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Investigations of the phase diagram of biaxial liquid-crystal systems through analyses of general Hamiltonian
models within the simplifications of mean-field theory (MFT), as well as by computer simulations based on
microscopic models, are directed toward an appreciation of the role of the underlying molecular-level interactions
to facilitate its spontaneous condensation into a nematic phase with biaxial symmetry. Continuing experimental
challenges in realizing such a system unambiguously, despite encouraging predictions from MFT, for example,
are requiring more versatile simulational methodologies capable of providing insights into possible hindering
barriers within the system, typically gleaned through its free-energy dependences on relevant observables as the
system is driven through the transitions. The recent paper from this group [Kamala Latha et al., Phys. Rev. E
89, 050501(R) (2014)], summarizing the outcome of detailed Monte Carlo simulations carried out employing an
entropic sampling technique, suggested a qualitative modification of the MFT phase diagram as the Hamiltonian
is asymptotically driven toward the so-called partly repulsive regions. It was argued that the degree of (cross)
coupling between the uniaxial and biaxial tensor components of neighboring molecules plays a crucial role in
facilitating a ready condensation of the biaxial phase, suggesting that this could be a plausible factor in explaining
the experimental difficulties. In this paper, we elaborate this point further, providing additional evidence from
curious variations of free-energy profiles with respect to the relevant orientational order parameters, at different
temperatures bracketing the phase transitions.
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I. INTRODUCTION

The thermotropic biaxial nematic phase, which was pre-
dicted by Freiser [1] nearly four decades ago, has attracted
considerable attention recently for various reasons, ranging
from a fundamental question of conducive experimental condi-
tions for its realization, to its envisaged applications in display
devices. Even though predictions made by various mean-field
(MF) theoretic treatments [2–9], Landau free-energy-based
analyses [10–14], and computer simulations [15–22] support
the feasibility of such a phase, success on the experimental
front has been rather modest [23]. Experimentally, the biaxial
phase was first obtained in a lyotropic, ternary mixture of
potassium laurate, 1-Decanol, and D2O in 1980 [24] and more
recently in bent-core compounds [25,26], organo-siloxane
tetrapodes [27,28], LC polymers [29], and colloidal systems
of Goethite particles [30]. Though recent experiments [31,32]
point to low transition enthalpies for rod-disk systems, an
unambiguous biaxial phase has not been established in such
systems. From the point of view of application, it is anticipated
that the minor director could switch more readily compared to
the major director in an external field [20,33], leading to faster
response times. Even in the recent case of bent-core molecules,
there appears to be a debate on the consistency in the experi-
mental findings [34–37]. Achieving spontaneous macroscopic
biaxiality in nematic liquid crystal phases with appreciable
biaxial order appears at the moment to be a challenge.

Recent theoretical studies, on the other hand, point to a
more optimistic picture: they predict that the condensation of a
biaxial phase could occur over a wide range of the Hamiltonian
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parameter space of a general quadrupolar model [5–9].
However, the analysis of the mean-field model was noted to be
unsatisfactory, as the phase behavior of the biaxial system
in the limit of vanishing intermolecular biaxial interaction
traversing in the process the so-called partly repulsive region of
the Hamiltonian was found to be contravening the biaxial phase
stability criterion [9]. In this context, we revisit the mean-field
phase diagram with detailed Monte Carlo simulations. The
main results of this study were briefly presented recently [38].
The other MC work on the so-called μ model [39] was also
similarly concerned with the consequences of the contribution
of a repulsive interaction term in the Hamiltonian.

In this paper, we present the details of a qualitatively
different type of Monte Carlo sampling that we adopted
for the study. It was observed that the sampling methods to
extract equilibrium averages based on equilibrium ensembles
(constructed using the METROPOLIS algorithm [40]) largely
lead to results in agreement with the mean-field theory
(MFT) in the so-called attractive region of the Hamiltonian
parameter space. Keeping this in view, we adopted the
Wang-Landau sampling procedure [41] augmented by frontier
sampling [42,43] to determine the representative density of
states of the system, enabling the calculation of all relevant
thermodynamic properties. We find that this more versatile
and efficient technique results in qualitatively different results
in certain regions of the parameter space, leading to the
proposal of a modified phase diagram (relative to MFT).
We argue that such differences, which develop progressively
as the “partly repulsive region” is reached, are important in
understanding the relative roles of different contributions to
the intermolecular tensor interactions.

The mean-field Hamiltonian model employed and its repre-
sentation for purposes of simulation are outlined in Sec. II. The
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sampling technique and the simulation details are presented in
Sec. III. The observations based on these computations are
presented in Sec. IV, followed by conclusions in Sec. V.

II. HAMILTONIAN MODEL

The MF analysis [5–9] is based on the general quadrupolar
orientational Hamiltonian, proposed by Straley [2] and set
in terms of tensors [5]. Accordingly, the interacting biaxial
molecules are represented by two pairs of symmetric, traceless
tensors (q, b) and (q ′, b′). Here q and q ′ are uniaxial
components about the unit molecular vectors m and m′,
whereas b and b′ (orthogonal to q and q ′, respectively) are
biaxial. These irreducible components of the anisotropic parts
of the susceptibility tensor are represented in its eigenframe
(e,e⊥,m) as

q := m ⊗ m − I
3
, (1a)

b := e ⊗ e − e⊥ ⊗ e⊥, (1b)

where I is the identity tensor. Similar representations hold for
q ′ and b′ in the eigenframe (e′,e′

⊥,m′). The interaction energy
is written as

H =−U [ξ q · q ′ + γ (q · b′ + q ′ · b) + λ b · b′], (2)

where U is the scale of energy, ξ = ±1, and γ and λ are
dimensionless interaction parameters, determining the relative
importance of the uniaxial-biaxial coupling and biaxial-biaxial
coupling interactions between the molecules, respectively.

Mean-field analysis of the Hamiltonian identifies a trian-
gular region OIV in the (γ,λ) plane—called the essential
triangle—representing the domain of stability into which any
physical system represented by Eq. (2) can be mapped [7,9]
(see Fig. 1). The dispersion parabola λ = γ 2 [4] traverses
through the interior of the triangle, intersecting IV at point
T , called the Landau point. The region of the triangle above
the parabola corresponds to a Hamiltonian where all the terms
are attractive, while the region below is noted to be partly

FIG. 1. (Color online) Essential triangle: Region of biaxial sta-
bility. OI and IV are uniaxial torque lines intersecting at point I

(0,1/3). OT is the dispersion parabola, which meets the line IV at
the Landau point T . Point V (1/2,0) is the limit of biaxial stability for
the interaction. C1 (0,0.2) and C3 (5/29,19/87) are tricritical points,
and C2 (0.22,0) is a triple point [9]. K (0.2,0.2) is a point where
μ = −1 (refer to the text).

repulsive [7]. In particular, a mean-field (MF) phase diagram
was predicted [9] as a function of the arc length OIV (Fig. 1),
denoted by λ∗, defined as λ∗ = λ on the segment OI , and

λ∗ = (1 + √
13γ )

3
,

with

γ = (1 − 3λ)

2
covering the segment IV . The MF phase diagram predicts
for λ∗ � 0.22 (γ = 0, λ � 0.22) a two-stage transition from
an isotropic to a biaxial phase, with an intervening uniaxial
nematic phase. The uniaxial-biaxial transition is computed
to be second order (NB = NU − I ) up to the point C1 (γ =
0,λ � 0.2), and then it changes to first order (NB − NU − I )
until C2 (γ = 0,λ � 0.22). For the rest of the range of λ∗, a
direct isotropic-biaxial transition is expected, extending up to
V in Fig. 1. This transition is predicted to be first order (NB −
I ) for λ∗ � 0.54, (C3,λ

∗ = 0.54,(γ = 5/29,λ = 19/87)) and
second order (NB = I ) up to the point V (γ = 0.5,λ = 0.0).
Hence C1 and C3 are tricritical points and C2 is a triple point.

We consider here the diagonal form of the interaction
Hamiltonian in Eq. (2) [7,9] expanded as a superposition of
two quadratic terms, i.e.,

H = −U (a+q+ · q+′ + a−q− · q−′
),

where q+ and q− are orthogonal molecular biaxial tensors
represented as

q± = q + γ ±b

with

γ ± = 3λ − 1 ±
√

(3λ − 1)2 + 12γ 2

6γ
, a+ = γ − − γ

γ − − γ + ,

and

a− = γ − γ +

γ − − γ + .

Along OI , where γ = 0, q+ = q, q− = b, a+ = 1, and a− =
λ, implying that q+ is pure uniaxial and q− is pure biaxial and
the Hamiltonian reduces to an interaction in terms of a single
parameter λ,

H =−U (q · q ′ + λb · b′). (3)

Similarly, along IV , defined by 1 − 3λ − 2γ = 0, the
Hamiltonian is expressed in terms of uniaxial tensor q∗

2 and
biaxial tensor b∗

2 as [9]

H =−U
1 − λ

2
(−μ q∗

2 · q∗′
2 + b∗

2 · b∗′
2 ), (4)

where

q∗
2 =−1

2
q− =

(
e ⊗ e − I

3

)
,

b∗
2 = 3

2
q+ = (m ⊗ m − e⊥ ⊗ e⊥),

and

μ = (1 − 9λ)

(1 − λ)
.
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The pairwise interaction in Eq. (4) now reduces to

H = U ′
[
μ

(
e ⊗ e − I

3

)
·
(

e′ ⊗ e′ − I
3

)

− (e⊥ ⊗ e⊥ − m ⊗ m) · (e′
⊥ ⊗ e′

⊥ − m′ ⊗ m′)
]

(5)

with U ′ = U (1 − λ)/2. In this format, μ = −3 corresponds
to the point I (0, 1/3) in Fig. 1, μ = 0 to the Landau point T

(1/3,1/9) (LP), and μ = +1 to V (0.5, 0.0). In particular, we
observe that μ = −1 corresponds to λ∗ � 0.57 located at K

(0.2,0.2) in Fig. 1.
For simulation purposes, the general Hamiltonian in Eq. (2)

is conveniently recast as a biaxial mesogenic lattice model,
where particles of D2h symmetry, represented by unit vectors
ua,vb on lattice sites a and b, interact through a nearest-
neighbor pair potential [44]

U =−ε{G33 − 2γ (G11 − G22) + λ[2(G11 + G22) − G33]}.
(6)

Here fab = (va · ub) and Gab = P2(fab), with P2 denoting
the second Legendre polynomial. The constant ε (set to unity
in simulations) is a positive quantity setting the reduced
temperature T ′ = kBT/ε, where T is the absolute temperature
of the system. This is recast along IV of the triangle, using
Eq. (17) in Ref. [39], in terms of the parameter μ as

H = ε[μG11 + (−2G33 − 2G22 + G11)]. (7)

III. DETAILS OF THE SIMULATION

The Wang-Landau (WL) sampling [41] is a flat histogram
technique designed to overcome energy barriers encountered,
for example, near first-order transitions, by facilitating a
uniform random walk along the energy (E) axis through an
appropriate algorithmic guidance. The sampling, originally
developed for Hamiltonian models involving random walks
in discrete configurational space, continues to be applied to
various problems in statistical physics [45,46] and polymer
and protein studies [47–49], and it is being developed for
more robust applications for continuous systems [50–56] and
self-assembly [57]. The proposed algorithm was modified [58]
to suit lattice models such as the Lebwohl-Lasher interac-
tion [59], allowing for continuous variation of molecular
orientations. It was subsequently augmented with the so-called
frontier sampling technique [42,43] to simulate more complex
systems such as the biaxial medium. The WL sampling is
based on effecting a convergence of an initial distribution over
energy E to the density of states (DOS) g(E) of the system
iteratively. The frontier sampling technique is an algorithmic
guidance, provided in addition to the WL routine, by which
the system is constrained to visit and sample from low entropic
regions. The modified Wang-Landau algorithm using entropic
sampling augmented by frontier sampling [43] is described
below.

We consider a cubic lattice (size: L × L × L,L = 15,20)
with each lattice site representing a biaxial molecule, and hence
hosting a (right-handed) triad of unit vectors. We initiate the
process by assigning random orientations of all the axes at
every site, and we compute the energy of the system at the

chosen point in the (γ,λ) plane with the Hamiltonian in Eq. (6)
[corresponding to ξ = 1 in Eq. (2)], under periodic boundary
conditions. The temperature is thus measured in reduced units.
The energy range of interest of the system (Emin,Emax) is
divided into N bins (we set N = 40 L3) of equal width, and
the bin energies are indexed as Ei , corresponding to the values
at the center of the ith bin. We indexed these bins starting from
Emin. We initialize g(Ei) to an array g(0)(Ei) with equal values
(i = 1, . . . ,N), where the superscript is the iteration run index
and the subscript is the energy bin index. The estimate of g(Ei)
is improved by updating iteratively, until it converges to the
density of states within a set tolerance limit.

For liquid crystal systems with continuous degrees of
freedom for the random walk in configuration space, we find it
necessary to perform the simulations on a log-log scale to avoid
issues of large numbers and consequent overflow problems.
Following [60], we work with ζi = log(αi) = log{log[g(Ei)]},
where αi represents the microcanonical entropy. The ac-
ceptance criterion as well as reweighting procedures are
implemented on this scale.

During the random walk, the system is permitted to transit
from an initial configuration with an instantaneous value ζi to
a trial configuration with ζt with a probability given by

p = min{1, exp [ − exp (ζt + log{1 − exp[−(ζt − ζc)]})]}.
(8)

We update the values of ζi (i = 1, . . . ,N) of the bins with
a Gaussian centered at the accepted bin energy value (say E0),
as

ζi → ζi + γ0 exp

(−(Ei − E0

δ

)2

. (9)

Here (γ0,δ) represent the modification parameters. We kept
δ constant through the simulation (at 0.002 × N ) and chose the
initial value of γ = 0.1. The random walk of the system over
the energy bins, at this value of γ0, is carried out for a large
number of lattice sweeps (attempted L3 moves), typically 107

sweeps or more depending on the system size. The γ0 value
is reduced to γ0 → 0.95γ0, and the procedure is repeated
until γ0 reaches a set small value close to zero (10−4). The
computations involving a progressive reduction of γ0, starting
from the initial high value to the set low value, constitute an
iteration. After two such successive iterations, the differences
between histogram values at each bin are determined. If the
differences are nearly uniform over some energy range, it
implies that this region is adequately sampled. We expect,
on entropic grounds, that the flatness of the distribution, in
terms of fairly uniform increments of histogram values, is
achieved more readily starting from the maximum energy
value. We refer to the limiting lower energy bin, satisfying
the flatness criterion, as the frontier, say Ec. Following the
suggestion of [42], we update the values of the histogram
above Ec by a uniform value (say, 0.5). This causes the
system, under the above acceptance criterion, to perform a
random walk preferentially in the lower-energy region hosting
less accessible states, until the histogram values build up to
match the values in the higher-energy regions, above Ec. This
process is continued with such iterations, and new frontiers are
identified at progressively lower energy values, corresponding
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FIG. 2. (Color online) Temperature variation of the specific heat (in arbitrary units) for different ranges of λ∗: (a) 0.1–0.25, (b) 0.26–0.33,
(c) 0.33–0.53, and (d) 0.53–0.733. Corresponding variations of the two primary order parameters (R2

00 and R2
22) are shown in the insets with

the same color scheme. Splitting of the Cv peaks in (d) for λ∗ > 0.53 and qualitative changes in the temperature variation of order parameters
are clearly observed.

to an approximate estimation of the DOS over larger energy
ranges, until the frontier reaches Emin.

Consequently, a long smoothing run is performed (no
frontiers are identified at this stage) starting with initial values
of (γ0,δ) set to (0.001, 0.002 × N ), and the value of γ0

is progressively decreased during this computation until it
reaches practically zero value, �10−9. Such iterations continue
until a specified flatness criterion is met over the entire energy
range. This ensures that the final ζ (Ei) converges to its
asymptotic value and is representative of the density of states
of the system, within the tolerances prescribed by the flatness
criterion.

We now construct a large entropic ensemble of microstates
(say, M ∼ 4 × 107) by effecting a random walk of the system
over the energy bins (i = 1, . . . ,N) with an acceptance
probability based on g−1(Ei) [analogous to Eq. (8)]. We
label the microstates as Ci

ν [i = 1, . . . ,N,ν = 1, . . . ,M] with
M 
 N . We note that an ith bin, for example, hosts a large
number of microstates (Ci

ν) with distinct energies E(Ci
ν),

however it is represented by the same density of states g(Ei).

The relevant thermodynamic quantities are calculated at
each temperature by constructing an appropriate canonical
ensemble of states using a reweighting technique [61]. We refer
to these ensembles as RW ensembles to differentiate from those
constructed through the METROPOLIS guided random walk (B
ensembles). The equilibrium averages of a physical variable
“O” at a temperature T (β= 1

kBT ) are computed through this
procedure as

〈O〉 =
∑

Ci
ν
O

(
Ci

ν

)
g(Ei) exp

[− βE
(
Ci

ν

)]
∑

Ci
ν
g(Ei) exp

[− βE
(
Ci

ν

)] . (10)

The representative free energy F, as a function of the energy
of the system, as well as of the two dominant order parameters
(uniaxial and biaxial orders), is computed from the DOS and
the microcanonical energy, both of which are available as a
function of bin number in the entropic ensemble.

The WL simulations were carried out at different values
of (γ,λ) in Eq. (6) so as to trace the trajectory OIV of
the essential triangle in Fig. 1 at about 60 chosen points.
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(a) (b)

(c) (d)

FIG. 3. (Color online) Comparison of the results obtained from B ensembles (hollow red circles) and RW ensembles (hollow black squares):
Temperature variation of the specific heat (in arbitrary units) and corresponding variations of the two primary order parameters (R2

00 and R2
22)

are shown for different values of λ∗ in regions OI and IV : (a) 0.2, (b) 0.33, (c) 0.51, and (d) 0.54. The overlap of the corresponding curves
[(a)–(c)] clearly indicates the agreement between the two ensembles up to λ∗ = 0.53 as mentioned in the text. Part (d) shows the qualitative
disagreement first noticed at λ∗ = 0.54.

For purposes of comparison, conventional MC sampling
(based on the METROPOLIS algorithm) was used to construct
canonical (Boltzmann) ensembles. Considering an attempted
N = L3 moves as one lattice sweep (MC step), the system
is equilibrated, and a production run is carried out, each for
6 × 105 MC steps. In our analysis, we find it necessary to
distinguish between the averages from B ensembles and RW
ensembles.

The physical parameters of interest in this system, calcu-
lated at each λ∗, are the average energy 〈E〉, specific heat
Cv , energy cumulant V4 [= 1 − 〈E4〉/(3〈E2〉2)], which is
a measure of the kurtosis [62], the four order parameters
of the phase calculated according to [17,63], and their
susceptibilities. These are the uniaxial order 〈R2

00〉 (along the
primary director), the phase biaxiality 〈R2

20〉, the molecular
contribution to the biaxiality of the medium 〈R2

22〉, and the
contribution to uniaxial order from the molecular minor axes
〈R2

02〉.
The averages are computed at a temperature resolution of

0.002 units in the temperature range [0.05, 2.05]. The tempera-
ture T ′ of the simulation is scaled to conform to the values used
in the mean-field treatment: 1/β∗ = 3T ′/{9[2U (1 + 3λ)]}
[7,9]. Statistical errors in different observables are estimated
over ensembles comprising a minimum of 5 × 105 microstates,
and these are compared with several such equilibrium ensem-
bles at the same (γ,λ) value, but initiating the random walk

from different arbitrary points in the configuration space. We
find that the relative errors in energies are 1 in 105, while those
in the estimation of the order parameters are 1 in 104. We also
note that these error estimates from RW ensembles are smaller
relative to B ensembles of comparable size by at least an order
of magnitude, due to the efficacy of the importance sampling
involved in the reweighting procedure.

IV. RESULTS

The temperature variations of the specific heat and the two
dominant scalar order parameter (R2

00 and R2
22) values obtained

from RW ensembles at various values of λ∗ along the arc OIT

(λ∗ axis) are shown in Figs. 2(a)–2(d).
It is noted from Fig. 2(a) that for all values of λ∗ in the range

0.1–0.25, two transition peaks are observed in the specific heat.
As the biaxial system is cooled from the high-temperature
isotropic phase, an initial I − NU transition occurs at a high
temperature, T1, followed by a second transition NU − NB

at lower temperature, T2. The I − NU transition temperature
remains fairly constant with the variation in λ∗, whereas the
NU − NB transition shifts toward higher temperatures as λ∗
increases from 0.1 to 0.25. This behavior is also reflected in the
order-parameter profiles shown in the inset. The two transitions
eventually coalesce at λ∗ = 0.26, resulting in a triple point,
and a direct isotropic-biaxial (I − NB) transition occurs from
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FIG. 4. (Color online) Variation of energy cumulant with tem-
perature, at different λ∗ values: (a) 0.18, (b) 0.2, (c) 0.22, and
(d) 0.26.

λ∗ = 0.26 to 0.53, as depicted by the specific-heat profiles and
order parameters (inset) of Figs. 2(b) and 2(c). These results
from RW ensembles agree qualitatively with those obtained
from the B ensembles in the range of λ∗ = 0.1–0.53.

A comparative study of the WL and MC simulation results
for certain representative values of λ∗ are shown in Figs. 3(a)–
3(d). It is observed that qualitative agreement with the mean-
field predictions exists up to λ∗ � 0.53, and deviations of the
RW ensembles from MF and B ensembles start from λ∗ =
0.54 (5/29,19/87) (i.e., C3 in the essential triangle of Fig. 1).

Referring to Fig. 2(a), the results from RW ensembles agree
with MF predictions except for the actual values of the location
of the tricritical and triple points C1 and C2. In this respect,
one has to make allowances for unavoidable finite-size effects
on the simulation data on the one hand, and the inherent
approximate nature of the mean-field theoretical analysis in
this respect on the other.

At L = 20, the simulation results show that the tricritical
point lies in the neighborhood of λ∗ = 0.18; the nature of
the NU − NB transition appears to change to (weak) first
order for values of λ∗ � 0.18, as evidenced from the energy
cumulant data shown in Fig. 4. The triple point is located
at λ∗ ∼ 0.26 (the corresponding MF value is ∼0.22) as the
transition sequence I − NU − NB changes to I − NB at this
value of λ∗ [see Fig. 2(b)]. Transition temperatures derived
from these simulations are summarized in Table I.

It is of interest to observe that the I − NB transition
progressively becomes very strongly first order as the λ∗

TABLE I. Transition temperatures in the range of λ∗ =
(0.18,0.26): T ′

1 and T ′
2 are transition temperatures (in reduced units)

obtained from simulation, while T∗
1 and T∗

2 are the corresponding
equivalent mean-field temperatures.

λ∗ T ′
1 T ′

2 T∗
1 T∗

2

0.18 1.1753 0.9919 0.1272 0.1074
0.2 1.1937 1.0770 0.1243 0.1122
0.22 1.2110 1.1490 0.1216 0.1153
0.26 1.2516 0.1172

FIG. 5. (Color online) (a) Specific-heat profile with (inset) en-
ergy cumulant; (b) order parameters with (inset) susceptibility profiles
for λ∗ = 0.33. Point I of the essential triangle is the intersection
point of the three uniaxial torque axes [9] and hosts the strongest first
order I − NB transition, as shown by the very sharp features of these
physical properties.

value increases to 1/3 and is most pronounced at the point
corresponding to coordinates (0,1/3) (Fig. 1). Figure 5 depicts
the specific heat with (inset) energy cumulant and order
parameters with (inset) their susceptibilities for this value
of λ∗.

This feature of the transition is also demonstrated by the
variation of the representative free energy obtained from

FIG. 6. (Color online) Representative free energy (in arbitrary
units) as a function of biaxial order parameter R2

22 at (a) T > TNBI ,
(b) T = TNBI , and (c) T < TNBI at λ∗ = 0.33 for a system of size
L = 15.
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(a) (b) (c)

(d) (e) (f)

FIG. 7. (Color online) Specific-heat profile with (inset) energy cumulant V4 and order parameters with (inset) susceptibility profiles at
different λ∗ values (a) 0.54, (b) 0.58, (c) 0.62, (d) 0.66, (e) 0.69, and (f) 0.72.

the DOS and bin energies, as a function of the two order
parameters. As an example, we depict its variations across
the transition (λ∗ = 0.330, L = 15) in Fig. 6. Observation of
such a strong free-energy barrier (see the coexistence region
at T = TNBI ) is supportive of the MF prediction at I . Very
similar plots result as a function of R2

00 also.
Referring to Fig. 2(d), we observe that the Cv peak splits

starting from λ∗ ∼ 0.54, signaling the onset of two transitions.
The temperature gap between transition peaks increases with
λ∗ above this value, attaining a maximum at λ∗ = 0.733 (T
on the triangle). These observations are illustrated in Fig. 7,
plotting all the relevant variables as a function of temperature
at chosen values of λ∗ (0.54, 0.58, 0.62, 0.66, 0.69, and 0.72)
along the segment C3T . These graphs depict the temperature
variation of specific heat Cv with energy cumulant V4 (inset)
and order parameter (R2

00,R
2
22) profiles along with respective

susceptibilities χ (inset).
The nature of the two phases below the clearing point is

inferred from the order-parameter profiles and their suscep-
tibility peaks. Referring to the two transition temperatures
in decreasing order as T1 and T2, the data indicate that the
onset of a biaxial phase takes place at T1 itself, and the
growth of biaxial order in the intermediate phase is marginal as

compared to the uniaxial order. Furthermore, both the uniaxial
and biaxial order parameters display a sudden upward jump
at T2, and subsequently increase rapidly (more pointedly the
biaxial order R2

22) as the temperature is lowered further. This
behavior is prominent in the neighborhood of λ∗ = 0.66. The
susceptibility of R2

00 exhibits two peaks corresponding to the
two transitions, whereas that of R2

22 shows only a single peak
at T2 for all values of λ∗. The energy cumulant V4 shown in the
inset of each of the figures indicates the first-order nature of
the I − NB1 transition (at T1). The additional second dip at the
lower-temperature transition (at T2) appears to point toward
the progression of the first-order nature of the NB1 − NB

transition. It is observed that the dip in the cumulant at T2

is maximum at λ∗= 0.66.
We also examined the representative free energy plotted as a

function of the order parameters at the transition temperatures
T1 and T2. These variations observed near T1, for different
λ∗ values (covering the region C3T ), are shown in Fig. 8.
Focusing on Figs. 8(a) and 8(b), one immediately observes
that both free-energy profiles (with respect to R2

00 and R2
22) at

T1 show a distinctive indication of a developing minimum at
a lower temperature evidenced by the systematic deviations
(from a smooth continuation) of the profiles at the respective
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(a)

(b)

FIG. 8. (Color online) Free energy shown as a function of (a) R2
00

and (b) R2
22, at the transition temperature T1 for λ∗ values in the region

C3T of Fig. 1.

higher values of the two order parameters. And, as λ∗ increases
in the C3T region, the location of these sharp deviations shifts
progressively to a higher value of the corresponding order
parameter.

We tracked the variation of these profiles closely from T1

to T2 (shown in Fig. 9 for a single value of λ∗ = 0.65), and
we found that the free-energy minima gradually shift toward
high-order regions, and the second transition at T2 corresponds
to a gradual shift of the free-energy minima toward the curious
regions, depicted in Fig. 8. The variation of the free energy at
T2 is shown in Figs. 10(a) and 10(b) for different values of λ∗
(in region C3T ). These depict a free-energy minimum attained
at T2 for all values of λ∗.

(a)

(b)

FIG. 9. (Color online) Free energy shown as a function of (a) R2
00

and (b) R2
22, on cooling from T1 to T2 for λ∗ = 0.65.

We argue that the progression of the free-energy profiles
with temperature, as a function of R2

00 and R2
22, and matching of

the values of respective order parameters at T2 with the location
of sharp deviations observed in Fig. 8, are further evidence for
the existence of two transitions in this region. This could be
made possible only by adopting a MC sampling procedure
that facilitates the computation of free-energy profiles of the
system via the density of states.

We are thus led to the conclusion that in this region of
λ∗ values, the medium undergoes two transitions, and both
low-temperature phases have biaxial symmetry. From the data
on the limited temperature region available for the intermediate
phase, and in comparison with the low-temperature phase, it
appears that the biaxial order in the intermediate phase is
somewhat inhibited, presumably by free-energy barriers. It
is only after the second transition at T2 (between the two
biaxial phases, and hence necessarily a first-order transition)
that the biaxial order shows a normal increase with a decrease
in temperature, as is to be expected. Thus we propose the phase
sequence in this region to be NB − NB1 − I .

We now construct the phase diagram as a function of
the arc length λ∗ based on the specific-heat data (from RW
ensembles), shown in Fig. 11 at 56 values of λ∗ distributed over
the arc OIV (see [38] for details). The transition temperatures
at a few representative values of λ∗ beyond the Landau point
T (segment T V ) are obtained from the B ensemble data. The
temperature T ′ of the simulation is scaled to conform to the
values 1/β∗ used in the mean-field treatment as discussed in
Sec. III.

A comparison of the phase diagram proposed from the
current MC simulations [38] with that predicted based on
mean-field theory [9] brings out clear qualitative differences in
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(a)

(b)

FIG. 10. (Color online) Free energy shown as a function of (a)
R2

00 and (b) R2
22, at the transition temperature T2 for λ∗ values in the

region C3T of Fig. 1.

the region C3T V of the essential triangle. We observe that the
predicted direct transition from the isotropic to biaxial phase
is replaced by two transitions in which an intermediate biaxial
phase occurs between these two phases. These results begin
to deviate starting from λ∗ � 0.54, very close to point C3 in
Fig. 1. The fact that B ensembles constructed from simple
configurational random walks based on the METROPOLIS

algorithm fail to detect the second transition in this λ∗ region
merits some discussion.

FIG. 11. (Color online) Phase diagram as a function of λ∗,
derived from RW ensembles. The transition temperature 1/β∗ is
scaled to conform to mean-field values as indicated in the text. Points
along OIV in Fig. 1 are mapped onto the λ∗ axis for reference. An
additional biaxial-biaxial transition is observed in the region KT V

in place of a single transition (to the biaxial phase) predicted by the
mean-field theory [38].

V. DISCUSSION

To look for the origin of the additional low-temperature
specific-heat peak observed in the region C3T , which was
not detected by Boltzmann sampling, we made a comparison
of the simulation results from RW ensembles with those
obtained from B ensembles at λ∗ = 0.733 (1/3,1/9) (Landau
point T ) shown in Fig. 12. The location of T is unique as
it is the intersection point of the dispersion parabola with
segment IV . MF theory predicts a direct transition from the
isotropic to biaxial phase at this point, and it is the only such

FIG. 12. (Color online) Comparison of data, as a function of
temperature, from the B and RW ensembles, at the Landau point
T (1/3,1/9): (a) Specific heat Cv and (b) order parameters R2

00 and
R2

22. The insets focus on (a) the energy cumulant V4 and (b) order
parameter susceptibilities (χ ’s), both derived from RW ensembles
(λ∗ = 0.733).
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FIG. 13. (Color online) Contour plots of the distribution of mi-
crostates collected in the entropic ensemble at λ∗ � 0.733: (a)
microstate energy vs its uniaxial order and (b) microstate energy
vs its biaxial order. The superimposed red (dash-dotted line) and
black (dashed) lines are thermal averages from B and RW ensembles,
respectively.

point on the parabola. From the perspective of the interaction
Hamiltonian, the coordinates (γ,λ) of T represent a unique
symmetry: The Hamiltonian has no interaction between the
uniaxial components of the molecular tensor [μ = 0 at T ; see
Eq. (5)], and it is purely biaxial in nature (involving m and e⊥
axes). A consequence of the present findings in this context
is curious. They do confirm the presence of a direct transition
from the isotropic to biaxial symmetry, but these also indicate
that there is yet another biaxial-to-biaxial transition at a lower
temperature. Further, the onset of the first biaxial phase at T1

does not lead to a natural progression of the biaxial order with
a decrease in temperature, and it is only after the transition at
T2 that the macroscopically significant and hence observable
R2

22 value seems to be realizable.
We thus focus on the Landau point, and we present

the simulation results obtained from the two types of MC
sampling methods: data from B ensembles and from RW
ensembles. Figure 12 shows the specific heat (energy cumulant
as inset) and order parameters (susceptibilities as inset),
computed as a function of temperature at point T , obtained
from these ensembles. It should be noted that the derived
physical variables from B ensembles do not betray the onset
of the second transition at T2, thus lending support to MF
predictions, as has been noted in the earlier report on this
work [38].

We now examine the contour maps of the distribution of
microstates in the entropic ensemble (set of microstates that are
approximately uniformly distributed with respect to energy)
collected at the Landau point. Figure 13(a) depicts such a
contour map in the space of uniaxial order and energy (per
site), along with the thermal averages computed from RW
ensembles and B ensembles superposed for ready comparison.
Similarly, Fig. 13(b) shows a corresponding contour map
plotted between biaxial order and energy (per site), along
with thermal averages of the two canonical ensembles again
superposed. The traversal path of the B-ensemble averages
is seen to be encompassing regions corresponding to contour

peak positions, whereas the RW-ensemble average is observed
to follow a different trajectory, consequent to encompassing
a wider collection of microstates visiting sparse regions,
corresponding to large deviations of the order parameter.
This is seen as a manifestation of the process of collection
of microstates of the entropic ensemble by the algorithm
employed, representative in their distribution (with respect to
energy) of the underlying density of states. As has been pointed
out and argued earlier (Fig. 6 in [38]), the algorithmic guidance
of the WL procedure is seeking out all accessible microstates
(an approximate microcanonical ensemble) in each bin of
energies, in the process visiting relatively rare states that
correspond to larger excursions in the order parameter, and
hence correspondingly larger fluctuations of the component
energies of the Hamiltonian in Eq. (6), while conforming to the
same energy bin. The requirement of an accurate determination
of DOS through the entropic sampling procedure apparently
demands inclusion of these rare microstates, and the process
of reweighting used to construct the equilibrium ensembles
through this elaborate procedure includes them in the thermal
averages as a consequence.

Thus the differences observed in the averages from the
two procedures are to be appreciated from the standpoint of
simulations. As has been discussed [38], these rare microstates
indeed correspond to situations in which the ordering of either
of the molecular axes (involved in the D4h symmetry of
the pairwise interaction, i.e., m or e⊥) form a spontaneous
and equally probable calamitic axis during the evolution of
the system, by virtue of having the largest instantaneous
eigenvalue of the diagonalized ordering tensors of the three
molecular axes. It is apparent that conventional sampling
methods, not under algorithmic compulsion to estimate the
DOS of the system, are not geared to sample such rare states,
and hence they come up with different averages. In the process,
it appears that the second low-temperature transition is not
evident in the earlier work.

In addition, we note that the deviation of the simulation
results from the mean-field expectations occurs along the
diagonal IV of the essential triangle where the pairwise
interaction Hamiltonian has D4h symmetry and is expressed
in reduced form as in Eq. (5) in terms of a single parameter μ.
It is observed that the deviations start from λ∗ � 0.54 [point
C3 (5/29,19/87)] and continue until the Landau point where
μ = 0. It should be noted that point K (0.2,0.2) corresponding
to μ = −1 is very close to point C3 (0.172,0.218). It can be
inferred from Eq. (7) that, starting from the neighborhood
of K , the uniaxial attractive coupling of the e axis becomes
lower in strength than that of the (biaxial) attractive coupling
of the other two axes, and it continues to decrease as λ∗
increases on the diagonal. As a result, the ordering of the
biaxially coupled e⊥ and m axes is favored as temperature is
decreased, leading to the first onset of biaxial symmetry from
the isotropic phase. This is followed by an ordering of the
e axes at a lower temperature, leading to the stabilization of
both orders, in particular biaxial order. Thus it appears that
the growth of biaxial order in the intermediate biaxial phase
is inhibited by the lack of long-range order of the e axes (in
this region of the λ∗ axis). As one approaches the Landau
point, μ in Eq. (5) tends to zero (from the negative side),
thereby suppressing the second transition temperature as well
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as weakening the efficacy of this term to drive a transition. This
lack of concomitant ordering of all the molecular axes leads
to inhomogeneity in the medium, and we tend to attribute all
the interesting aspects of the simulation to this feature of the
Hamiltonian.

Finally, we wish to comment on the curious role played
by the WL algorithm in the analysis of the phase diagram.
It has been already established that this algorithm assists
the system in overcoming energy barriers of the system, as
the simulation pushes the system to make a random walk
in the configuration space, which is uniform with respect to
energy. A successful convergence of the probability density
yields a limiting distribution of microstates with respect to
the total energy of the system—the representative density
of states. The role of this algorithm in the present study
seems to be qualitatively different and yet illustrative of its
varied applicability. The WL algorithm, even while operating
within a single energy bin (an approximate microcanonical
ensemble), appears to seek out rare states, corresponding
to the otherwise inaccessible fluctuations of the component
energies, making up the total energy (see Fig. 6 in [38]).
Inclusion of these microstates (as representative states for
purposes of computing averages) is naturally embedded in
the WL method while estimating the DOS accurately. We
argue that the METROPOLIS sampling fails to access these states
due to apparent energy barriers within the system inhibiting
sampling of microstates with such large fluctuations in their
energy components. We conclude that the results reported here
are the outcome of this facet of efficiency of the entropic
sampling.

VI. CONCLUSIONS

In conclusion, we present compelling evidence from Monte
Carlo simulations based on entropic sampling to propose
an additional biaxial phase along a region of the arc of
the essential triangle, augmenting our earlier report [38].
The arguments advanced in this respect, particularly of the
inevitable presence of inhomogeneities in the absence of a
long-range order of the third stabilizing axis e, seem to lend
support to the findings (based on Boltzmann MC sampling)
reported in the partly repulsive region of the λ∗ axis (segment
T V : the μ model [39]). At a more general level, we conclude
that the cross-coupling between the uniaxial and biaxial tensor
components of the neighboring molecules [γ term in Eq. (6)]
seems to be playing an important role in determining the
phase sequences. Furthermore, we suggest that its significant
presence, even along trajectories inside the triangle (which
could be relevant for practical purposes), should have such
an inhibitive influence on the condensation of a biaxial phase
with measurable biaxial order. Our recent simulational work
on two such trajectories interior to the triangle are supportive
of this conjuncture.
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