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Determination of the interaction parameter and topological scaling features
of symmetric star polymers in dilute solution
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Star polymers provide model architectures to understand the dynamic and rheological effects of chain
confinement for a range of complex topological structures like branched polymers, colloids, and micelles. It
is important to describe the structure of such macromolecular topologies using small-angle neutron and x-ray
scattering to facilitate understanding of their structure-property relationships. Modeling of scattering from linear,
Gaussian polymers, such as in the melt, has applied the random phase approximation using the Debye polymer
scattering function. The Flory-Huggins interaction parameter can be obtained using neutron scattering by this
method. Gaussian scaling no longer applies for more complicated chain topologies or when chains are in good
solvents. For symmetric star polymers, chain scaling can differ from ν = 0.5 (df = 2) due to excluded volume,
steric interaction between arms, and enhanced density due to branching. Further, correlation between arms in
a symmetric star leads to an interference term in the scattering function first described by Benoit for Gaussian
chains. In this work, a scattering function is derived which accounts for interarm correlations in symmetric star
polymers as well as the polymer-solvent interaction parameter for chains of arbitrary scaling dimension using a
hybrid Unified scattering function. The approach is demonstrated for linear, four-arm and eight-arm polyisoprene
stars in deuterated p-xylene.
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I. INTRODUCTION

Symmetric star polymers provide an ideal architecture to
examine chain interactions in macromolecules [1–9]. The
presence of a branch point leads to topology driven rear-
rangements of individual arms in dilute solutions and therefore
the thermodynamic and structural characteristics differ from
their linear counterparts [1,3,6,10–20]. The interaction of
arms affect the molecular conformation affecting rheological
properties, which have been found ideally suitable for drug
delivery, polymer electrolytes in lithium batteries, additives
to improve water flooding during the enhanced oil recovery
process of fracking, and other applications [2,9,13,21–31].

Small-angle x-ray and neutron scattering from star poly-
mers is often fit using the Benoit function for symmetric stars
[32–34]. The Benoit function assumes Gaussian scaling. The
function accounts for correlations between the arms through
the addition of a correlation term to the Debye function, Eq. (1):

I (q) = 2G

Q2
(e−Q − 1 + Q), (1)

where Q = q2R2
g , q is the scattering vector, G is the scattered

intensity at q → 0, and Rg is the Gaussian coil radius of
gyration [35]. To extend the Benoit approach to non-Gaussian
conditions, an empirical function was proposed by Dozier
based on the work of Teixeira and Sinha [13,25,36] that has had
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limited success in parametrizing scattering from symmetric
stars in the presence of excluded volume. The Dozier function
is not based on a structural model and is an ad hoc function,
so it is unlikely to result in valid structural information.

In dilute solution Eq. (1) is generally not applicable since
chains generally display exclude volume altering the structural
scaling coefficient ν = 1/df , where df is the mass fractal
dimension for the coil. For Eq. (1), df = 2. In good solvents,
for a linear chain, df = 5/3 due to excluded volume. For
chains with complex structures, such as branched chains,
cyclics, and networked chains, df is known to increase due
to the increase in topological complexity [37]. In crowded
conditions, such as in high functionality star polymers with
functionality f � 3, the arms of the polymer have correlations
that cannot be ignored especially at high f .

At high f,f � 8, these correlations transform the fractal
structure to colloidal particles [13] as described by the Daoud-
Cotton model [10]. For example, Likos et al. [20] discuss
star polymers that display a “core” and a polymeric shell
similar to the Daoud-Cotton model [10] for star polymers with
f = 18. The arm length, the solvent quality, the functionality,
charge, and hydrophilicity of the arms govern the transition
from fractal or polymeric to colloidal Daoud Cotton structures.
Therefore it is probably necessary to consider more than just
star functionality.

Equation (1) has the further limitation that it ignores the
effect of enthalpic interactions between the polymer’s zero
conformational entropy Kuhn unit and the solvent (or polymer
in a blend). The presence of attractive enthalpic interactions
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leads to a diminution of the scattered intensity at low angles
that has been modeled using an analogy to screening in
charged colloids [20]. At sizes larger than the screening
length the system appears to be uniform since concentration
fluctuations dominate the scattering compared to the chain
form factor of Eq. (1). This effect was first modeled using
a double extrapolation to zero scattering angle and to zero
concentration in the Zimm plot [1]. The modified Zimm
approach of Stein and Hadziioannou [38], later justified by the
random phase approximation (RPA) of de Gennes [39], could
model scattering at all concentrations and angles [40–42]. This
approach is limited to Gaussian, linear chains (df = 2) since
it utilizes Eq. (1), so it does not address the issues of chain
topology or excluded volume.

Interarm correlations lead to steric straightening of the
arms, lowering df , in direct analogy to surface grafted chains
and polymer brushes. It is desirable to quantify these steric
interactions in order to understand the structure of complex
macromolecular topologies. This paper derives and applies
a scattering function that can account for topological and
solvation effects in linear and, further, in symmetric star
polymers in order to advance the understanding of polymer
chain structure, particularly in solution.

II. SCALING MODEL FOR SYMMETRIC
STAR POLYMERS

Complex macromolecules and fractal aggregates can be
described in terms of two distinct structural features, the
topology and the tortuosity. The structural topology is the
structure in the absence of convolution or tortuosity, with
the molecule straightened out, for example a linear chain
or an H polymer. The topology is determined at the time of
synthesis and can only be changed by breaking bonds. A linear
chain in extended conformation, θ , collapsed or good solvent
conditions has the same topology. Tortuosity reflects the
convolution of the structure. Therefore the solvent goodness
and steric constraints have an impact on the molecular
tortuosity but not on the molecular topology. The topology
as well as tortuosity of an object must be simultaneously
determined in order to reconstruct an average picture of that
object. Topology is reflected in the connectivity dimension c

and tortuosity in the minimum dimension dmin, as described
in Fig. 1, just as the overall structure is described by the mass
fractal dimension df .

Beaucage described a scaling model for branched polymers
[37] considering a macromolecular chain composed of z

Kuhn units of length lk [43]. Figure 1 shows a four-arm
symmetric star. The structure displays tortuosity in the chain
path through the arms, controlled by thermal fluctuations,
chain continuity, and steric constraints. The scaling model
considers the average minimum path of p Kuhn units from
one end to another, through the structure, as shown in dark
units in Fig. 1 [37,44,45]. A minimum path is the path an
electric current would follow through the structure undergoing
minimum possible distance to cross the structure. There are
f (f − 1)/2 possible minimum paths to cross the structure
through a star with a functionality of f . One of the possible
minimum paths is shown in bold in Fig. 1, where f = 4. An
average connectivity path of s Kuhn units composed of straight

FIG. 1. Schematic of a four-arm PI star polymer in two dimen-
sions. Four PI arms are connected to a tetrafunctional Si atom forming
the four-arm PI star with mass z, fractal dimension df , and connective
dimension c. A minimum path p with a dimension dmin, which
describes molecular tortuosity, is shown in dark units. The connective
path, composed of s units, is shown by dashed straight lines. Scaling
features are described in the text.

lines connecting the branch point and chain end points is shown
by dashed straight lines in Fig. 1.

For symmetric star polymers, the minimum path p is
composed of two arms (dark units in Fig. 1),

p = 2

(
z

f

)
. (2)

The minimum path p is related to the mass z through
the connectivity dimension c while the connectivity path s

is related to the mass through the minimum dimension dmin

the mass fractal dimension for the minimum path [37],

z = pc = sdmin . (3)

The connectivity dimension c is related to the fractal
dimension df as [37],

df = cdmin. (4)

c increases with increased branching while dmin increases with
tortuosity of the chain. For a linear polymer chain, dmin = df

and c = 1 while, for a completely connected regular object
like a sphere or a collapsed coil, df = c, since the minimum
path (or short circuit path) is a straight line through any regular
object (rod, disk, or sphere). For a chain in a θ solvent, with no
steric constraint, dmin = 2, while for a similar chain in good
solvent, dmin = 5/3 [37].

For symmetric stars, the mole fraction branch content (φbr )
is given by [37]

φbr = z − p

z
= 1 − z

1
c
−1 = f − 2

f
, (5)

where (z − p) represents the mass of the coil that does not lie
on the minimum path. For a four-arm star, φbr = 0.5. Further,
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the connectivity dimension c may be calculated for symmetric
stars from Eq. (5) as

c = ln z[
ln z + ln

(
2
f

)] . (6)

From Eq. (6), at high molecular weights, a star polymer
approaches the connectivity of a linear chain since c → 1 as
the branch site is diluted. (The radius of gyration distinguishes
linear from branched structures in this case.) A “meandering”
mole fraction (φm) accounts for mass that is not used in direct
or ballistic connectivity,

φm = z − s

z
= 1 − z1/dmin−1. (7)

As the functionality f increases, dmin and φm are expected
to decrease since steric constraints on the chain increase. For
linear chains, c = 1; f = 2. In the absence of steric affects,
good solvent scaling behavior is expected, dmin = 5/3, except
at the θ point where dmin = 2. Steric interactions extend the
star arms towards dmin → 1, for a fully sterically extended
arm. We can use these limits to define a measure of steric
interaction between the arms of a star,

φsi = sobserved − sunperturbed

sextended − sunperturbed
= z1/dmin − z1

/
df,l

z − z1
/
df,l

, (8)

where df,l is the fractal dimension of an unperturbed arm under
the given solvation conditions [26]. df,l = 5/3, 2, or 3 under
good-solvent, θ -solvent, or collapsed conformations respec-
tively. φsi is the first quantitative measure of steric effects in
stars (extendible to any branched structure). Mathematically,
φsi gives a measure of the observed extension of branched coil
from that of its linear counterpart normalized by its maximum
extension. φsi is zero for a linear polymer (minimum intracoil
steric hindrances) and attains a maximum value of 1 for a star
with rigid straight chains.

III. SMALL-ANGLE NEUTRON SCATTERING

Small-angle scattering can be used to quantify the scaling
model parameters as previously reported by Beaucage [37].
The enthalpy of mixing for a polymer in solution can be
described using the RPA equation [40,46,47],

kn

I (q)
=
[∑

i

1

viziφig(q)
− 2χ

v0

]
, (9)

where the summation runs over all of the solution components
including the solvent. z is the weight average number of
Kuhn units in the polymer, ϕ is the polymer volume fraction,
g(q) is the chain form factor in the absence of enthalpic
interactions (χ = 0), χ is the Flory-Huggins’s enthalpic
interaction parameter (empirical) [47], and v0 is the average
segmental volume [48],

υ0 = (vpolvsol)
1/2 =

[(
Mw,Kuhn

ρKuhn

)(
Msolv

ρsolv

)]1/2

, (10)

where vpol and vsol are the segmental volume of the Kuhn unit
and the solvent molecule respectively. The scattering constant

kn, which is proportional to scattering contrast, is [3,46]

kn = NA(bpol − bsol)
2, (11)

where NA is the Avogadro number, and bpol and bsol are
the scattering length densities of the polymer Kuhn unit and
solvent molecule respectively.

Coupling Eq. (9) with the Unified Function for branched
structures [37], a hybrid scattering function that accounts for
branching and enthalpic screening is obtained,

1

I (q)
= 1

Gf

{[{
e−(q2R2

g)/3 + Kf e−(q2l2
p)/9(q∗

f )−df
}

+ 1

z
{e−(q2l2

p)/9 + zKp(q∗
p)−1}

]−1

+ zφKv

(
1 − 2χ√

Kv

)}
, (12)

where Kv = vpol/vsol, q∗
f = q/{erf(qkscRg/

√
6)}3

, q∗
p =

q/{erf(qksclp/3
√

2)}3,ksc ≈ 1.06, and erf is the error function
[49,50]. The terms in the first curved bracket with subscript f

represent the fractal scaling regime, and those in the second
bracket with subscript p represent the rodlike persistent scaling
regime. Kf and Kp are ratios of power-law prefactor to Guinier
prefactor for fractal and persistent regimes respectively. Rg is
the radius of gyration for the fractal structures. The Guinier
prefactor for the fractal regime is given by

Gf = vpolzφNA(bpol − bsol)
2 (13)

and

z = Gf

/
Gp, (14)

where z is the weight average number of Kuhn units in the
whole structure [37]. Inclusion of the interaction parameter in
Eq. (12) can play a large part in determining the scattering
curve, especially at low q, at high concentration, and where
χ/

√
Kv � 0.5. Equation (12) fails to account for correlations

between arms in a symmetric star polymer, so it is applicable
only to disordered branched structures with a functionality of
∼3 such as long-chain branched, high-density polyethylene in
good solvents.

The chain form factor in Eq. (12) is based on the Unified
Function proposed by Beaucage which is widely utilized to
quantify fractal systems [37,51]. For branched systems the
scattering function is obtained by an extrapolation of an
integral form proposed by Benoit to the high-q power-law
regime and to the I (0) = G intercept. These extrapolations
are substituted for Gf and Bf in the Unified Function. The
integral form for topologically complex structures is obtained
from [52,53]

I (q)

G
=
(

2

p2

)
p1−c

∫ p

0
nc−1(p − n)e−q2R2

g,ndn. (15)

In Ref. [37] the integration in Eq. (15) is over the minimum
path p via minimum path index n, which goes from 0 to p
[37,49,50]. By substitution of parameters Beaucage obtains
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[37,51]

I (q)

G
= dmin

(qRg)df

∫ (qRg )2

0

[
1 − ydmin/2

(qRg)dmin

]
e−yy(df

/
2−1)dy.

(16)
As noted by Beaucage [37], Eq. (15) ignores cor-

relations between chain segments that are not linearly

bonded. To account for correlations between topologi-
cally connected chains, like binary interarm interactions
in star polymers, the approach proposed by Benoit and
later Alessandrini for symmetric star polymers can be em-
ployed [32,54]. For interaction among arms of an f arm,
symmetric star polymer, Eq. (15) is expanded to include
the interarm interactions following Benoit and Alessandrini
[32,54],

I (q)

G
=

⎡
⎢⎣
(f

1
)(

2
p2

)
p1−c

∫ p

0 ic−1(p − i)e−q2R2
g,i di

+(f2)( 2
p2

)2
p2(1−c)

∫ p

0 jc−1(p − j )e−q2R2
g,j dj

∫ p

0 kc−1(p − k)e−q2R2
g,k dk

⎤
⎥⎦, (17)

where the interaction integrals are over (
f

n

)
= f !

n!(f − n)!

pair of arms. Substituting for variables, similar to Beaucage and Benoit [32,37],

i =
(

6R2
g,i

R2
1

)dmin/2

= 1

qdmin

(
6u

R2
1

)dmin/2

⇒ di = 6

R2
1

1

qdmin

dmin

2

(
6u

R2
1

)dmin/2−1

du, (18)

j =
(

6R2
g,j

R2
1

)dmin/2

= 1

qdmin

(
6v

R2
1

)dmin/2

⇒ dj = 6

R2
1

1

qdmin

dmin

2

(
6v

R2
1

)dmin/2−1

dv, (18′)

k =
(

6R2
g,k

R2
1

)dmin/2

= 1

qdmin

(
6w

R2
1

)dmin/2

⇒ dk = 6

R2
1

1

qdmin

dmin

2

(
6w

R2
1

)dmin/2−1

dw, (18′′)

p =
(

6R2
g

R2
1

)dmin/2

(19)

in Eq. (17) yields

I (q)

G
=

⎡
⎢⎣f dmin

(qRg )df

∫ (qRg )2

0

[
1 − udmin/2

(qRg )dmin

]
e−uu(df

/
2−1)du

+ f (f −1)
2

d2
min

(qRg )2df

∫ (qRg )2

0

∫ (qRg )2

0

[
1 − vdmin/2

(qRg )dmin

][
1 − wdmin/2

(qRg )dmin

]
e−(v+w)(vw)(df

/
2−1)dvdw

⎤
⎥⎦. (20)

Equation (20) has two structural levels, the first corresponding to arm scattering and the second to binary arm correlations.
The exponents outside the single and double integrals, in the first and second terms of Eq. (20), respectively, constitute the I (0)
prefactors for the arm scattering term Gf and the binary arm correlation term G2f . Gf is simply the prefactor for a single arm
times the number of arms f ,

Gf = f G, (21)

and G2f is given by

G2f =
[
f (f − 1)

2

]
G =

[
f − 1

2

]
Gf . (22)

For the power law prefactor in the Unified Function B, the asymptotes are [37,51]

Bf = Gf dmin	
( df

2

)
R

df

g

, (23)

B2f = G2f d2
min	(df − 1)

R
2df

g

= (f − 1)Gf d2
min	(df − 1)

2R
2df

g

. (24)

From Eq. (23), dmin is given by [37,44,55],

dmin = Bf R
df

g

Gf 	
( df

2

) , (25)
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where 	 is the gamma function. Equation (25) is valid for monodisperse samples [44,55]. From df and dmin, c can be obtained
using Eq. (4) and p and s, using Eqs. (2) and (3).

With these substitutions Eq. (12) becomes

1

I (q)
= 1

Gf

⎧⎪⎨
⎪⎩
⎡
⎣ f −1

2

{
e−(q2R2

g)/3 + d2
min	(df −1)

R
2df
g

e−(q2lp
2)/9(q∗

f )−2df
}

+{e−(q2R2
g)/3 + Kf e−(q2lp

2)/9(q∗
f )−df

}+ 1
z

{
e−(q2lp

2)/9 + zKp(q∗
p)−1}

⎤
⎦

−1

+ zφKv

(
1 − 2χ√

Kv

)⎫⎪⎬
⎪⎭. (26)

The first term, with the lead factor (f − 1)/2, accounts for
binary correlations between the arms. This term has a steep
power law slope of −2df . In the original Benoit expression this
term has a slope of −4 and accounts for a steep upturn in the
scattering at low q. The second term is similar to Eq. (12) and
reflects scattering from the arms in the absence of correlations
between arms. This term includes a structural level describing
chain persistence. The final term accounts for screening due to
enthalpic interactions, serving to diminish the intensity at low
q under good solvent conditions at high concentrations. Under
the condition that f = 1 for a linear chain, Eq. (26) reverts to
Eq. (12) [21,32,41,54,56].

The evaluated χ parameter is per Kuhn unit, similar to z,
and not per mer unit, which means that the χ values evaluated
using Eq. (26) above are based on zero conformational entropy
units versus the traditional chemical mer unit. The calculation
of χ per unit Kuhn length is therefore thermodynamically more
relevant but may not be directly compared to values reported in
the literature, as the structural basis is different. Nevertheless,
the second virial coefficient (A2) may be alternately used to
alleviate the issues with base structure. A2 is given by

A2 =
(

1
2 − χ

)
Vsolρ

2
pol

, (27)

where Vsol is the molar volume of the solvent (evaluated to be
123.3 cm3/mol for p-xylene) and ρpol is the density of polymer
(∼0.916 g/cm3 for polyisoprene).

For the polymer-solvent system under present considera-
tion, and perhaps more generally, the initial hint of a transition
from polymeric or fractal structure to a colloidal, Daoud Cotton
structure may begin near f > 8. For different systems this
cutoff may occur at different functionalities but f > 8 as a
rule of thumb would be presently suggested for appearance
of colloidal features. The appearance of a three-dimensional
(3D) core is considered as a sign of colloidal structure for the
star polymers. This transition point with increasing f is a limit
to the applicability of the proposed scattering function.

IV. MATERIAL AND METHOD

Linear and four- and eight-arm symmetric star polyisoprene
samples were used. The linear standard was purchased from
PSS Polymer Standards Service GmbH, Mainz, Germany with
Mw of 110 kg/mole, Mn of 109 kg/mole, and PDI of 1.01. The
four-arm and eight-arm polyisoprene stars were synthesized
by anionic polymerization using high vacuum techniques
and chlorosilane chemistry [57]. All intermediate and final
products were analyzed by size exclusion chromatography
(SEC) and nuclear magnetic resonance spectroscopy. The

molecular weight of the arms (by SEC) and final star polymers
(by SEC-MALLS) are given in Table I.

Small-angle neutron scattering (SANS) was performed on
dilute solutions of model star isoprene in deuterated p-xylene
at 34.5 ◦C. 500 ppm of butylhydroxytoluene (BHT) was added
to as a stabilizer. Deuterated p-xylene was purchased from
Cambridge Isotopes. The polyisoprene (PI) samples were
equilibrated at 34.5 ◦C for 2 h prior to the measurements
to ensure complete dissolution of the polymer in solvent.
One weight percent solutions were used, which is below the
overlap concentration. SANS experiments were carried out
at HFIR CG-2 General-Purpose SANS facility at the Oak
Ridge National Laboratory (ORNL) and at NCNR NG7 SANS
facility at the National Institute of Standards and Technology
(NIST). At CG-2 HFIR, SANS experiments were run at sample
to detector distances of 18.5 and 0.75 m, while at NG7 NCNR,
experiments were done at 15, 7, and 1 m. The low-q data were
calibrated with standards to obtain absolute intensity.

V. RESULTS AND DISCUSSION

Figure 2(a) shows SANS data from a ∼1% solution
by weight of the linear standard, four-arm, and eight-arm
polyisoprene symmetric star polymers in d-xylene solvent.
The overlapping scattering curves clearly show deviations at
low-q [42]. The Unified fit for the four-arm polyisoprene
symmetric star polymer in Fig. 2(b) shows two structural
levels for the mass fractal, at intermediate q, the fractal-scaling
regime, and at high q, the persistence regime. The SANS data
fits from linear, four-arm, and eight-arm polyisoprene using
the hybrid Unified Function, Eq. (26), is shown in Fig. 2(c)
with offsets for visual clarifications.

The interarm interaction scattering in grey dashed lines
in Fig. 2(b) that decays faster in the lower-q regime comes
from the first term, with the lead factor (f − 1)/2, in Eq. (26)
which accounts for binary correlations between the arms. The
fractal scattering comes from scattering from the chain arms in
the absence of correlations between arms and has two sets of
parameters for the fractal and persistence scattering regimes
[44]. These two sets of fitting curves then add up, as shown in
grey dash-dot-dots, and are screened at low q by the inverse
of the χ term in Eq. (26) shown as grey dash-dots in Fig. 2(b).

The fitted and calculated scaling and thermodynamic
parameters are listed in Table II. The interaction parameter
for the samples varied from 0.34 ± 0.02 to 0.22 ± 0.03 and
0.31 ± 0.01 for the linear, four-arm, and eight-arm stars
respectively, which compare rather well with the reported
values for χ to be 0.27 [58,59]. It is to be noted that the
fitted values of empirical parameter χ is per unit Kuhn length,
which is the smallest zero conformational entropy unit of
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TABLE I. Synthesis and characterization details for linear, four-arm, and eight-arm PI star polymers.

Mn arm (kg/mol), SEC
Final star-branched PI

(SEC-MALS) f = Mn,star/Mn,arm

1,4 PI Cal.a SECb Mw/Mn Mn,kg/mol Mw/Mn Cal.a SECb

Linearc 110 1.01c – – 1 Linearc 110
4-arm 61 55 1.01 218.9 1.01 3.59 3.98
8-arm 60 55 1.01 415.4 1.01 6.92 7.55

aCalculated values from chemical stoichiometry.
bSEC/MALS determined values.
cPurchased from PSS Polymer Standards Service GmbH (Mw of 110 kg/mole, Mn of 109 kg/mole).

the polymer chain, as pointed out earlier. The second virial
coefficient for the linear, four-arm, and eight-arm star polymers
were estimated to be 0.0015 ± 0.0002, 0.0027 ± 0.0003, and
0.0018 ± 0.0001 mol cm3/g2. The persistence lengths for the
three samples were evaluated to be 13.2 ± 0.1 Å, 13.6 ± 0.3 Å,
and 12.6 ± 0.3 Å. Neither of the two parameters, χ/A2 or
lp, demonstrated any clear relation to the functionality of the
star polymers. The mass fractal dimension is close to 5/3 as
expected from Fig. 2(a).

The respective minimum paths p of 145 ± 2, 130 ± 1,
and 126 ± 1 for the three samples in Kuhn units remained
within ∼10% of each other while the respective minimum
dimensions of 1.72 ± 0.09, 1.46 ± 0.06, and 1.43 ± 0.05,
reflected an increase in the stretching of the arms in space
with the number of arms as compared to a linear chain under
good solvent conditions. The connective paths s of 18 ± 3,
45 ± 7, and 115 ± 21 Kuhn units displayed a connectivity
dimensions c of 1.00 ± 0.09, 1.14 ± 0.08, and 1.29 ± 0.07
which reflects an increase in branching and connectivity in
the star polymers with functionality. The branch fraction φbr ,
which was calculated by Eq. (5) and bound by Eq. (6),
was determined to be 0, 0.50 ± 0.06, and 0.75 ± 0.21 for
linear, four-arm, and eight-arm symmetric stars following the
expected value from (f − 2)/f . The meandering fraction φm,
which is the fraction of excess mass due to tortuosity in
the system, was calculated to be 0.88 ± 0.14, 0.83 ± 0.13,

and 0.77 ± 0.14 for the respective samples using Eq. (7)
which indicated that the arms stretch in space with increasing
functionality and hence a larger number of structural Kuhn
units z are necessary to connect the branch point to the free
end, as functionality increases.

The steric interaction fraction φsi is an important quan-
tification of the steric interactions of arms compared to the
maximum possible steric interaction. It is 0 for an unbranched
polymer chain and is expected to increase with increasing func-
tionality. φsi is calculated to be ∼0, 0.08 ± 0.05, 0.17 ± 0.07
for the linear, four-arm, and eight-arm samples respectively.
This value reflects an increasing steric interaction with increase
in functionality in symmetric star polymers.

VI. CONCLUSIONS

The effect of molecular weight and functionality is of great
significance to exploitation of the properties of star polymers,
which can acquire a wide range of conformations under
varying structural and thermodynamic constraints. A versatile
method to characterize such structures greatly enhances the
capability to establish robust structure-property relationships.
A scaling model for symmetric star polymers was presented
and a method to utilize SANS to obtain scaling parameters was
demonstrated. The scaling approach is expected to better de-
scribe these systems under different solvation conditions than

FIG. 2. (a) SANS from solution of ∼1% by weight linear standard, four-arm star and eight-arm star polyisoprene in xylene solvent in light
grey dots, dark grey dashes and solid black line. The slope of 5/3 and 1 are also shown. (b) SANS from four-arm polyisoprene in grey circles
with the final Hybrid Unified Fit [Eq. (26)] in black line. The contribution from fractal chain scattering, the interarm interaction, their sum
and χ -term are also presented. Please note the deviation of chain scattering from the Unified Fit near the Guinier knee. (c) SANS from linear,
four-arm and eight-arm polyisoprene with Hybrid Unified Fits with offsets for visual clarifications. The low q correlation features are present
due to the intercorrelation among the arms in the star as the concentration of 1 wt % was below the overlap concentration.
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TABLE II. Fitted, thermodynamic and calculated scaling parameters for PI polymer samples using the Unified Function Eq. (26).

103A2

Sample Rg (Å) z df χ a (mol cm3 g−2) lp (Å) dmin c p s φbr φm φsi

Linear 130 145 1.72 0.34 1.5 13.2 1.72 1.00 145 18 0.0 0.88 0.0
Std ±2 ±2 ±0.06 ±0.02 ±0.2 ±0.1 ±0.09 ±0.09 ±2 ±3 ±0.0 ±0.14 ±0.0

4-arm 165 260 1.67 0.22 2.7 13.6 1.46 1.14 130 45 0.50 0.83 0.08
±7 ±3 ±0.04 ±0.03 ±0.3 ±0.3 ±0.06 ±0.08 ±1 ±7 ±0.17 ±0.13 ±0.05

8-arm 224 503 1.69 0.31 1.8 12.6 1.43 1.29 126 115 0.75 0.77 0.17
±3 ±7 ±0.03 ±0.01 ±0.1 ±0.3 ±0.05 ±0.07 ±1 ±21 ±0.21 ±0.14 ±0.07

aχ determined per Kuhn unit.

previous methods because it can accommodate and distinguish
changes in topology, tortuosity, and thermodynamics.

A scattering function was derived which takes account of
the interarm correlations and the polymer-solvent interaction
parameter. The concept of branch fraction φbr was used for
quantification of star functionality since it can be directly
obtained by analysis of scattering data using the scaling
approach. The approach was successfully applied to linear,
four-arm, and eight-arm PI stars and the results were discussed.
This versatile method to quantify the structural as well as ther-
modynamic parameters should greatly enhance capabilities

to establish robust structure-property relationships for such
systems.
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