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Quasicycles in the stochastic hybrid Morris-Lecar neural model
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Intrinsic noise arising from the stochastic opening and closing of voltage-gated ion channels has been
shown experimentally and mathematically to have important effects on a neuron’s function. Study of classical
neuron models with stochastic ion channels is becoming increasingly important, especially in understanding a
cell’s ability to produce subthreshold oscillations and to respond to weak periodic stimuli. While it is known
that stochastic models can produce oscillations (quasicycles) in parameter regimes where the corresponding
deterministic model has only a stable fixed point, little analytical work has been done to explore these
connections within the context of channel noise. Using a stochastic hybrid Morris-Lecar (ML) model, we
combine a system-size expansion in K+ and a quasi-steady-state (QSS) approximation in persistent Na+ in
order to derive an effective Langevin equation that preserves the low-dimensional (planar) structure of the
underlying deterministic ML model. (The QSS analysis exploits the fact that persistent Na+ channels are fast.)
By calculating the corresponding power spectrum, we determine analytically how noise significantly extends the
parameter regime in which subthreshold oscillations occur.
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I. INTRODUCTION

Noise has emerged as a key component of a wide range of
biological systems [1]. In the particular case of neuroscience,
noise is present at all levels, yet neural networks are still
able to perform complex computations reliably [2]. The most
dominant source of intrinsic noise in neurons is ion channel
noise [3,4]. The membrane potential of a neuron changes as
ions such as Na+ and K+ pass in and out of the cell through
voltage-dependent channels within the membrane and the
opening and closing of the channels is stochastic due to thermal
fluctuations [5]. In classical approaches, the number of ion
channels is assumed to be very large and thus the fluctuations
in membrane potential from individual stochastic channels is
ignored in favor of a deterministic average. More recent work
has questioned this assumption. It has been shown that channel
noise indeed produces membrane potential fluctuations that
are large enough to affect action potential timing [6–11] and
increase the range of spiking behavior exhibited in some
neural populations [3], with the effects of channel noise
increasing dramatically as neurons become smaller. However,
even when large numbers of stochastic ion channels are present
in a neuron, fluctuations can become critical near the action
potential threshold [2,12]. In addition, sodium channel noise
places structural limits on neural anatomy [13], since in the
case of very small neurons, significant channel noise would
disrupt signal transmission [14].

Ion channel noise has also been implicated in subthreshold
membrane potential oscillations (STOs). These are observed
in a variety of neural cell types: stellate cells in the entorhinal
cortex, hippocampal cells, and mitral cells in the olfactory
bulb, to name a few. Intrinsic ion currents are sufficient to
produce oscillatory activity [15]. Tetrodotoxin blocks STOs,
implicating a persistent Na+ current in the generation of oscil-
latory activity [16–20]. Using the dynamic clamp technique,
it has been shown that stochastic flicker of these persistent
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sodium channels is crucial for subthreshold oscillations and
phase locking to weak periodic stimuli in entorhinal spiny
stellate cells [13]. Hyperpolarization is due to a noninactivating
outward current, for example, a tetraethylammonium-sensitive
M current in layer-V pyramidal cells [20]. In addition to
the phase locking of periodic stimuli, it has been shown
experimentally and theoretically that noise can enhance weak
signal transduction in sensory neurons via tuning intrinsic
subthreshold oscillations [21]. White et al. [18] showed that the
presence of channel noise alters the dynamical behavior of a
medial entorhinal cortical cell model; in particular, subthresh-
old oscillations are most easily generated for intermediate
noise levels. In these cells, it is predicted that there are only on
the order of 1000–5000 persistent Na+ channels, a surprisingly
small number that does not match the assumptions of classical
deterministic neuron model approaches.

Deterministic conductance-based models of a single neuron
such as the Hodgkin-Huxley model have been widely used to
understand the dynamical mechanisms underlying membrane
excitability [22]. These models assume a large population of
ion channels so that their effect on membrane conductance
can be averaged. As a result, the average fraction of open ion
channels modulates the effective ion conductance, which in
turn depends on voltage. It is often convenient to consider
a simplified planar model of a neuron, which tracks the
membrane voltage v and a recovery variable w that represents
the fraction of open potassium channels. The advantage of
a two-dimensional model is that one can use phase-plane
analysis to develop a geometric picture of neuronal spiking.
One well-known example is the Morris-Lecar (ML)
model [23]. Although this model was originally developed
to model Ca2+ spikes in mollusks, it has been widely used to
study both type-I and type-II forms of neural excitability for
Na+ spikes [22] since it exhibits many of the same bifurcation
scenarios as more complex models. The ML model has also
been used to investigate STOs due to persistent Na+ currents
[24].

Another advantage of the ML model is that it is straightfor-
ward to incorporate intrinsic channel noise [25–27]. In order to
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capture the fluctuations in membrane potential from stochastic
switching in voltage-gated ion channels, the resulting model
includes both discrete jump processes (to represent the
opening and closing of ion channels) and a continuous-time
piecewise process (to represent the membrane potential). This
is an example of a stochastic hybrid system with piecewise
deterministic dynamics. There has been much recent interest
in such systems, within the context of both conductance-based
models and gene and biochemical networks [1].

In this paper we use a stochastic hybrid ML model of
a persistent (noninactivating) sodium current and a slower
outward potassium current to investigate analytically the
role of channel noise in the generation of STOs. Previous
computational studies have shown how channel noise can
significantly extend the parameter regime over which STOs
occur [18,28]. We show that such a phenomenon can be
analyzed in terms of the emergence of so-called quasicycles
below a supercritical Hopf bifurcation point of the correspond-
ing deterministic model. The emergence of quasicycles in
a stochastic model—periodic oscillations that arise outside
the limit cycle regime of a deterministic system—has been
studied in various biological applications (see [29–33]). In
some cases, such as calcium oscillations, the addition of noise
serves to expand the range of parameter values for which
limit cycle behavior is observed [29]; it is also possible in
some reaction networks to induce oscillations where there
are no limit cycles anywhere in the parameter space of the
deterministic system [30].

In addition to providing an analytical framework for
understanding noise-induced STOs, we introduce a math-
ematical approach to study quasicycles in stochastic hybrid
systems. Typically, the emergence of quaiscycles in a jump
Markov process is handled by carrying out a system-size
expansion of the underlying master equation. This generates a
Fokker-Planck (FP) equation, whose corresponding Langevin
equation can be linearized about the fixed point solution of
the deterministic system below the Hopf-bifurcation point. If
the resulting power spectrum exhibits a significant peak at
a nonzero frequency, then this indicates the existence of a
quasicycle. In the case of the stochastic ML model, one could
carry out a double system-size expansion with respect to the
total number N of Na+ channels and the total number M

of K+ channels. However, this would lead to a multivariate
Langevin equation in three stochastic variables: the voltage
v, the fraction w of open K+ channels, and the fraction A

of open Na+ channels. Instead, we would like to preserve
the low-dimensional (planar) structure of the ML model by
deriving a Langevin equation for v and w alone.1 We show how

1One motivation for preserving the planar structure of the ML
model is that we would ultimately like to incorporate our theory
of subthreshold oscillations into a model of spontaneous action
potentials for an excitable neuron. This would require including
a population of nonpersistent Na+ ion channels along the lines
of [27]. The analysis of the resulting escape problem becomes almost
intractable beyond planar systems, so it is preferable to carry out a
slow-fast analysis rather than a system-size expansion with respect
to the two classes of Na+ channels. The advantage of maintaining
a low-dimensional Langevin equation by performing a slow-fast

this can be achieved by exploiting the fact that the opening and
closing of the persistent Na+ channels is much faster than the
dynamics of the voltage and the K+ channels. We thus combine
a quasi-steady-state (QSS) analysis of the Na+ dynamics and
a system-size expansion of the K+ dynamics to derive a
Langevin equation for the pair (v,w) and relate the existence
of noise-induced STOs to the power spectrum of the resulting
stochastic voltage. We briefly review the deterministic ML
model in Sec. II, with parameter values chosen so that the
model supports subthreshold oscillations via a supercritical
Hopf bifurcation, rather than the more familiar spiking via a
subcritical Hopf bifurcation. The stochastic version of the ML
model is introduced in Sec. III, which is then systematically
reduced by carrying out a system-size expansion with respect
to K+ (Sec. IV) and a QSS approximation with respect to Na+

(Sec. V). The emergence of quasicycles (noise-induced STOs)
is then established in Sec. VI.

II. DETERMINISTIC MODEL

A version of the deterministic Morris-Lecar model [23]
has previously been used to understand the initiation and
behavior of STOs [24]. The model consists of a persistent
sodium current Na+, a slow potassium current K+, a leak
current L, and an applied current Iapp. For simplicity, each ion
channel is treated as a two-state system that switches between
an open and a closed state; the more detailed subunit structure
of ion channels is neglected [11,25]. The membrane voltage v

evolves as
dv

dt
= a∞(v)fNa(v) + wfK(v) + fL(v) + Iapp,

dw

dt
= (1 − w)αK(v) − wβK,

(2.1)

where w is the K+ gating variable. It is assumed that Na+

channels are in quasi-steady-state a∞(v), thus eliminating Na+

as a variable. For i = K,Na,L, let fi = gi(Vi − v), where gi

are ion conductances and Vi are reversal potentials. Opening
and closing rates of ion channels depending only on membrane
potential v are represented by α and β, respectively, so that

a∞(v) = αNa(v)

αNa(v) + βNa(v)
. (2.2)

For concreteness, take

αi(v) = βi exp

(
v − vi,1

vi,2

)
, i = K,Na, (2.3)

with βi , vi,1, and vi,2 constant. Parameters are chosen (see
Table I) such that there is no well-defined threshold above
which an action potential is generated; rather, stable small-
amplitude oscillations arise for a sufficient value of applied
current (this appears in the model as a supercritical Hopf
bifurcation). This corresponds well to the observed behavior
of STOs and is not meant to function as a traditional spiking
neuron model. Limit cycles in a traditional spiking model

analysis rather than a system-size expansion also becomes significant
when the complexity of the fast ion channels increases (see also
Sec. VII).
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TABLE I. Model parameters to generate subthreshold oscillations via a supercritical Hopf bifurcation. Note that we assume capacitance
C = 1 μF.

Sodium Leak Potassium

gNa VNa βNa vn,1 vn,2 gL VL gK VK βK vk,1 vk,2

4.4 mS 55 mV 100 ms−1 −1.2 mV 18 mV 2 mS −60 mV 8 mS −84 mV 0.35 ms−1 2 mV 30 mV

often appear via a subcritical Hopf bifurcation. We do not
provide further analysis for the subcritical Hopf case in this
work; however, in the presence of noise, a transition to the
oscillatory state has also been observed to shift in the vicinity
of a subcritical Hopf bifurcation (see, for example, [34]). Thus,
it is not unreasonable to expect that similar results may hold.

By evaluating the eigenvalues of the Jacobian of Eq. (2.1),
it is straightforward to show that there is a unique steady
state (v∗,w∗), which is linearly stable for Iapp < I ∗

app [22]. At
I ∗

app a supercritical Hopf bifurcation occurs; (v∗,w∗) becomes
unstable and a stable limit cycle emerges (see Fig. 1). Figure 2
shows the phase plane of the deterministic system; here one
can see how oscillations arise in the membrane potential v(t)
as the applied current is increased.

III. STOCHASTIC MODEL

The deterministic ML model holds under the assumption
that the number of ion channels is very large, thus the ion
channel activation can be approximated by the average ionic
currents. However, it is known that channel noise does affect
membrane potential fluctuations (and thus neural function)
and the number of persistent Na+ channels is on the order of
103 [3,18]. In order to account for ion channel fluctuations,
we consider a stochastic version of the Morris-Lecar model
[25–27], with M K+ channels and N Na+ channels. Let m(t)
denote the number of open K+ channels and n(t) the number
of open Na+ channels at time t . Since it follows that the
number of closed channels at time t is M − m and N − n,
respectively, there is no need to also track the number of
closed channels. Then, for m(t) = m and n(t) = n, the voltage
evolves according to the equation

dv

dt
= n

N
fNa(v) + m

M
fK(v) + fL(v) + Iapp. (3.1)

We assume that the state transitions of the ion channels are
given by a discrete Markov process, that is, ion channels are
memoryless and the probability per unit time of changing
states depends only on the current state, not on any past events
(including the amount of time spent in the current state). In this
case, sodium and potassium channels switch between open O

and closed C states as follows:

C
αNa(v)/ε

�
βNa/ε

O, C
αK(v)
�
βK

O. (3.2)

The opening and closing of these channels is a birth-death
process, where n and m evolve according to

n → n − 1, ω−
n = nβNa,

n → n + 1, ω+
n = (N − n)αNa(v),

(3.3)
m → m − 1, ω−

m = mβK,

m → m + 1, ω+
m = (M − m)αK(v).

The above model is an example of a stochastic hybrid
system based on a piecewise deterministic process. That
is, the transition rates depend on v, with the latter cou-
pled to the associated jump Markov process according to
Eq. (3.1), which is only defined between jumps, during
which v(t) evolves deterministically. Furthermore, we assume
that Na+ channels open and close much faster than K+
channels. We define ε = O(10−2) as a time scale vari-
able for Na+. Define P (v,n,m,t)dv = Prob[n(t) = n; m(t) =
m; v � v(t) � v + dv] at time t , given initial conditions
v(0) = v0, m(0) = m0, and n(0) = n0. Dropping the explicit
dependence on initial conditions, this probability density
will then satisfy the differential Chapman-Kolmogorov (CK)
equation

∂P

∂t
=− ∂

∂v

[(
n

N
fNa(v) + m

M
fK(v) + fL(v) + Iapp

)
P (v,n,m,t)

]
+ 1

ε
[ω+

n (v,n − 1)P (v,n − 1,m,t) + ω−
n (v,n + 1)P (v,n + 1,m,t)] − 1

ε
[(ω+

n (v,n) + ω−
n (v,n)]P (v,n,m,t)

+ [ω+
m(v,m − 1)P (v,n,m − 1,t) + ω−

m(v,m + 1)P (v,n,m + 1,t)] − [ω+
m(v,m) + ω−

m(v,m)]P (v,n,m,t). (3.4)

The first line on the right-hand side represents the piecewise

deterministic dynamics of v, whereas the second and third
lines represent the stochastic opening and closing of Na+ and
K+ ion channels, respectively. It is not possible to obtain exact
solutions of the CK equation, so some sort of approximation
is needed.

IV. SYSTEM-SIZE EXPANSION OF POTASSIUM

Suppose that M is large (but finite). Then it is possible
to carry out a perturbation expansion in terms of the system
size M−1, which allows us to approximate the potassium
dynamics as a continuous process [1,35,36]. The system-size
expansion is a standard technique in stochastic processes
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FIG. 1. (Color online) Bifurcation diagram of the deterministic
model. As Iapp is increased, the system undergoes a supercritical
Hopf bifurcation H at I ∗

app = 183, which leads to the generation of
stable oscillations. The maximum and minimum values of oscillations
are plotted as solid (black) curves. Oscillations disappear via another
supercritical Hopf bifurcation.

that allows us to describe fluctuations about the deterministic
theory via second-order terms in the expansion. It was first
introduced within the context of stochastic ion channels by
Fox and Lu [6] and further developed by Chow and White [7].
(More precisely, these authors assumed that the stochastic
dynamics of a large population of identical ion channels can be
approximated by a Gaussian process and then calculated the
mean and variance based on single-channel properties.) First
we introduce rescaled variables

w = m

M
, M�±(w) = ω±

m(Mw) (4.1)

and set pn(v,w,t) = P (v,n,Mw,t). In order for the system-
size expansion to be valid, it is important to note that the

transition rates ω±
m scale as specified. It is straightforward to

check that this condition is satisfied for our model. Thus we
rewrite Eq. (3.4) as

∂pn

∂t
= − ∂

∂v
{In(v,w)pn(v,w,t)} + 1

ε
[ω+

n (v,n − 1)

×pn−1(v,w,t) + ω−
n (v,n + 1)pn+1(v,w,t)]

− 1

ε
{[ω+

n (v,n) + ω−
n (v,n)]pn(v,w,t)} − M{[�+(v,w)

+�−(v,w)]pn(v,w,t)}

+M

{[
�+

(
v,w − 1

M

)
pn

(
v,w − 1

M
,t

)
+�−

(
v,w + 1

M

)
pn

(
v,w + 1

M
,t

)]}
, (4.2)

where

In(v,w,t) = wfK(v) + n

N
fNa(v) + fL(v) + Iapp. (4.3)

Note that for M sufficiently large, w can be treated as a
continuous variable, where 0 � w � 1. Taylor expanding in
1/M to O(1/M) yields

∂pn

∂t
= − ∂

∂v
[In(v,w,t)pn] − ∂

∂w
[B−(v,w)pn]

+ 1

2M

∂2

∂w2
[B+(v,w)pn] + 1

ε
[ω+

n (v,n − 1)pn−1

+ω−
n (v,n + 1)pn+1] − 1

ε
{[ω+

n (v,n) + ω−
n (v,n)]pn},

(4.4)

FIG. 2. (Color online) Phase plane diagrams of the deterministic model for (a) Iapp = 170 pA (below the Hopf bifurcation point) and (b)
Iapp = 190 pA (above the Hopf bifurcation point). The dashed (red) curve is the w nullcline and the solid (gray) curve represents the v nullcline.
The intersection of nullclines is the fixed point (v∗,w∗). (c) and (d) Corresponding voltage time courses.
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where

B−(v,w) = �+ − �−, B+(v,w) = �+ + �−. (4.5)

Note that the system-size expansion has replaced the
jump-Markov process for the K+ channels by a continuous
diffusionlike process for the fraction of open K+ channels.
The variance associated with the stochastic K+ channels scales
as σ 2

K ∼ M−1. One could proceed in a similar fashion for the
Na+ ion channels by carrying out a system-size expansion with
respect to N . This would then lead to a multivariate FP equation
for the three variables v, w, and a, where a is the fraction of
open Na+ ion channels. Note in particular that the variance
associated with the stochastic Na+ channels would scale
as σ 2

Na ∼ (εN )−1. Since ε � 1 and N � M , it immediately
follows that the main source of channel noise arises from the
persistent Na+. In this paper we wish to develop an alternative
approximation of the stochastic hybrid system that preserves
the planar nature of the deterministic ML model. We will make
use of the fact that the Na+ jump process is much faster than
potassium or voltage to perform a QSS approximation, also
known as the adiabatic approximation [1,26,35].

V. QUASI-STEADY-STATE DIFFUSION APPROXIMATION
OF SODIUM

Let Wnj (v) be the voltage-dependent transition matrix for
the Na+ jump process, that is,

Wnj (v) = ω+
n (v,n − 1)δj,n−1 + ω−

n (v,n + 1)δj,n+1

− [ω+
n (v,n) + ω−

n (v,n)]δj,n.

Rewrite Eq. (4.4) using this transition matrix

∂pn

∂t
=− ∂

∂v
[In(v,w)pn] − ∂

∂w
[B−(v,w)pn]

+ 1

2M

∂2

∂w2
[B+(v,w)pn] + 1

ε

∑
j

Wnj (v)pj . (5.1)

For fixed values of v, the transition matrix Wnj (v) is irre-
ducible. By the Perron-Frobenius theorem, W has a simple
zero eigenvalue, with all others having a negative real part.
This implies that there exists a unique right null vector ρn(v)
such that

∑
j Wnj (v)ρj (v) = 0. Furthermore, (1,1, . . . ,1)T is

the left null vector of W , so
∑

n Wnj (v) = 0 for all n. For
fixedv,w, it can be shown that the Markov process for sodium

dpn

dt
= 1

ε
[ω+

n (v,n − 1)pn−1 + ω−
n (v,n + 1)pn+1]

− 1

ε
{[ω+

n (v,n) + ω−
n (v,n)]pn} (5.2)

has a globally attracting steady state ρ(v,n) = ρn such that [27]

ρn = N !

n!(N − n)!

αn
Naβ

(N−n)
Na

(αNa + βNa)N
. (5.3)

Since Na+ is fast, there are many open-close transitions in n

while the voltage v and w change very little. Thus we expect
that the system will converge to the sodium QSS ρn, which
will be perturbed as v and w evolve. This can be analyzed
using a QSS approximation.

First, we decompose the probability density pn such that

pn(v,w,t) = C(v,w,t)ρn(v) + εxn(v,w,t), (5.4)

where∑
n

pn(v,w,t) = C(v,w,t),
∑

n

xn(v,w,t) = 0.

Substituting Eq. (5.4) into Eq. (5.1), the CK equation now
reads

ρn

∂C

∂t
+ ε

∂xn

∂t
=− ∂

∂v
[CInρn] − ε

∂

∂v
[Inxn]

+Lw[ρnC + εxn] +
∑

j

Wnjxj , (5.5)

where

Lwψ(w) = − ∂

∂w
[B−ψ(w)] + 1

2M

∂2

∂w2
[B+ψ(w)]. (5.6)

Summing both sides over n and setting I = ∑
n Inρn yields

∂C

∂t
= −∂CI

∂v
− ε

∂
∑

n Inxn

∂v
+ LwC. (5.7)

We rewrite Eq. (5.5) by using Eq. (5.7) for ∂C/∂t :

ε
∂xn

∂t
=

(
∂CI

∂v
+ ε

∂
∑

n Inxn

∂v

)
ρn − ∂CInρn

∂v

− ε
∂Inxn

∂v
+ εLwxn +

∑
j

Wnjxj . (5.8)

Introducing the asymptotic expansion x ∼ x(0) + εx(1) +
ε2x(2) + · · · and considering only O(1) terms gives

∑
j

Wnjx
(0)
j = −∂CI

∂v
ρn + ∂CInρn

∂v
. (5.9)

From the Fredholm alternative theorem, Eq. (5.9) has a
solution of the form

x
(0)
j =

∑
j

W
†
jn

(
− ∂CI

∂v
ρn + ∂CInρn

∂v

)
, (5.10)

where W † is the pseudoinverse of W . Using this solution for
x(0) as a leading-order approximation for xn in (5.7) gives the
Fokker-Planck equation

∂C

∂t
=− ∂

∂v

({
I − ε

∑
n

[
I

∂

∂v

(
In

∑
j

W
†
jnρn

)

− Inρn

∂

∂v

(
In

∑
j

W
†
jn

)]}
C

)
− ∂

∂w
[B−C]

+ 1

2M

∂2B+C

∂w2
+ ε

∂2

∂v2

(∑
n,j

W
†
jnInρn(I − In)C

)
.

(5.11)
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Letting

μ1 = I − ε
∑

n

[
I

∂

∂v

(
In

∑
j

W
†
jnρn

)

− Inρn

∂

∂v

(
In

∑
j

W
†
jn

)]
, (5.12a)

μ2 = B−, (5.12b)

D =
(

ε
∑

n,j W
†
jnInρn(I − In) 0

0 B+/2M

)
, (5.12c)

we can simplify the Fokker-Planck equation as

∂C

∂t
= −

2∑
i=1

∂

∂zi

μiC +
2∑

i,i ′=1

∂2

∂zi∂zi ′
Dii ′C, (5.13)

which corresponds to the Langevin stochastic differential
equation (SDE)

dzi = μi(z)dt +
2∑

j=1

σij (z,t)dWj for i = 1,2, (5.14)

where z = (v,w),

σ =
(√

2D11 0
0

√
2D22

)
, (5.15)

and Wj is a Wiener process such that 〈Wj (t)〉 = 0 and
〈Wj (t)Wj ′(t ′)〉 = δjj ′min(t,t ′). In terms of the original model
parameters, we find that

D11 = 1

N
fNa(v)2a∞(v)[1 − a∞(v)]2

and

D22 = wβK + (1 − w)αK(v).

The latter result was previously obtained by Fox and Lu [6]
and the former by Keener and Newby [26]. Equation (5.14)
can now be linearized about the stable rest state by letting
zj = z∗

j + εηj (t) where μj (z∗) = 0. Taylor expanding to O(ε)
yields

dηi(t) =
2∑

j=1

Aijηj +
2∑

j=1

σij (z∗)dWj , (5.16)

where Aij is the Jacobian of the drift terms such that

Aij = ∂μi

∂zj

∣∣∣∣
z∗

.

Finally, introducing white noise processes ξj (t) such
that dWj (t) = ξj (t)dt with 〈ξj (t)〉 = 0 and 〈ξj (t)ξj ′(t ′)〉 =
δjj ′δ(t − t ′) allows us to formally write the SDE as

dηi(t)

dt
=

2∑
j=1

Aijηj +
2∑

l=1

σil(z∗)ξl. (5.17)

VI. QUASICYCLES IN THE STOCHASTIC MODEL

Using our linear SDE (5.17), we can now look for oscil-
lations in either voltage or potassium dynamics by obtaining

analytical expressions for the power spectra. Let η̃j (ω) denote
the Fourier transform of ηj (t), i.e.,

η̃j (ω) =
∫ ∞

−∞
e−iωtηj (t)dt. (6.1)

Here we follow standard steps to derive power spectra, as
in [31,32]. Taking the Fourier transform of (5.17) yields

η̃j (ω) =
2∑

i=1

�−1
ij (ω)σij ξ̃ (ω), (6.2)

where �ij = −iωδi,j − Aij . Recall that the power spectrum
Pi(ω) is defined such that 2πδ(0)Pi(ω) = 〈|η̃j (ω)|2〉. Using
Eq. (6.2), we obtain the power spectrum for the stochastic ML
model

Pi(ω) =
∑

j

∑
k

�−1
ij (ω)Djk(�†)−1

ki (ω), (6.3)

where we have used �ij (−ω) = �
†
ji(ω). It is worth mentioning

that when comparing the analytical power spectrum to one
that is generated numerically, one must take care to include a
proportionality factor. This arises from the use of the discrete
Fourier transform when computing numerical spectra and is
equal to a time increment of �t in the time series. A peak in the
voltage power spectrum for ω �= 0 indicates that the voltage is
oscillating with frequency ω.

As can be seen in Fig. 3, the spectrum of voltage when
Iapp = 150 in the model shows a maximum around the Hopf
frequency ωc = 1.51. This means that the model exhibits
subthreshold oscillations at this frequency, despite the fact
that this is well below the supercritical Hopf bifurcation point.
In other words, channel noise from the stochastic opening
and closing of Na+ and K+ channels is driving subthreshold
oscillations outside the deterministic regime. We also compare
our analytic power spectrum against numerical estimates of the
power spectrum obtained using the Gillespie algorithm [37]
and find good agreement. Next we explore the range of
applied current for which the membrane potential exhibits
a subthreshold oscillation. With channel noise, we first see
the emergence of oscillatory behavior for Iapp = 93. Including
channel noise from stochastic K+ and Na+ channels increases
both the range of applied currents for which subthreshold
oscillations are present and the range of frequencies of these
subthreshold oscillations (Fig. 4). This analysis provides
support for the claim that channel noise increases a neuron’s
ability to produce subthreshold oscillations, particularly for
stimuli that are weak.

As we already highlighted in Sec. IV within the context of
a double system-size expansion, we expect the contribution
of Na+ channel noise to be dominant. This is indeed found
to be the case under our QSS approximation. The relative
contribution of Na+ versus K+ channel noise can be quantified
by looking at the magnitude of the respective diagonal terms
in the diffusion matrix D (see Fig. 5). With physiological
parameter values (ε ∈ [10−3,10−2],N ∼ 103), D11, the term
in the diffusion matrix affected by N and ε (and thus Na+),
is orders of magnitude larger than D22. Therefore, in this
parameter regime, Na+ channel noise is dominant. While
fixing N and ε we asked whether there was a physiologically
plausible number of K+ channels M that would allow for Na+
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FIG. 3. (Color online) (a) Power spectrum of the voltage in the
stochastic hybrid ML model for Iapp = 150. The spectrum has a well-
defined peak around the Hopf frequency ωc = 1.51 rad/s, indicating
the presence of oscillations (quasicycles) below the supercritical Hopf
bifurcation point. Filled (red) circles are from numerical simulations
via the Gillespie algorithm, whereas the black solid line is the
analytical prediction. The simulation values are N = 103, M = 104,
and 50 trials. (b) Time domain response of voltage for a particular
realization of the simulation shows STO-like behavior.
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Frequency of oscillation ω is defined as the maximum of the power
spectrum P (ω) for a given Iapp. Here N = 103, M = 104, and
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FIG. 5. Comparison of the contribution of Na+ and K+ channel
noise to the diffusion term in the SDE. (a) Comparing D11 and
D22, with N = 103, M = 104, and ε = 10−2. Here D11 (and thus
the contribution of Na+ channel noise) is orders of magnitude larger
for all values of Iapp. (b) Fixing ε = 10−2 and N = 1000, there are
no values of M > 10 such that the magnitudes D11 and D22 are
comparable, i.e., the ratio � = D11/D22 is always greater than 1
(dotted black line).

and K+ channel noise to have a comparable effect. As shown
in Fig. 5, the neuron would have to have fewer than ten K+
channels for this to be the case. This leads us to the conclusion
that fast Na+ channel dynamics are the primary source of
channel noise.

Another factor that could be important is the degree
of coherence of the noise-induced subthreshold oscillations
as a function of applied current; only sufficiently coherent
oscillations would allow for a synchronization code, for
example. One measure of coherence is the so-called quality
factor Q = ωc/�w, where �w is the bandwidth of the power
spectrum and ωc is the peak. In Fig. 6 we plot Q as a function
of Iapp for three cases: Na+ channel noise, K+ channel noise,
and joint channel noise. It can be seen that over a wide
range of Iapp, the system with stochastic K+ channels exhibits
more coherent oscillations than the one with stochastic Na+

channels. Interestingly, the Q factor itself exhibits some form
of resonance, having a sharp peak at some critical value of the
applied current.
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FIG. 6. (Color online) Quality factor Q = ωc/�ω for the model
with stochastic Na+ channels only (black dashed line), stochastic K+

channels only (gray dotted line), and both channel types stochastic
(red solid line). Here ωc is the the critical value of ω, i.e., the peak
of the power spectrum P (ω), and �ω is the bandwidth. With K+

channel noise, the oscillations tend to be more coherent (larger Q

factor). The parameter values are the same as in Fig. 4.

VII. DISCUSSION

In conclusion, we have shown how the noise-induced
formation of STOs can be modeled in terms of the emergence
of quasicycles in a stochastic hybrid ML model with both
persistent sodium and potassium channel noise. This is
consistent with biological data that show that channel noise
enables a neuron’s ability to generate subthreshold oscillations
and enhance signal transduction over a wide range of parameter
values. From a mathematical perspective, we have shown how
one can preserve the low-dimensional (planar) structure of the
deterministic ML model by carrying out a QSS approximation
of the stochastic sodium channel dynamics. This method for
reducing the dimensionality of the Langevin equation can be
applied to any stochastic hybrid system with fast kinetics.

The computational advantages of the QSS method over
a diffusion approximation based on a system-size expansion
become particularly significant when the complexity of the
ion channel model increases. As we highlighted in Sec. II,
one major simplification of the stochastic ML model is to
neglect that fact that ion channels typically have a subunit

structure resulting in multiple states [25]. If these features
were included, then the simple birth-death process used
to describe the opening and closing of a two-state ion
channel would need to be generalized to a more complicated
multistate master equation. (It might be possible to obtain
some simplifications by identifying invariant submanifolds
of the stochastic dynamics [38].) Carrying out a system-size
expansion of the resulting master equation would generate a
high-dimensional Langevin equation that couples the voltage
to additional variables representing the fraction of ion channels
in each of the states. However, the numerical calculation of the
associated diffusion matrix (or its square root) is numerically
expensive. Fox and Lu [6] tackle this by approximating the
multistate system in terms of uncoupled gating particles.
However, such a simplification can lead to a breakdown of the
diffusion approximation. More recently, a number of groups
have shown that the diffusion approximation holds provided
one considers coupled gating particles [11,39–41]. The QSS
reduction is also a Gaussian approximation, but is based on a
slow-fast decomposition rather than a system-size expansion,
which eliminates the fraction of ion channels in each state as
dynamical variables. Since the resulting Langevin equation
is lower dimensional than in the case of the system-size
expansion, one avoids the computational issues highlighted
in Refs. [11,39–41]. On the other hand, the calculation of the
pseudoinverse that determines the diffusion coefficient D11

in Eq. (5.13) could become computationally expensive as the
complexity of the fast ion channel models increases.

Another possible extension of this work would be to
consider the effects of noise-induced subthreshold oscillations
on spontaneous action potentials (SAPs) by including a second
class of nonpersistent Na+ channels. The effects of channel
noise on SAPs in excitable neuron models has recently
been investigated within the context of noise-induced escape
problems [1,26,27]. Diffusionlike approximations such as the
system-size expansion and QSS analysis break down for such
problems and one has to use alternative methods such as
Wentzel-Kramers-Brillouin and large-deviation theories.
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