grabbed by a high-resolution stereo setup is limited,
which also sets up a constraint on the amount of consecutive
digital images that can be retrieved at high frequency. We
note that these time durations represent significant scales in
terms of the collective motion of natural flocks: Starlings fly
at approximately 10 m/s and a flock of thousands birds can
perform a collective turn (global change of direction) in just a
few seconds [7].
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[11] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet,
Phys. Rev. Lett. 75, 1226 (1995).
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