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Phase transition of vortexlike self-propelled particles induced by a hostile particle
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When encountering a hostile particle, the avoidance behaviors of the vortex state of self-propelled particles
exhibit phase transition phenomena such that the vortex state can change into a crystal state. Based on the
self-propelled particle model and a molecular dynamics simulation, the dynamic response of the vortex swarm
induced by a hostile particle (predator or obstacle) is studied. Three parameters are defined to characterize the
collective escaping behaviors, including the order parameter, the flock size, and the roundness parameter. If a
predator moves slower with a larger risk radius, the vortex swarm cannot return to its original vortex state, but
rather transforms into a crystal state. The critical phase transition radius, the maximum risk radius of a predator
with which the transition from a vortex to crystal state cannot take place, is also examined by considering the
influence of the model parameters. To some degree, the critical radius reflects the stability and robustness of the

vortex swarm.
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I. INTRODUCTION

The collective motion of large aggregations of animals is
one of the most fascinating phenomena in the living world
[1], which often exists in mammals, fish, insects, and birds
for various benefits, such as an easier search for food, higher
mating efficiency, and more successful predator avoidance [2].
Prominent examples of collective motion are bird flocks, fish
schools, and mammal herds. Interaction via an intermediate
field is one of the major mechanisms in those organisms
[3,4]. Vicsek et al. indicated that collective behavior is a key
concept in highly multidisciplinary fields, including ethology,
evolutionary biology, control theory, economics, and social
sciences [5]. Most existing studies have modeled collective
motion through simulation via two frameworks: Eulerian
models and Lagrangian models [6]. The Eulerian models
frequently use the flock density as a key variable to present
the space-time dynamics of a flock. The Lagrangian models
consider the individual animals as pointlike particles, which
are also called self-propelled particles (SPPs), and apply some
social interaction rules to them [7].

Generally, the SPP system can exhibit distinct stable phases,
such as an order crystal and a vortex. In the crystal phase,
all particles move in the same direction and are equally
spaced within a disk-shaped region [8]; while in the vortex
phase, all particles rotate around a common center and form a
ring shape. In nature, vortexlike behavior can be observed
in a wide range of biological systems, such as a rotating
colony of army ants, sperm cells, bacterial colonies, and fish
milling. Recently, an increasing number of researchers have
focused on a steady vortex flock, including both theorists and
experimentalists [9,10]. Levine et al. [11] investigated both
discrete and continuum models consisting of SPPs that obey
simple interaction rules, and show that the vortex solution
can be obtained from random initial conditions, even in the
absence of a confining boundary. Erdmann et al. [12] found
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that, for strong noise, the translational motion of a swarm of
SPPs suddenly becomes impossible and is abruptly replaced
by a vortex flock. Chen et al. [13] presented particle-based
simulations and a continuum theory for steady rotating flocks
formed by SPPs in two-dimensional space, and found steady
rotating flocks when the velocity of the particles lacked
long-range alignment. You et al. [14] studied the collective
behaviors of two-component swarms in a vortex state, and
showed that a mass difference can introduce a protective
behavior for the lighter members of the swarm.

In this article, we focus on the phase stability and transitions
of vortex SPPs. The vortexlike behavior of SPPs usually cannot
be easily destroyed [9]. Existing research [8] has investigated
the stability of the vortex phase when subjected to a uniform
impulse hitting force, and according to their findings, when
an abrupt hitting force is larger than the critical value, the
vortex flock will cross over to the crystal phase and never
return. Other than external impulse perturbations, it is more
common that the collective motion state is destroyed by hostile
individuals, which can be predators or obstacles that should be
kept away from. Different from impulse perturbations, when
the swarm encounters predators or obstacles, lasting external
perturbations will affect the swarm, and, meanwhile, only parts
rather than all of the particles will be affected by external
perturbations at the same time. Lee er al. [15,16] finds that
crystal flocks can return to the original crystal state form after
a predator’s attack has broken the formation. However, the
behaviors of SPPs in the vortex phase when hostile particles
exist, such as predators, still need to be reported. By utilizing
a molecular dynamics (MD) simulation, the main interest of
this article is to examine the dynamic response of a vortexlike
SPP system, and study how strongly the vortex phase of SPPs
is maintained when encountering perturbation from a hostile
particle.

II. MODEL DESCRIPTION

A particle-based model is used to represent the motions of
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of each particle is governed by the following equation,

dv;
m; — =, 1
i I i (1)

where m;, X;, and v; are the mass, position, and velocity vector
of the individual ith particle, respectively. The four terms f;
represent various types of forces acting upon the ith particle,
. . c. ralign ~body
including the alhgmng force f; =, the bodﬂy fprce f; 7, the
friction force £/, and the avoiding force f°.

The first force term accounts for the self-propelling force
[14] and makes each particle align its velocity with its
neighboring particles,

ax;,
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where a represents the propelling strength and V; = ‘7,-/ | f/l-| is
the unit vector parallel to V;, which is defined as

N
Vi=_exp(=Rji/ra)Vj, 3)
j=1

where Rj; = |X; — X;| is the distance between the ith and
jth particles, and r, is the parameter controlling the range
of alignment. A larger value of r, can enhance the tendency
for synchronized motion [14]. Note that, although there is no
explicit individual propulsion force in the motion equation
(1), actually, a constant propulsion component is implicit in
the above alignment interaction. The sum in Eq. (3) contains
the velocity item v; of the focal particle itself, and thus it can
serve as an energy pump to propel the active motion of the
particles.

The second force term describes the mutual interaction
forces between particles. Particles attract each other to get
close, and, meanwhile, they avoid colliding into each other.
A Lennard-Jones potential type of expression is adopted to
model the body force as follows,

N
% =0 (= Rji/ry)exp(—R;i/ro)R;i, (4

J#
where Rj; = (¥; — X;)/|X; — X;| is the unit vector directed to
the ith particle from the jth particle. b and r, denote the
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force strength and the range between interacting particles,
respectively.

The third force term is introduced to prevent particles from
moving too fast, which is set to be proportional to the velocity
of the ith particle with the friction coefficient y,

i .
i =—yu. )

Particles in the swarm should keep away from hostile
predators or threatening obstacles. The movement of the
predator is expressed as

. LdX,

Vp =K - Dp, E:Up’ (6)
where « denotes the speed of the predator, Dy, is the direction of
motion, and X, and U, represent the position and the velocity
vectors of the predator. When particles are in the risk region of
a predator, an avoiding force can make the particles move away
from the predator. The last force term in Eq. (1) describes the
avoidance behaviors of particles to predators, which is defined

as follows [15],

c A

Favoid
; = Ry,
/ 1+ explw(Ry — R)] "

(N

where ¢ and w are two constants that characterize the strength
of the avoiding force. R is the radius of the predation risk.
R, = |X; — Xp| denotes the distance between the predator
and the ith particle, and R, = (¥; — X,)/|%; — X,| is the unit
direction vector.

III. RESULTS AND ANALYSIS

A. Vortex formation

This article only considers the collective behavior in two
spatial dimensions. Initially, N = 100 particles are randomly
distributed with a random velocity, as shown in Fig. 1(a). The
movements of all particles obey the behavioral rules given
in Eq. (1). Given various values of r,, the swarm can evolve
into different steady states. With a sufficiently large r,, for
example, r, = 1, the system finally forms a stationary crystal,
as shown in Fig. 1(b). With a small enough r,, for example,
r, = 0.05, particles evolve into a stationary vortex in which
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FIG. 1. Snapshots showing the typical steady states of the swarm. The black solid dots show the positions of particles in the swarm. Each
particle moves in the direction of the line segments from the dot, with the velocity proportional to the length. (a) The randomly initial positions
and velocity of 200 individuals. (b) A snapshot of the steady marching crystal with r, = 1. (c) A snapshot of the steady rotating vortex with
r, = 0.05. Other parameters are setas N = 1000m =1,y =l,a=1,b=1,r, = 2.
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FIG. 2. (Color online) Time evolution of (a) the order parameter ¢, (b) the flock size o, and (c) the flock roundness parameter © when

forming the crystal and vortex states.

all individuals rotate around a common center, as shown in
Fig. 1(c).

Various parameters are defined to further investigate the
collective motion state. The absolute value of the average
velocity is used to represent the nature of synchronization
in the swarm [5],

R
= 5|20 )
l

whereN is the number of particles in the swarm, and 9; denotes
the unit vector that goes along the velocity of the ith particle.
¢ can be considered as the order parameter taking a value
in the range [0,1] and shows a tendency for the particles to
move in the same direction. If all the particles move in the
same direction, the value of ¢ will be close to one, whereas
if all the particles move randomly, the value of ¢ will be
approximately zero [5]. Figure 2(a) shows the time evolution
of the order parameter for a swarm with various r,. Both the
simulation curves start from the disordered state, as shown in
Fig. 1(a), with¢(t = 0) = 0. Whenr, = 1, the order parameter
rapidly reaches ¢ = 1 [black line in Fig. 2(a)], and the swarm
achieves a crystal configuration, in which all individuals show
an aligned movement [Fig. 1(b)]. When r, = 0.05, the order
parameter moves closer to zero [blue line in Fig. 2(a)] than
the initial disordered state when the particles eventually show
a rotating vortex movement [Fig. 1(c)].

The following parameter is defined to check the size of the
flock [15,16],

9

where r; = |X; — X.| is the distance from the swarm center
X to the ith particle. The time evolution of the flock size
in the process of forming crystal and vortex states is shown
in Fig. 2(b), which indicates that the flock size of the vortex
swarm is larger than that of the crystal swarm.

Finally, we introduce the roundness parameter to assess the
rotating vortex state being defined as

(10)

where, for each ith particle, 6; is the angle between its velocity
v; and the radial vector that points from the swarm center to
the its position X;. For a steady vortex flock where all particles
rotate in the same direction and the whole swarm forms a
perfect round shape, the value of u is close to one, while
it is approximately zero when all particles completely move
disorderedly or achieve aligned movement. Figure 2(c) shows
the time evolution of the roundness parameter when particles
gradually form crystal [Fig. 1(b)] and vortex [Fig. 1(c)] states
from the disordered state [Fig. 1(a)].

B. Phase transition induced by a hostile particle

In the following sections, we investigate the response of a
vortex swarm when avoiding a hostile particle (predator). In
some realistic scenarios, the predator usually moves towards
the center of the vortex swarm, for example, when a bird attacks
a swarm of crabs and when a whale catches a fish school. This
type of predation can help to improve the hunting success rate
in nature. Here, the predator is originally located outside of
the vortex swarm, as shown in Fig. 3, and is designed to move
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FIG. 3. (Color online) Initial positions of the vortex swarm and
a hostile particle. The red arrow shows the direction and position of
the hostile particle, and the red circle represents its risk range.
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FIG. 4. (Color online) Snapshots showing the response of the
vortex swarm when avoiding a predator with a velocity x = 0.5 s7!.
The red circle surrounding the predator (red arrow) shows the radius
of the predation risk. For each risk radius (R = 0.6, 0.5, 0.45, 0.4)
the movements of the swarm at two moments (¢t = 3 and 7 s) are
exhibited. The blue line represents the trajectory of the average swarm
position. Other parameters are setas N = 100,m =1,y = 1,a =1,

b=1,rn=2,c=10,w =0.2.

towards the swarm center with a constant speed until it goes
through the whole swarm. Since the predator moves straight at
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FIG. 5. (Color online) Time evolution of (a) the order parameter
¢, (b) the flock size o, and (c) the roundness parameter p with
k& = 0.5 s7! and various R.

the center of the vortex swarm, the initial angular momentum
of the predator relative to the whole swarm is approximately
zero. The motivation of this article is to investigate the stability
of the vortex flock with respect to the hostile particle, and thus
we assume that the hostile particle simply rushes into the

012701-4



PHASE TRANSITION OF VORTEXLIKE SELF-PROPELLED ...

5 5
4 t=1s 4 t=35s
k=15R=0.75 k=15R=075
3 ! 3r
2 2
= N

x x
(a) (b)
5 5
A =1s A =5
4 ¥=15.R=070 5 ¥=15R=070
'

P
&
S

0 =
-1t
2 3 4 1 0 1 2 3 4
X
(d
5 5

1 0o 1 2 3 4 4 0 1 2 3 4
X X
(e) (H
5 5
4 t=1s 4 t=5s
K=15,R=0.60 oL KSLSR=0.60
s
L2 2 o, S0
) “%?@%l
I Tfﬁ%ﬁ J ;}/
0 e ®
b

FIG. 6. (Color online) Snapshots showing the response of the
vortex swarm under a predator’s attack with a velocity k = 1.5 s71.
The red circle surrounding the predator (red arrow) shows the radius
of the predation risk. For each risk radius (R = 0.75, 0.7, 0.64, 0.6)
movements of the vortex swarm at two moments (¢ = 1 and 5 s) are
exhibited. The blue line represents the trajectory of the average swarm
position. Other parameters are setas N = 100,m =1,y = l,a =1,
b=1,rn=2,c=10,w =0.2.

PHYSICAL REVIEW E 92, 012701 (2015)

vortex flock and moves in a straight line without any response
to the changes in the swarm. It is necessary to state that this
assumption is more of a physics setting.

For a crystal flock in which all particles align their direction
of movement, Lee et al. [15,16] observed that a hostile
particle’s attack can destroy the translational motion state and
cause order breaking in the alignment of the swarm. According
to their simulation results, the particles that have escaped
from the attack intend to reorder the original formulation,
and thus the flock finally maintains alignment again [16].
However, if the particles are in a vortex state, the avoiding
behaviors in response to the predator or obstacle may induce
a change in their collective motion state. The phase transition
of the vortex swarm depends on the velocity « and risk
radius R of the predator. By changing the two parameters,
we can systematically vary the strength and duration of the
perturbation from a nearly vanishing but long time perturbation
to a global but short time perturbation. Figures 4(a)—4(h) show
various patterns in the vortex swarm with different values of the
risk radius R(R = 0.6,0.5,0.45,0.4 per unit length), when the
attacking velocity is k = 0.5s~!. Typical snapshots at 3 and 7 s
are presented. When a predator approaches the vortex swarm,
the particles in the risk radius of the predator are driven to
move away. The initial vortex motion state is disrupted, in that
some individuals no longer rotate around the swarm center. As
the risk radius increases, more and more particles escape from
their original track. The degree of deformation increases with
an increase in the risk radius R. If the risk radius is small, those
dispersed particles can gradually reform the vortex swarm,
as shown in Figs. 4(e)—-4(h). However, if the risk radius is
large, particles tend to align their movements and eventually
transform into the crystal phase, as is shown in Figs. 4(a)—4(d).

Temporal changes in the order parameter, the flock size, and
the roundness parameter can be observed in Figs. 5(a)-5(c).
Similar to the crystal flock [15], the temporal patterns of the
vortex swarm can be roughly divided into different regimes.
Initially, all particles rotate about a common center and the
interaction body forces among particles provide a centripetal
force. When a predator attacks the vortex swarm, particles are
forced to move away from their original motion track, and thus
the balance of movement is broken. As the predator moves on,
the particles that escape from the predator’s risk radius begin
to reorder their movements. During the escape, the particles
can align their movements, and lead those other particles to
follow them without being attacked. When the risk radius R
is smaller, fewer particles exhibit escaping behavior and the
destruction degree of the swarm is also lower, and thus the
particles can reform their original rotating motion. However,
when R is larger, more particles escape from the predator
and the tendency for the whole swarm to align competes
with rotation. Eventually, the vortex swarm transforms into
the crystal state.

We further check the response of the vortex swarm when
the predator attacks at a higher velocity. Figures 6(a)—
6(h) show how the particles respond to avoid the predator
with a velocity x = 1.5s™! and various risk radii (R =
0.75, 0.7, 0.64, 0.6 per unit length), where typical snapshots
of the swarm system at two moments (f = land5s) can
be observed. The corresponding time evolution of the order
parameter, the flock size, and the roundness parameter with
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FIG. 7. (Color online) Time evolution of (a) the order parameter

¢, (b) the flock size o, and (c) the roundness parameter p with
k = 1.5 s7! and various R.

various risk radii is shown in Fig. 7. Compared with the
response of the vortex swarm shown in Fig. 4, particles
show a relatively soft reaction, and the formation does not
greatly change. In addition, comparing Figs. 6(g) and 6(h) with
Figs. 4(a) and 4(b) where the predator has the same risk range
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FIG. 8. (Color online) Trajectories of the average swarm position
(black lines) and of a single particle (red lines) are shown with differ-
ent predator risk radii R = 0.482 52 (dotted lines) and R = 0.48253
(solid lines). The inlay shows the corresponding time evolution of
the order parameter. Other parameters are set as N = 100, m = 1,
y=la=1,b=1,r,=2,¢c=10,w=0.2,andx =0.5s7".

R = 0.6, it can be observed that, when the predator moves
quickly, the particles do not have enough time to escape and
can be more likely to reorder into the original vortex state.
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FIG. 9. (Color online) Snapshots showing the transition and no
transition phenomena of the vortex swarm under a predator’s attack
when SPPs inside the vortex flock rotate in both the clockwise and
counterclockwise directions.
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FIG. 10. Time evolution of the order parameter ¢ when the
transition takes place from the counterclockwise vortex motion
and the transition does not take place from the clockwise vortex
motion.

However, a large enough risk range can also force particles
to change their motion state and transform into a crystal flock
[Figs. 6(a)-6(d)].

Above all, it can be concluded that the phase change in the
vortex swarm induced by avoidance behaviors to the predator
depends on both the velocity and risk radius of the predator.
For a vortex swarm system, the transition into a crystal phase
movement appears when the predator moves slower with a
larger risk radius. As the velocity « increases, the transition
tendency decreases, because the particles do not have sufficient
time to respond to the hostile particle’s attack. The tendency
for escaped particles to reform into the crystal state increases as
the risk radius of the predator increases. There exists a critical
radius R for each velocity, and the critical radius increases
with the predator’s velocity. To some degree, the critical radius
can reflect the capacity of resisting disturbance and the stability
of the vortex swarm. It can be observed that the critical radius
increases as the velocity increases. The vortex swarm has more
tendencies to return to the original vortex phase, if the predator
moves with a faster velocity and a smaller risk radius.

We compare the trajectories of the swarm center and of the
same single particle in two scenarios in which the transition
does and does not take place, as is shown in Fig. 8. Here,
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we choose two close values of the risk radius of the predator,
R =0.48252 and 0.48253. The corresponding trajectories
under the two risk radius settings almost overlap before the
obvious separation. The transition from the vortex to crystal
state induced by the hostile particle’s attack is likely to be
irreversible unless another distinct perturbation is introduced
to the new crystal flock. The comparison curves in the inlay
of Fig. 9 indicate that there is a threshold at around ¢ = 0.5,
which has to be crossed for the transition to take place. When
the vortex flock encounters an attack from a hostile particle, the
escaping behaviors increase the order parameter of the flock.
The larger the risk radius of the predator, the faster the order
parameter increases. During the limited time that the predator
has to impact the flock, once the order parameter of the flock
increases to the threshold, the transition from a vortex to crystal
state will take place, otherwise the swarm will return to its
original vortex state.

The above simulations only consider that the hostile particle
moves straight at the initial center of a vortex swarm. However,
the center fluctuates when the vortex swam rotates, so a hostile
particle cannot accurately aim at the center when rushing into
the vortex. Thus, the deviation between the hostile particle’s
motion direction and the swarm center can produce a nonzero
angular momentum of the predator relative to the whole
swarm. Next, we consider two special cases when the vortex
swarms rotate in a reverse direction. In the two vortex swarms,
all SPPs have the same position but opposite velocity. As is
shown in Figs. 9(a) and 9(c), the two vortex swarms rotate in
the clockwise and counterclockwise directions, respectively.
The initial moments of a hostile particle with respect to the
vortex center simply have the opposite sign to the angular
momentum of the vortex and the others are perfectly identical.
When a hostile particle rushes into the swarm with the same
risk radius, simulation results show that a counterclockwise
rotating swarm can transform into a crystal motion state
[Fig. 9(d)], while a clockwise rotating swarm remains at
the original vortex state [Fig. 9(b)]. The corresponding time
evolution of the order parameter is shown in Fig. 10. It can
be explained that, if the moment of the hostile particle with
respect to the vortex center has the opposite sign to the angular
momentum of the vortex, then the hostile particle will move
more against the rotation of the vortex, and thus the motion
state of the swarm will more than likely be destroyed. For the
simulation results shown in Fig. 9, the vortex that rotates in a
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FIG. 11. (Color online) Data of the critical radius R, vs r, are plotted with respect to various values of b and «. Solid curves are the linear
regression curves of the corresponding data. Other parametersare N = 100,m =1,y =l,a=1,r,=2,c =10, w = 0.2.
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FIG. 12. (Color online) Data of the critical radius R, vs r, are plotted with respect to various values of a and «. Solid curves are the linear
regression curves of the corresponding data. Other parameters are N = 100, m =1,y =1,b=1,r, =2,¢c =10, w = 0.2.

clockwise direction has stronger perturbation than that which
rotates in a counterclockwise direction.

C. Influence of model parameters

In the following, we examine the vortex swarm’s capacity
for resisting disturbance by studying the influence of model
parameters on the critical radius. Actually, it is hard to
determine an accurate critical value of the risk radius, so we
define the critical risk radius R, as the maximum value, with
an accuracy of 0.001, under which a vortex to crystal transition
does not take place. Figure 11 shows that R, decreases linearly
as the alignment range r, increases with the same value
a = 1 and various values of b = 0.8, 1, 1.2. The critical radius
increases when the predator velocity is large, and, meanwhile,
a larger value of b can also result in a more stable vortex
swarm and a larger critical phase transition radius. The linear
regression curves that describe the linear relationship between
R and r, are also plotted.

Figure 12 shows the linearly decreasing relationship be-
tween the critical radius R, and r, with the parameters b = 1
and a = 0.6, 0.8. Together with Fig. 11(b), which is obtained
with b = 1 and a = 1, it can be seen that the larger value of
a helps to enhance the stability of the vortex swarm, and the
vortex phase cannot be easily destroyed and transformed into
the crystal state.

The changing process of R for a with the parameters
b =1 and r, = 0.05,0.1, 0.15 is shown in Figs. 13 and 14.
We can see that R, is linearly enhanced with increasing pro-
pelling strength a. For k = 1, 1.5, 2.0, the changing processes
between R, and a fit well the linear relationship, as shown in
Fig. 13. However, for k = 0.5, thex regression curves are the
nonlinear functions R, = —Ae 5 + C.

IV. CONCLUSIONS

In this article, we have studied the dynamic response of
a vortex swarm when avoiding a hostile particle (predator or
obstacle) based on the SPP model and the MD simulation.
When avoiding a hostile predator, particles in the vortex
swarm exhibit different escaping behaviors from those in a
crystal swarm. The vortex state shows a phase transition and
can transform into a crystal motion state when encountering
an attack from a hostile particle. Three parameters are defined
to characterize the collective escaping behaviors, including the
order parameter, the flock size, and the roundness parameter.
The phase transition from a vortex to crystal state when
avoiding a single predator depends on both the velocity and risk
radius of the predator. When the predator moves slower with
a larger risk radius, SPPs in the vortex swarm cannot return
to their original vortex state and the transition cannot occur.
The critical radius, the maximum risk radius of the predator
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FIG. 13. (Color online) Data of the critical radius R, vs a are plotted with respect to various values of r, and «. Solid curves are the linear
regression curves of the corresponding data. Other parametersare N = 100,m =1,y =1,b=1,rn,=2,¢c =10, w =0.2.
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FIG. 14. (Color online) Data of the critical radius R, vs a are
plotted with respect to « = 0.5 and various values of r,. Solid curves
are the fitted functions with the parameters: for r, = 0.05, A =
0.795, B = 6.195,C = 0.494; forr, = 0.10,A = 1.176, B = 6.347,
C = 0.482; and for r, = 0.15, A = 1.682, B = 6.026, C = 0.464.
Other parametersare N = 100,m = 1,y = 1,b=1,r, =2,¢c = 10,
w=0.2.
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with which the avoiding behavior of the vortex swarm cannot
lead to a phase transition, is also examined by considering
the influence of model parameters. The conclusion observed
is that the critical radius increases as the predator velocity
increases. We believe that our study can provide some insight
into the dynamic responses of biological swarm systems under
external attacks. Our study can be transposed into practical
applications, for example, we can drive away a real vortexlike
motion swarm (bird flock or fish school) by sending a simple
robot (as the hostile particle) to rush into a swarm center.
Our future work will focus on the phase transition behavior
from the vortex to the crystal from a theoretical point of view
[18,19].
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