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Facilitated diffusion of proteins through crumpled fractal DNA globules
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We explore how the specific fractal globule conformation, found for the chromatin fiber of higher eukaryotes and
topologically constrained dense polymers, affects the facilitated diffusion of proteins in this environment. Using
scaling arguments and supporting Monte Carlo simulations, we relate DNA looping probability distribution,
fractal dimension, and protein nonspecific affinity for the DNA to the effective diffusion parameters of the
proteins. We explicitly consider correlations between subsequent readsorption events of the proteins, and we
find that facilitated diffusion is faster for the crumpled globule conformation with high intersegmental surface
dimension than in the case of dense fractal conformations with smooth surfaces. As a byproduct, we obtain an
expression for the macroscopic conductivity of a hypothetic material consisting of conducting fractal nanowires
immersed in a weakly conducting medium.
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I. INTRODUCTION

Facilitated diffusion of proteins such as transcription factors
in the cell has been invoked as a possible mechanism that
speeds up the passive diffusive finding of specific target sites
on DNA [1–3]. The facilitated diffusion consists of repeated
tours of three-dimensional (3D) diffusion in the nuclear space
interrupted by nonspecific adsorption of the protein to the
DNA, subsequent one-dimensional diffusional sliding along
the DNA, followed by desorption and another diffusion in the
free space, etc. While the sliding along the DNA reduces the
dimensionality of the searched space, the three-dimensional
tours break the correlation between visited sites and prevent
repetitive visits of the same DNA sites. In this way, the
facilitated diffusion mechanism can explain low values of
measured search time for proteins that are for certain biological
conditions and DNA conformations, significantly below search
times predicted in the absence of the one-dimensional (1D)
diffusion tours.

In principle, the effectiveness of facilitated diffusion
depends on DNA conformation. Indeed, after a three-
dimensional tour, whether the protein readsorbs on a pre-
viously “scanned” DNA segment or on an uncorrelated one
depends on how the DNA segments are folded in space [4].
Up to now, most of the studies in this area have considered
DNA as a straight rod or an assembly of several such rods, or
they did not consider the conformation explicitly [2,5–7]. This
simplification is somewhat justified by the fact that the 1D
sliding length is usually quite small, on the order of or smaller
than the DNA persistence length as found in prokaryotes and
in vitro [8–10]. Nevertheless, it is of significant interest also to
understand facilitated diffusion for other DNA arrangements.
In this regard, two prototypical conformations, namely that of
a Gaussian coil and of an equilibrium globule, were examined
in [11,12]. Recently, it became clear that the third broad
class of conformations is of interest, i.e., that of crumpled
or fractal globules, which is found in long eukaryotic DNA
and topologically constrained polymer systems [13,14]. The

*Present address: Max Planck Institute for Polymer Research,
Ackermannweg 10, D-55128 Mainz, Germany; js5013@nyu.edu

goal of this work is to consider a model of facilitated diffusion
through a crumpled globule. Let us note that the facilitated
diffusion in a generic fractal characterized by fractal and walk
dimensions was examined in [15], where the distribution of
first passage time was calculated. However, that work did not
consider correlations between subsequent adsorptions, which
play a central role in the present work and, as we show, have an
effect on the diffusion properties. Moreover, it is not clear how
the walk dimension is related to the conformational properties
of the chromatin fiber. Therefore, we relate the diffusion
properties to the directly accessible conformational properties
of a crumpled globule reflected in its fractal dimension and
contact probability.

Let us briefly summarize the crumpled globule conforma-
tional properties that are available from experiments on DNA,
such as the Hi-C method [16,17], and from simulations of
long topologically constrained polymers [18,19]. Above the
entanglement length Le, estimated in [14] for the DNA and
discussed here later, the probability of two DNA loci to be in
close proximity in space decreases with their distance along
the DNA contour as a power-law with the exponent −γ close to
−1 from below (e.g., −1.08 human, −1.05 mouse). Moreover,
it was found that the DNA conformation is self-similar and
compact that is manifested by the scaling of the mean end-to-
end distance or gyration radius of a segment with its length
Rg(s) ∼ sν with exponent ν = 1/d = 1/3. Interestingly, these
conformational properties reflected in exponents ν and γ seem
to be universal across different higher organisms and cell types,
and therefore it is very interesting to explore their functional
consequences.

However, we have to emphasize that most currently studied
transcription factors perform their search on a scale smaller
than the onset of the fractal globule conformation, as discussed
also in Sec. V. Nevertheless, in addition to the theoretical
interest in the present problem, in principle one can design
an artificial experiment to overcome this limitation and probe
the fractal DNA conformation by means of measuring the
facilitated diffusion.

To quantify the search process with facilitated diffusion
in a fractal globule, we employ a number of rather strong
simplifications. First, the polymer conformation is assumed
to be immobile during the whole search process. It has
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been observed that the chromatin in vivo is subject not only
to thermal fluctuations, but also to ATP-dependent directed
movements. The resulting dynamics exhibits subdiffusive
behavior on short time and length scales as well as correlated
large-scale motions on the scale of tens of seconds that are
comparable to the protein search times [20]. Hence the effect
of dynamics is relevant, however a proper hydrodynamic
description is only beginning to emerge [21], and it is
reasonable to understand the conformational implications
at first and account for dynamics in future work. Second,
although the DNA occupies only about 1% of the volume
of the nucleus [14], the presence of histone proteins and other
nuclear bodies can raise this value significantly and act as
crowding agents. This can have an effect on the DNA density
distribution that has been studied in this context in [22] and
that we assume to be homogeneous. Moreover, the motion of
particles in concentrated polymer solutions and equilibrium
globule conformation even without affinity to the polymer
matrix can be subdiffusive on small scales or significantly
hindered due to excluded volume effects [23–26]. However,
in [27] it was shown that some types of nuclear proteins
indeed overcome such “barriers” and can slide along the DNA
fiber, although with smaller diffusion coefficient. Additionally,
it was shown also in vivo that the environment is highly
penetrable by the proteins despite the high density [28]. We
take the possible crowding effects into account only implicitly
by taking the diffusion coefficients along the DNA and in the
“free” space as parameters of the problem, and we investigate
their impact on the search rate. To quantify realistically the
protein search process in the eukaryotic interphase nucleus,
one should relax these simplifications. However, to judge
their relative relevance, the natural first step is to understand
their individual implications. The aim of our present work
is to be such a step in the case of the large-scale DNA
conformation.

Our model for the DNA conformation is based on the fractal
space-filling curves, which have been shown to mimic the chro-
matin fiber conformation properties above the entanglement
length (see also [29] for a different approach). By construction
they are self-similar, and the space-filling property is reflected
in the scaling of the gyration radius with length with the
exponent ν = 1/3 as for the DNA. It was shown [14] that the
exponent γ governing the scaling of the contact probability
is related to the fractal dimension db of the surface of the
volume occupied by the space-filling curve, by the relation
2 − γ = db/d = β. While the classical space-filling curves
such as the Hilbert curve [30] have smooth surfaces with
β = 2/3, the DNA contact probability scaling is reproduced
by space-filling curves with db close to 3, or in other words β

close to unity (from below) [31]. It is precisely the effect of
the exponent β on the search process and protein dynamics in
the nucleus that we want to capture.

In the next section, we present scaling arguments for the
specific binding rate of the proteins to their targets as a function
of the protein affinity for the DNA, the diffusional properties,
and the exponent β. Then we calculate the effective diffusion
coefficient governing the transport of the protein through the
fractal medium of the nucleus using an analogy with electric
transport properties. In the subsequent section, we present
various regimes for the binding rates resulting from relations

between various length scales of the problem, and we compare
our findings with numerical simulations.

II. THE MODEL

Our approach follows that of Hu et al. [11], who find
the length scale of uncorrelated protein readsorption from
the balance of 3D and 1D transport, however we employ
important modifications regarding the DNA conformation. We
consider the chromatin fiber of length L and diameter b to
occupy a volume v representing the nucleus. For simplicity,
all the microscopic length scales, such as the protein size,
chromatin fiber diameter, and target size, are taken to be
of the same order b. The volume fraction of the chromatin
Lb2/v is assumed low enough so the protein can diffuse freely
in between the DNA with a diffusion coefficient D3. The
protein can nonspecifically adsorb to the DNA with energy
ε and the corresponding Boltzmann parameter y = eε/kT that
is assumed to be independent of the DNA sequence. Although
some proteins can bind to more than one strand at a time, we
do not assume such a complication here. When the protein
is adsorbed, it can diffuse along the fiber with a diffusion
coefficient D1.

We assume there is just a single target on the whole DNA,
and we are interested in the mean first passage time of a protein
to the target, averaged over the initial protein position relative
to the target location. As the DNA is immobile, one can use a
standard technique to calculate the mean first passage time. We
can imagine there is a sink of proteins at the target, and when
a protein reaches the target it is introduced back to the system
at a random location. Then there is an average constant flux J

to the target, and the average target binding time is just given
by the inverse of this flux, τ = 1/J . We do not assume any
effects due to internal degrees of freedom of the protein [32]
or imperfect target recognition efficiency.

Naturally, the binding rate J is proportional to the total
protein concentration c, as long as the proteins do not interact
with each other, which we assume as well. If there was no
nonspecific adsorption of the proteins to the DNA, the rate
of hitting the target by a pure 3D diffusion is given by a
Smoluchowski rate Js = 4πD3cb, which is a steady-state
solution to an absorbing sphere of size b. In what follows,
we drop the factor of 4π in Js as we do also with all other
numerical factors in our scaling arguments. We will present the
results in the form of J/Js to show the speedup or slowdown
of the facilitated diffusion with respect to the pure 3D case.

The main reason for a possible speedup of the facilitated
diffusion is that the sliding along the DNA effectively increases
the target size. Due to 1D sliding, the protein reaches the target
even if it adsorbs onto the DNA within some contour distance
λ from the target. The length scale λ, called the antenna
length, governs the extent of correlated readsorption, hence
it is the crossover length between 1D and 3D diffusion. In
other words, the protein moves on average a distance λ by
1D diffusion, while the transport to the antenna is governed
by 3D diffusion (see Fig. 1). Naively, one could consider
λ to be equal to the average sliding length, which can be
estimated as lslide ∼ b(yD1/D3)1/2 [9,11] [the protein spends
adsorbed time t ∼ b2y/D3, during which it covers distance
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FIG. 1. (Color online) Simplistic view of the antenna following
a space-filling curve in two dimensions. The antenna (thick red line)
of length λ around the target (filled blue circle) follows a space-filling
curve (thin gray line) representing the DNA conformation. The black
dashed empty circle of radius r represents the scale of free diffusion
in between the DNA strands. The collection of the r circles in the
figure depicts the accessible surface of the antenna by free diffusion.

(D1t)1/2]. However in general λ can be longer than lslide

because of the correlated readsorption: protein explores a
segment of length lslide and desorbs, then performs a short
3D diffusion tour and adsorbs again on a correlated place,
e.g., place that was visited in the previous sliding. Then the
protein slides again along the DNA distance lslide, which,
however, does not completely overlap with the previously
visited segment. Repeating such correlated tours, the (the
antenna) length explored before the protein readsorbs on a
completely uncorrelated location can be greater than the pure
sliding length (see also [11] for a more detailed explanation).
Such a correlated readsorption does not change the sliding
time significantly, and this can be estimated as λ2/D1. To see
this, one has to realize that after desorption, the protein is
very close to the DNA, and therefore, with probability close to
unity, it adsorbs back on the DNA before diffusing far away.
Such a short diffusion event lasts a microscopic time at most
of the order of b2/D3. As one can easily check, this is smaller
than the time of 1D diffusion between two protein desorptions
l2
slide/D1, and therefore the sliding time including correlated

readsorption is dominated by the 1D diffusion estimate above.
Then the delivery rate of proteins to the target through the 1D
diffusion is given by J = J1 = cadsλ/(λ2/D1), where cads is
the concentration of adsorbed proteins. The antenna length has
yet to be determined from a balance between one-dimensional
and three-dimensional transport. That is, in steady state the
flux J1 of proteins to the target sink is to be compensated by a
3D flux J3 of proteins delivered to the antenna.

The main improvement of the present work over the earlier
approach [11] is the rate J3 that is to be adjusted for the specific
fractal conformation consistent with that of the eukaryotic
DNA. As we neglect the density fluctuations of the DNA, the
mean distance r traveled by a protein before encountering the
DNA scales as r ∼ (v/L)1/2. This is in fact, in the scaling
sense, the same as the penetration length of a random walker
into a mesh of cylinders of radius b � r and mean density
1/r3. To see that, one can express the distance traveled by a
random walker before hitting a cylinder as (D3τSc)1/2, where

τSc is the Smoluchowski time to hit a cylinder of radius b and
length r . Solving for the corresponding steady state, one can
see that τSc ∼ (D3cwr)−1, where we dropped all numerical and
also logarithmic factors, and where cw is the concentration
of walkers, i.e., 1/r3. That means that the average traveled
distance of a random walker is, up to a numerical factor, the
same as the mean interchain distance r . At first, for simplicity
we will assume that r ∼ p ∼ Le, where p is the persistence
length, which means that the chromatin fiber is straight below
the scale r and behaves like a space-filling curve with some β

above r . We make this artificial assumption to concentrate on
the effect of the large-scale structural properties of the DNA
on the binding rate, however later in Sec. IV we will relax this
assumption to illustrate the impact of conformation on smaller
scales. As the 3D diffusion takes place only on or below length
scale r , in order for the protein to be delivered to the antenna
it has to hit one of the DNA cylinders of length r covering
the accessible surface of the antenna (Fig. 1). As we assume
λ > r , i.e., it is above the fractal threshold, the number of these
cylinders scales as (λ/r)β [31]. Then the rate J3 is (λ/g)β times
the delivery rate to one such cylinder, which is D3cfreer .

The balance of the J1 = J3,

D1
cads

λ
= D3cfreer

(
λ

r

)β

, (1)

gives us λ in terms of cfree and cads, which can be further
simplified by the following consideration. On the way to the
target, the proteins experience many adsorption and desorption
events, hence we can consider the adsorbed and free proteins to
be in equilibrium, and we write for the respective concentration

cads/cfreeb
2 = y, (2)

where we assumed the adsorbed proteins are confined within
a distance b of the DNA. Then we can express the antenna
length as

λ ∼ (δyb2rβ−1)1/(1+β), (3)

where we defined δ = D1/D3. To get the target binding rate,
we have to plug this back into J1 (or equivalently to J3). The
result will depend on the values of cads and cfree of course,
which can, however, be evaluated exactly using the fact that
the total concentration of proteins is fixed. The total number
of proteins satisfies

cv = cadsLb2 + cfree(v − Lb2), (4)

and we can express the concentrations as function of the
parameters,

cads � cvyb2

yLb2 + v
∼

{
cyb2 if y � v/Lb2 = (r/b)2,

cv/L if y � (r/b)2,
(5)

cfree � cv

yLb2 + v
∼

{
c if y � (r/b)2,

cv/Lb2y if y � (r/b)2.
(6)

We call the upper expressions of (5) and (6) a weak adsorption
(WA) regime, and the lower expressions correspond to a strong
adsorption (SA) regime. Using these relations, the binding rate
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in the different regimes, using (1) and (3), is given by

J

JS

∼
{

(δy)β/(1+β)(r/b)(1−β)/(1+β) if WA,

δβ/(1+β)y−1/(1+β)(r/b)(3+β)/(1+β) if SA.
(7)

As noted before, the expression for J3 in (1) holds only if
λ � r , hence using (3) we have to check if this is satisfied.
The condition gives y � (r/b)2/δ, which means the weak
adsorption regime (y � (r/b)2) can only exist in the form
of the upper line of (7) if δ � 1. If that is the case, one
can see that with increasing protein affinity the binding rate
increases at first as yβ/(1+β) until y reaches about (r/b)2, and
then it starts to decrease more rapidly as y−1/(1+β). The initial
increase is due to the higher D1, which makes the transport
of the proteins faster along the DNA on scales below λ than
the three-dimensional diffusion, and as y grows, more proteins
are adsorbed, which increases the binding rate. However, as y

increases beyond (r/b)2, λ grows as well and the reciprocal
character of the 1D diffusion starts to dominate over the
speedup due to δ > 1, and the overall binding rate decreases.

As mentioned above, β varies in the range [2/3,1], where
the lower values correspond to smooth Hilbert-like curves
(HC) while values close to 1 are for space-filling curves with
very wiggly surfaces (SC) similar in statistical properties to the
DNA. As β increases, the uncorrelated readsorption is more
likely as the surface of the visited segment of the fiber has deep
protrusions of other, uncorrelated, segments. That is why λ is a
decreasing function of β and J/JS grows more rapidly, and for
large y decreases less rapidly for SC than for HC. However,
the obtained dependence of λ and subsequently of J on β is
rather weak. The increase of J with y in the WA regime has
an exponent β/(1 + β) that gives the range [2/5,1/2], and the
decrease of J with y is governed by the exponent −1/(1 + β)
in the range [−3/5,−1/2].

III. EFFECTIVE DIFFUSION
COEFFICIENT—NANOWIRES ANALOGY

The effective diffusion coefficient Deff , which governs the
transport of proteins on large scales, might be more accessible
experimentally than the specific binding rate. For example, one
can design an experiment with diffusing particles that exhibit
only nonspecific adsorption, or choose a DNA that does not
contain specific targets for the given protein. In that case, the
fractal properties of the DNA conformation translate in the
effective diffusion coefficient. Although we can calculate this
quantity directly from the previous considerations, in what
follows we use the analogy with electrical conductivity of a
hypothetical composite material, as it is instructive to present
another facet of the same problem and the area of applicability
of the present theory.

The material consists of nanowires with conductivity σ1

in the particular fractal conformation of the DNA that are
immersed in a medium with conductivity σ3. Our aim is to
calculate the macroscopic conductivity σeff of the material as
this is related to the Deff of our diffusion problem, as explained
in detail in [33]. To make this work self-contained, let us briefly
summarize the main idea of this correspondence. We assume
there is no target in the system, but we look for an effective
transport coefficient when a constant gradient of (chemical)

potential is applied. In the steady state, the current density j of
both the electric current and the diffusion satisfy �∇ · �j = 0.
The electric current density is subject to Ohm’s law, �j =
−σ (�r) �∇φ, and the diffusion current can be expressed using
the Smoluchowski equation as �j = −D(�r)c(�r) �∇[ln c(�r) −
ε(�r)/kT ]. In general, the parameters of the two problems,
namely the conductivity σ , the diffusion coefficients D, the
protein concentration c, and the nonspecific adsorption energy
ε, are spatially dependent. In a tube of radius b along the DNA,
the diffusion coefficient is D1, protein concentration is cads/b

2,
and the adsorption energy is ε, while elsewhere the quantities
have values D3, cfree, and zero, respectively. Similarly, the
nanowires of thickness b have the conformation of the DNA,
and their conductivity is equal to σ1, while the conductivity
of the surrounding medium is σ3. Then the mapping between
the two problems can be easily expressed by the following
dictionaries: σ1 ↔ D1cads/b

2 and σ3 ↔ D3cfree, which can be
written using the equilibrium condition (2) as

σ1/σ3 ↔ δy, (8)

where δ = D1/D3 as before. To relate the macroscopic
transport coefficients, one writes Ohm’s law in terms of σeff

and the Smoluchowski equation with Deff and c, which results
in

σeff/σ3 ↔ Deffc/D3cfree, (9)

where the ratio c/cfree is 1 in the weak adsorption regime or
y(b/r)2 in the strong adsorption by equation (6).

As in the diffusion problem, there is a length scale λ

characterizing the length over which the current flows mostly
in the wires before it crosses through the medium to another
uncorrelated piece of wire. The main idea is to express the
macroscopic conductivity in terms of this length scale and
then find λ maximizing the conductivity. The reason behind
this approach is the minimal dissipation principle, which has
been shown to be equivalent to Kirchhoff’s laws if the linear
(Ohm’s) law is considered for the material constituents [34].

We consider a piece of the material that is the size of λ in
3D space as the conductivity at this scale is about the same
as the macroscopic one, because the correlation effects are on
and below this scale. As mentioned above, we assume that
λ follows the fractal space-filling scaling of the wire (DNA),
that is, its spatial size, such as the gyration radius, scales as
(λ/r)1/d , where d = 3 is the space dimension. That means the
resistance of a cube of this size is about R ∼ [σeffr(λ/r)1/d]−1.
This overall resistance consists of resistance due to the wire
and resistance due to the medium. The wire contributes the
resistance λ/σ1b

2 that is connected in series with a group
of parallel connected bridges, each of which has resistance
1/rσ3 as the flow through the medium is on a length scale
r . The number of these bridges scales with the surface of
the wire, which scales as (λ/r)β , so the total resistance of the
cube satisfies

1

σeffr(λ/r)1/d
� λ

σ1b2
+ 1

σ3r(λ/r)β
. (10)

We maximize the σeff as a function of λ, or equivalently,
we minimize the resistance, and we find

λ ∼ (σ1b
2/σ3r

1−β)1/(1+β), (11)
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which is, using the dictionary (8), the same as λ in the search
process given by Eq. (3). This is not surprising, as Kirchoff’s
laws, as a consequence of the minimum dissipation, require the
same current to flow through the two serial components, which
is the same as equating the two particle fluxes in the diffusion
problem, as was done in (1). Then the effective conductivity
is given by

σeff ∼ σ3

[
σ1

σ3

b2

r2

](β−1/d)/(1+β)

. (12)

Using the dictionaries (8), (9), and the concentration rela-
tion (2), one finds for the effective diffusion coefficient in the
two regimes

Deff

D3
∼ [δ(b/r)2]

β−1/d

1+β

{
y(β−1/d)/(1+β) if WA,

y−(1+1/d)/(1+β) if SA.
(13)

In the weak adsorption regime, the effective diffusion coef-
ficient increases very slowly with the adsorption strength y,
with exponent 1/5 forHC, and faster with exponent 1/3 forSC
with β close to 1. Interestingly, in the strong adsorption regime,
the effective diffusion coefficient decreases more rapidly with
y for HC with exponent −4/5, while for the DNA-like
conformations one gets exponent −2/3. These findings can
be rationalized in the following sense. As discussed above, to
satisfy λ > r we require y > (r/b)2/δ, and for the weak ad-
sorption regime to exist, δ must be greater than unity, in which
case Deff > D3 and the nonspecific binding improves the
effective transport of proteins by diffusion of proteins through
the system of “fast highways” (although very winding) of the
DNA. This can be checked by calculating the time to travel λ

along the DNA and compared with the time to diffuse r(λ/r)1/d

by 3D diffusion. The speedup, however, is more pronounced
for the SC than for HC because the recursive character of 1D
diffusion is broken more often in the case of SC as manifested
by shorter λ. In the strong adsorption regime, most of the
proteins are adsorbed and follow the DNA conformation.
The less often the uncorrelated readsorption happens, the more
time-consuming this sliding is, hence the transport over the
Hilbert curve is less efficient than for wiggly surface curves.

The target binding rate calculated in the previous section
can be understood also using the effective diffusion coefficient.
One expects that the target binding rate is J ∼ Deffcr(λ/r)1/d ,
i.e., it is the Smoluchowski rate with the effective diffusion
coefficient and target size equal to the 3D size of the antenna,
r(λ/r)1/d . This is indeed the case for the weak adsorption,
as one can easily check using Eqs. (13) and (3), however
one has to be more careful in the strong adsorption regime.
In the SA regime, most of the proteins are adsorbed, hence
the apparent concentration hitting the target is that of cads. In
other words, there are cadsr proteins in the volume of cylinder
of radius b and length r , hence the apparent concentration
is cadsr/rb2 = c(r/b)2, where the last equality holds in SA
by Eq. (5). Taking this into account, the binding rate is J ∼
Deffc(r2/b2)r(λ/r)1/d , with the diffusion coefficient from the
bottom line of (13), which agrees exactly with the binding rate
of the strong regime [bottom line of Eq. (7)].

To test these ideas, we simulated facilitated diffusion on
a cubic lattice in an environment with a space-filling curve,
and we measured the effective diffusion coefficient Deff as a

FIG. 2. (Color online) Effective diffusion coefficient Deff as a
function of adsorption strength y for the Hilbert curve (blue squares)
and space-filling curve with β = 0.89 (red circles) on a log-log scale
(error bars are smaller than the symbols used) for δ = 1. Black lines
are best fits in the large-y range (see text), with slope −0.76 ± 0.01
for the Hilbert curve and −0.71 ± 0.01 for the curve with a wiggly
surface. Each data point represents a diffusion coefficient extracted
from the mean-square displacement of very long (facilitated) random
walks averaged over 5 × 106 realizations.

function of the parameters. We used two types of space-filling
curves: (i) a Hilbert curve (HC) of sixth iteration with
β = 2/3, and (ii) a second iteration of the curve with fractal
surface (SC) from [31] with β = 0.89. Both of these curves,
in their original construction, have length 643 lattice sites, but
to allow for free diffusion in the space between the curves, we
used a three times finer lattice for diffusion. This means the
curves are of length L = 3 × 643 and homogeneously occupy
volume v = (3 × 64)3, i.e., 1/9 of all the (finer) lattice sites,
or in other words b = 1 and r = 3 in the lattice units. We
checked numerically, also for other occupation fractions, that
the mean traveled distance by free 3D diffusion is indeed about
r , as calculated above. To measure Deff , we set the particle
that occupies one lattice site to diffuse in a periodic array of
such volumes v, each with the curve of length L. If the particle
is on the site occupied by the curve, it performs a random walk
along the curve, and at each step there is a probability π to
perform a jump off the curve to the free space, where it diffuses
with diffusion coefficient D3 until it hits the curve again. The
probability π is controlled by the adsorption strength y by
π = (2 + y)−1, where the constant 2 is due to twice as many
ways to jump off the curve than to stay on it (in a cubic lattice).

In Fig. 2, we plot Deff as a function of y for δ = 1,
which means there is only a strong adsorption regime where
y ∼ π−1. For y > 10, the values of Deff start to differ as λ > r

and the correlation effects start to play a role, resulting in
a stronger decrease of the Deff for the Hilbert curve. The
theoretical prediction of the slope of graphs for large y in
Fig. 2 is −(1 + 1/d)/(1 + β) from Eq. (13), which is −0.8
for HC and −0.7 for SC. To capture correctly the slopes of
the strong adsorption regime, λ has to be sufficiently large
to be insensitive to the discreet nature of the fractal. The
construction of the SC is based on a segment that is 512
monomers long, therefore we want λ to be at least of the same
order. Hence we fit values of Deff for y > 4 × 104, which

012702-5



JAN SMREK AND ALEXANDER Y. GROSBERG PHYSICAL REVIEW E 92, 012702 (2015)

FIG. 3. (Color online) Top: Fluctuations of the fractal dimension
d of the Hilbert curve (blue squares) and the wiggly curve (red
circles); the average dimension is d = 3 in both cases, marked with a
black straight line. Bottom: Fluctuations of the exponent β; average
values are marked by the straight lines 2/3 for the Hilbert curve and
0.89 for the wiggly curve. Statistics of fluctuations of the exponents d

and β have large errors for long segments s, due to a small sampling
ensemble.

corresponds to λ > 100r . This is not an issue for the Hilbert
curve that is based on a segment of length eight monomers.
On the other hand, as both curves are of finite size, we have
to keep y < L/b � 5 × 105, so that the particle does not feel
the ends of the DNA during the 1D diffusion (as might be
visible by the decrease of slope of the Deff for large y in
Fig. 2 in the case of SC). Therefore, to fit the slopes we
take 4 × 104 < y < L/b, as shown in Fig. 2 by black lines.
Although the predictions match with the fitted values (Fig. 2)
reasonably (−0.8 versus −0.76 and −0.7 versus 0.71), varying
the range of y one gets values of the exponents for the Hilbert
curve in the range [−0.78,−0.75] and for the wiggly curve
in the range [−0.7,−0.74]. We believe this discrepancy may
be due to the fluctuations of the exponent values β and d

of the curves (Fig. 3), which are inherent to the iterative
curve construction, as explained in [31]. The effective fractal
dimension d(s) corresponding to length scale s has been
calculated as the exponent of the gyration radius of a segment
of length s averaged over positions in the curve. The segment
lengths were chosen to be sk = 3 × 1.2k , k ∈ [10,63], and the
exponent d(s) was obtained from the slope of the log-log plot
from seven data points surrounding the given length scale s,

FIG. 4. (Color online) Effective diffusion coefficient Deff as a
function of ratio δ = D1/D3 for the Hilbert curve (blue squares)
and the space-filling curve with β = 0.89 (red circles) on a log-log
scale for π = 0.16, i.e., y � 4. Lines are best fits, with slope 0.19 for
the Hilbert curve and 0.23 ± 0.01 for the curve with a wiggly surface.
Each data point represents a diffusion coefficient extracted from the
mean-square displacement of very long (facilitated) random walks
averaged over 2.5 × 107 realizations.

which corresponds to a length scale range roughly [s/2,2s].
The variation of β(s) was obtained in the same way, measured
as the scaling exponent of the number of surface monomers.
Naturally, the greater the range of s we take, the smaller the
fluctuations are. If the complete range [b,L] is taken for HC
and SC at these finite iterations, the exponents agree with their
theoretical values (marked in Fig. 3).

Similarly to Deff(y), in Fig. 4 we measured the dependence
of the effective diffusion coefficient on δ = D1/D3. Here the
predicted exponent (β − 1/d)/(1 + β) is independent of the
regime, and it is 0.2 for the HC and 0.29 for the SC.

Considering the fluctuations of β and d, we should not
expect a perfect match of the numerics with the theory that
considers only mean values of the exponents. A better match
could be achieved only if the simulations were performed
over even wider ranges of parameters provided longer (higher
iteration) curves were available. However, we believe the
numerics supports the theory as (i) Deff for the Hilbert curve
is always lower than the one for the wiggly curve, (ii) the
exponents for the HC are in any range of parameters lower
than those for SC, as predicted by the theory, and (iii) the
values of the exponents are at least in the correct vicinity
predicted by the theory.

IV. OTHER LENGTH SCALES

We have discussed the effect of the large-scale space-filling
organization on the protein binding rate and effective transport
coefficient. As mentioned above, these effects start to play
a role if the 1D sliding diffusion covers lengths larger than
the onset of the fractal conformation Le. To complement the
study, we briefly mention the possible binding rate and ef-
fective diffusion coefficient regimes at lower scales computed
in [11,33]. To do so, we have to employ the relations between
the monomer size b, the persistence length of the DNA fiber
p, the entanglement length Le, and the corresponding spatial
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TABLE I. Summary of binding rates and antenna lengths in regimes defined by adsorption strength and relation between length scale.
Boundaries of regimes A–D are depicted in Fig. 5.

Regime Description λ J/Js

A weak adsorption, λ < Le b(δy)1/2 (δy)1/2

B strong adsorption, λ < Le (r/b)2(δ/y)1/2

C weak adsorption, λ > Le (δyb2Lβ−1
e )1/(1+β) (δy)β/(1+β)(Le/b)(1−β)/(1+β)

D strong adsorption, λ > Le (δβ/y)1/(1+β)(L1−β
e r2/b3−β )1/(1+β)

size re ∼ (pLe)1/2 and length scale r . While the monomer size
of the fiber is on the scale of a few nanometers, the persistence
length of the DNA fiber is estimated to be around 150 nm [35].
The entanglement length Le can be from 100 nm to around
1.1 μm, but most likely close to 300 nm, while the spatial size
r is on the scale of 100 nm (see Tables 1 and 2 in [14]). Based on
these relations, we will consider p ∼ r , which means the chro-
matin fiber is straight below r . Above r , the fiber either follows
the space-filling fractal conformation if r ∼ Le, as considered
in the previous section, or if Le � r there is a window of an
equilibrium globule conformation above r and below Le that
can be described as a network of mesh size r , where each indi-
vidual chain follows random-walk statistics (Flory theorem).

Let us briefly describe the possible regimes of binding
rate summarized in Table I and Fig. 5, based on the relation
between the antenna length and other length scales. If the
antenna is shorter than r , it is straight and equal to the
sliding distance b(δy)1/2. The overall binding rate depends on
adsorption strength—it grows with y1/2 in WA and decreases
in SA. Interestingly, these results hold even if λ is longer
than r and still shorter than Le. The reason for this is that
the DNA fiber conformation follows a random walk that is not
compact enough to shield itself and this way provide correlated
readsorption due to the presence of other, uncorrelated, strands

FIG. 5. Phase diagram of the binding rate on a log-log scale.
The dashed line y = (r/b)2 delimits the adsorption strength: weak
adsorption below and strong adsorption above. The dot-dashed line
proportional to δ−1 delimits regimes corresponding to space-filling
conformation of the antenna (above) and that of the straight antenna
or the antenna following a random walk in the mesh of other chains
(below). The values of antenna lengths and corresponding binding
rates are summarized in Table I.

in distance r from the fiber. Therefore, any part of the antenna
in this regime is accessible by 3D diffusion from distance r ,
and the results for the binding rate of “straight mesh” from [11]
apply (shown as regimes A and B in Table I and Fig. 5). These
are effectively the same as our previous results with β = 1
(any monomer is accessible from nearby chains), however the
effective diffusion coefficient is different as the DNA is not a
space-filling fractal on this scale. Based on protein adsorption
there are again two regimes, where now the weak adsorption
regime exists only if δ > 1, to satisfy λ > r .

If λ gets longer than the entanglement length, one has to
adjust the length scales in the preceding section by r → Le in
Eqs. (1) and (3), which have an effect on prefactors involving
r/b, however the general dependence on y and δ remains the
same. In fact, this substitution is not completely trivial as the
3D delivery to the antenna takes place on the scale r . To deliver
the proteins to a piece of size Le, one can deliver them to any
of the Le/r sites of length r . However, as the antenna is much
longer than Le, not all of the λ/Le pieces are accessible, but
only (λ/Le)β of them, i.e., those that lie on the surface of
the fractal conformation. Therefore, the 3D delivery rate is
J3 ∼ D3cfreer(Le/r)(λ/Le)β , which effectively is the same as
the suggested substitution r → Le. These are regimes C and
D in Table I and Fig. 5.

Similarly, one can investigate the effective diffusion
coefficient for length scales below Le. This has been done
in [33], so in Table II and Fig. 6 we just summarize the results
in the present notation using the dictionaries (8) and (9).
There are two important facts to be noted. First, the binding
rate in these regimes, where λ > r , cannot be calculated
simply as the Smoluchowski rate with an effective diffusion
coefficient and target size proportional to the size of λ, as
was demonstrated in the case of the space-filling antenna.
This is because the antenna follows a random walk that is not
compact, and, therefore, delivery of protein to the sphere of
size re ∼ (rλ)1/2 does not necessarily guarantee the hitting
of the target, as there are still many uncorrelated chains in
such a sphere. The second fact, related to the first one, is that
the effective diffusion coefficient is different for the cases
λ < r and λ > r in contrast to J , which depends only on the
adsorption strength in these two cases.

Regimes A1 and A2 (Table II and Fig. 6) represent the cases
in which λ < r , which means the effective diffusion coefficient
is dominated by D3, and in the strong adsorption regime it is
even reduced due to the adsorbed proteins. In regimes B1 and
B2, λ > r , hence it follows a random walk. Regimes C and D

(in Table II and Fig. 6) represent the antenna in a space-filling
curve conformation. To account for Le > r in these regimes,
one has to modify Eq. (12) for the overall resistance. The left-
hand side must be replaced by [σeffre(λ/Le)1/d ]−1 to properly
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TABLE II. Summary of effective diffusion coefficients and antenna lengths in regimes defined by adsorption strength and relation between
length scales. Boundaries of regimes A–D are depicted in Fig. 6. In regimes A1, A2, B1, and B2, values of Deff/D3 are adapted from [33].

Regime Description λ Deff/D3

A1 weak adsorption, λ < r < Le b(δy)1/2 1
A2 strong adsorption, λ < r < Le (r/b)2/y

B1 weak adsorption, r < λ < Le (b/r)(δy)1/2

B2 strong adsorption, r < λ < Le (r/b)(δ/y)1/2

C weak adsorption, λ > Le (δyb2Lβ−1
e )1/(1+β) (δyb2/L2

e)(β−1/d)/(1+β)Le/re

D strong adsorption, λ > Le (δb2/L2
e)(β−1/d)/(1+β)y−(1+1/d)/(1+β)Le/re

account for the spatial size of the antenna, where re ∼ (rLe)1/2

is the size of the entanglement blob, and there are λ/Le of these
blobs per antenna. Additionally, on the right-hand side of (12),
r should be replaced by Le as explained above for the binding
rate case. Note that these changes do not affect the expression
for λ from Table I, and they result in the effective coefficient
shown in Table II.

V. DISCUSSION AND CONCLUSIONS

The fact that the space-filling fractal structure of the
chromatin fiber is present on scales larger than 150 nm poses
a severe restriction on the applicability of our results for the
search process in vivo. For these structural effects to play a
role, δ or y has to be large enough so that the sliding length
b(yδ)1/2 is greater than Le. While the value of D3 is known
to be around 0.1–1 μm2 s−1 [1,28] for transcription factors,
the value of D1 is more difficult to measure and can be more
susceptible to the protein details and ionic strength. However,
using single molecules techniques, D1 was measured for some
prokaryotic proteins [36,37], but also for eukaryotes [27], and
the values fall in the range 10−4–10−1 μm2 s−1. The resulting

FIG. 6. Phase diagram of the effective diffusion coefficient on
a log-log scale. The dashed line y = (r/b)2 delimits the adsorption
strength: weak adsorption below and strong adsorption above. Dotted
and dot-dashed lines are proportional to δ−1. The dotted line delimits
regimes of λ > r (above) and λ < r (below), while the dot-dashed
line delimits the space-filling conformation of the antenna (above)
and that of the antenna following a random walk in the mesh of other
chains (below). The values of the antenna lengths and corresponding
Deff are summarized in Table II.

values of δ are in general smaller than unity and fall in the range
[10−4,1], most likely somewhat closer to the upper bound
(around 0.1) under physiological conditions in eukaryotes, as
shown in [27]. The latter work is particularly illuminating as
it demonstrated that the 1D diffusion along DNA is present
for some proteins with D1 � 0.03 μm2 s−1 even if the DNA is
decorated by nucleosomes. Considering the value of δ � 0.1,
one can estimate that in order to observe effects related to the
space-filling conformations, the nonspecific adsorption energy
must be ε � 8 − 12kT , which is relatively high but possible in
principle. In this estimate, we assumed that the protein slides
along the chromatin fiber and not following all the details
of the DNA chain wrapped around the histones. This is a
reasonable assumption also supported by the experimental
evidence in [27], but it brings up an issue of the efficiency
of the specific site recognition. Taking this into account would
decrease the binding rate by a factor of order 10, calculated
as the ratio of the linear density of bare DNA to that of the
DNA fiber [14], however the different scaling regimes should
remain the same.

The chromatin dynamics that we do not take into consid-
eration can have an impact on the correlated readsorption.
Some approaches, such as [12] for coiled DNA, assume the
DNA conformation fluctuates sufficiently quickly to consider
subsequent relocations as independent. Although these are
likely to be good approximations on small length scales, on
larger scales the chromatin dynamics in vivo exhibits large
correlated motions [20], which means the local environment
of a sufficiently long segment does not necessarily change
rapidly. Therefore, we hypothesize that the correlated read-
sorption might play a role in the search process. As the nature
of the dynamic territories is not yet understood, a natural first
step is to consider the static picture that we presented herein
and postpone the dynamic aspect for future work.

Let us also mention that the maximal binding rate is
obtained on the crossover between weak and strong adsorption
in any of the regimes. Interestingly, conformations with higher
β (hence smaller γ ) provide the greatest acceleration and
smallest deceleration due to the enhanced possibility of uncor-
related readsorption. Moreover, the binding rate dependence
on y and δ for conformations with β close to unity is very
similar to that for equilibrium globule conformation, which
is characteristic for lower organisms such as prokaryotes or
yeast.

To conclude, we presented a scaling theory for the impact
of correlated readsorption on the specific target binding rate
and effective diffusion coefficient in the case of space-filling
fractal conformation found in higher eukaryotes. We showed
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how these quantities depend on protein diffusion properties,
nonspecific affinity for the DNA, and most importantly
exponent γ = 2 − β characterizing the DNA conformation
obtained from HiC experiments. Such considerations should
be used in principle to indirectly probe the DNA conformation
by measurements of the effective diffusion coefficient as a
function of the affinity tunable by salt concentration. As a
byproduct, we obtained the effective conductivity of a material
composed of conducting nanowires immersed in a medium
with different conductivity. Such a hypothetical material could
in principle be realized from a melt of polymer nanorings that
on large scales have similar space-filling fractal properties with
high β as the eukaryotic DNA.

To develop the protein search theory, we have adopted
many simplifying assumptions, such as the static DNA
conformation, no viscoelastic effects or crowding restrictions

for the protein diffusion, a single specific binding site, and no
exponent fluctuations. Indeed, it would be very interesting to
relax these simplifications, especially the dynamic aspect, and
investigate their impact on the diffusion process. The present
simplified picture aims at connecting structure to function by
bridging the two as yet disconnected lines of research, namely
DNA fractal globule conformation in a nucleus and facilitated
diffusion of the protein search process.
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