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Two-dimensional liquid crystalline growth within a phase-field-crystal model
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By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic
triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium
shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a
columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical
to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in
the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning
the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from
nucleation of + 1

2 and − 1
2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting

of +1 vortices surrounded by six satellite − 1
2 disclinations. It is found that the orientational and the positional

order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large
transition zone, which can span over several lattice spacings.
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I. INTRODUCTION

Liquid crystals consist of particles that possess both a trans-
lational and an orientational degree of freedom. In contrast
to spherical particles, which, in general, exhibit only pure
fluid or crystalline bulk phases, the additional orientational
degree of freedom in liquid crystals induces a wealth of
“mesophases” with partial orientational and translational (or
positional) ordering [1,2]. Apart from the dilute disordered
state, there is a nematic phase which is orientationally ordered
but translationally disordered, and there is a plastic crystal
which is positionally ordered but orientationally disordered,
although its orientational disorder is only global and not
local [3]. Then there are columnar and smectic phases which
are positionally ordered in fewer directions than the full trans-
lational space and are orientationally ordered as well. Finally,
the full crystalline state has full positional and both local and
global orientational orders. We will here concentrate on the
plastic crystal phase (see [4–8] for earlier research), which in
two dimensions is termed a plastic triangular crystal (PTC)
and has been considered in [9–12], and we concentrate on
growth shapes and topological defect formation. Topological
defects in two-dimensional structures are well studied (see [13]
and [10] and the references therein for orientational and
positional ordering, respectively). However, the interplay of
orientational and positional ordering as it occurs during the
self-assembly of PTC out of other phases remains unclear. We
here address this interplay using a phase-field-crystal (PFC)
model by analyzing the growth of PTC from an isotropic and
a columnar or smectic-A (CSA) phase.

PFC models, introduced by Elder et al. [14,15], are
today widely used in modeling crystallization (e.g., [16–20]).
As a mean-field approach, the PFC model is capable of
describing, over diffusive time scales, atomic arrangements,
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crystalline defects, and interface structures of the crystal
growth process. The modeling approach has also been gen-
eralized to other systems, e.g., liquid crystals. Liquid crystal
PFC (LC-PFC) models for apolar particles [21] are formulated
in terms of three order parameter fields [22], including the
reduced translational density ψ(�r,t), the local nematic order
parameter S(�r,t), and the nematic director n̂(�r,t), wherein
�r = (x,y) and t are position and time, respectively. Even
if we consider only two-dimensional systems, the model is
formulated for three-dimensional liquid crystals as well (see,
e.g., [23]). The couplings among these fields produce the liquid
crystalline phases, such as isotropic, nematic, columnar or
smectic-A, and plastic crystalline phases. Achim et al. [24]
numerically determined the stable liquid crystalline phases in
two spatial dimensions, and Praetorius et al. [25] found the
corresponding phase coexistence regions for special coupling-
parameter combinations. The latter group also explored the
structure and width of the equilibrium PTC-isotropic and PTC-
CSA interfaces as a function of model parameters related to
the coupling strength of the three fields and crystal anisotropy.

We here extend these studies to investigate the growth
of a PTC nucleus from the isotropic and the CSA phases.
Experimental results [26,27] have shown such growth pro-
cesses to produce a large variety of shapes, e.g., with smooth
or faceted dendrites, faceted equilibrium shapes, or circular
shapes. The growth of succinonitrile and pivalic acid [26]
from melt, for example, show high similarity to metal systems
in terms of the observed morphologies. This suggests that for
some plastic materials the coupling strength of the translational
and orientational fields may have only limited influence
on the morphology. Is this specific to these materials, or
can the coupling strength also play an important role in
the shape evolution of plastic crystal growth? Besides the
morphology we will also consider topological defects of
the nematic director n̂(�r). These defects have already been
considered, e.g., in [3,24,28,29]. Achim et al. [24] obtained
vortices, disclinations, sources or sinks, and hyperbolic points
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in PTC. Cremer et al. [3] depicted the topological defect
structure in PTC and proposed a simplified but topologically
equivalent model to explain qualitatively how the topological
defect structure of hexagonal symmetry arises. Neverthe-
less, the understanding about the process of topological
defect formation is still limited. How does the topological
defect originate from the mother phase? How is a topological
defect structure of geometric symmetry constructed? We
will answer these questions by visualizing the topological
defect formation on the particle scale using the LC-PFC
model.

II. LIQUID CRYSTAL PFC MODEL

A. Free-energy functional

We consider a formulation of the LC-PFC model using the
reduced translational density field ψ(�r,t) and the symmetric
and traceless nematic order tensor field Q(�r,t) with the
components Qij (�r,t). In two dimensions the Qij (�r,t) fields are
related to the nematic order parameter S(�r,t) and the nematic
director n̂(�r,t) = (n1,n2) fields through

Qij (�r,t) = S(�r,t)[ni(�r,t)nj (�r,t) − 1
2δij

]
. (1)

The dimensionless free-energy functional is written
as [22,24,25]

F[ψ,Qij ] =
∫

d2r
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2
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(2)

where Einstein’s sum convention is used, � ≡ ∂2
k is the

Laplace operator, and A1, A2, B3, D1, and D2 are dimen-
sionless model parameters, with A1 controlling the crystalline
anisotropy [19,30] and B3 controlling the coupling strength
between ψ(�r,t) and Qij (�r,t).

B. Dynamic equations

The dynamic equations of ψ(�r,t) and Qij (�r,t) are deduced
from classical dynamical density functional theory (DDFT),
as written by [31,32]

ψ̇ + ∂iJ
ψ

i = 0, (3)

Q̇ij + �
Q
ij = 0, (4)

where J
ψ

i (�r,t) is the dimensionless current and �
Q
ij (�r,t)

is the dimensionless quasi-current. In the constant-mobility
approximation, this current and quasi-current are given by [16]

J
ψ

i =−2α1(∂iψ
�) − 2α3(∂jQ

�

ij ), (5)

�
Q
ij =−4α1(�Q

�

ij ) − 2α3[2(∂i∂jψ
�) − δij (�ψ�)] + 8α4Q

�

ij ,

(6)

where α1, α3, and α4 are dimensionless mobilities. The
thermodynamic conjugates ψ� and Q

�

ij are given by

ψ� = δF
δψ

, Q
�

ij = δF
δQij

, (7)

which read

ψ� = −ψ2 + 2

3
ψ3 + (2ψ − 1)

Q2
ij

4
+ 2A1ψ

+ 2A2(� + �2)ψ − B3(∂i∂jQij ), (8)

Q
�

ij = ψ(ψ − 1)Qij + QijQ
2
kl

8
−B3[2(∂i∂jψ) − δij�ψ] + 4D1Qij

− 2D2∂k[∂iQkj + ∂jQki − δij (∂lQkl)]. (9)

The dynamic equations (3) and (4) will be solved numerically
by a semi-implicit Fourier method; see the Appendix for
details.

III. RESULTS AND DISCUSSION

We consider first a PTC nucleus in the isotropic and
CSA phases and show that the coupling strength B3 between
the nematic order tensor and the density has only a minor
influence on the crystal morphology. Second, the ordering of
the nematic order tensor during the growth of a PTC into the
CSA phase is studied. Independent of the coupling strength B3,
+1 disclinations in the PTC phase are formed by coalescence
of two + 1

2 disclinations. Only the time evolution and the delay
of the defect formation with respect to the interface velocity
are dependent on B3.

A. Stationary interfaces

All simulations are carried out with A2 = 14, D1 = 1, and
D2 = 0.8. Variations of these parameters turn out to show only
minor effects on the considered situation of isotropic, PTC, and
CSA phases. We vary the mean density ψ̄0, anisotropy A1, and
coupling strength B3, which can be used to control the liquid
crystal phases [24,25].

In Fig. 1, the phase diagram without coupling to the nematic
tensor, B3 = 0, is compared to the phase diagrams with weak
and strong coupling, B3 = −0.4 and −1.6, respectively. The
structure of the phase diagrams reflects that of the classical
PFC, where the PTC and the CSA phases correspond to the
crystal and stripe phases (cf. [14]). Thus, analog to the classical
PFC, A1 is connected to the undercooling. The coupling
strength does not change the phase diagram qualitatively.
Small coupling, B3 = −0.4, shows no influence; only strong
coupling, B3 = −1.6, slightly increases the region of a stable
PTC phase. Thus, the coexistence region of a PTC-isotropic
phase and a PTC-CSA phase is nearly independent of B3

and allows us to study the interface properties dependent on
only coupling strength B3. In order to minimize boundary
effects in our simulations, a single PTC nucleus is considered
in the center of the simulation domain. To neglect stresses
induced by the boundaries, parameters A1 and B3 are varied,
and the corresponding ψ̄0 value is chosen carefully to ensure

012504-2



TWO-DIMENSIONAL LIQUID CRYSTALLINE GROWTH . . . PHYSICAL REVIEW E 92, 012504 (2015)

*

*
*
*

*

*
*
*

FIG. 1. (Color online) LC-PFC phase diagrams as a function of
ψ̄0 and A1 for B3 = 0, (a) −0.4, and (b) −1.6, which correspond to
zero, weak, and strong coupling strength between the density field
and the nematic-order field, respectively. The small letters correspond
to parameters used in our simulations.

coexistence with the surrounding phase (cf. [25]). As long
as we are in the coexistence region of the phase diagram,
variations in ψ̄0 do not change the morphology but determine
the size of the PTC nucleus. Size dependence for very small
nuclei, as observed in [30], can be neglected here as only large
enough PTCs are considered. The domain size is at least 2
times bigger than the shown PTC for the coexistence with
the CSA phase, and possible size dependencies are regularly
checked by enlarging the simulation box and comparing the
results.

1. Equilibrium shape of PTC in the isotropic phase

The equilibrium shape of a PTC nucleus in the isotropic
phase is simulated for increasing A1. Simulation results and
parameters are summarized in Figs. 2(a)–2(c). For every equi-
librium shape the interface has been extracted and normalized
by the extension of the PTC nucleus in the [12] direction.
Without coupling, B3 = 0, the shape changes from a perfect
hexagon, A1 = 1.5, to a circle, A1 = 3. The width of the
interface seen in the inlet of Fig. 2(a) widens for increasing A1.
This corresponds to the findings in classical PFC for decreasing
undercooling (cf. [30]). Coupling to the nematic tensor does
not change the picture at all [see Fig. 2(b)]. The anisotropy of
the nucleus is quantified by the reduced aspect ratio α (ratio of
the nucleus extension in the [10] and [12] directions). Based

on the Wulff construction, the aspect ratio α relates to the
anisotropy of the line energy [30,33]. Thus, the nematic order
has a minor influence on the anisotropy of the line energy of
the PTC phase in the isotropic phase, and the anisotropy is
well controlled by only A1 and reflects the results of classical
PFC [30].

2. Crystal shape of PTC in the CSA phase

For PTC growth in the CSA phase, the orientation of
the nucleus with respect to the stripes of the CSA phase
becomes important. We consider two setups. First, the [12]
direction of the PTC is perpendicular to the stripes. That is,
closed-packed layers of the crystal and stripes of the CSA
phase are aligned perfectly (case I). Second, the crystal is
rotated by π

2 , and the stripes do not fit the particle layers
(case II).

The simulation results for case I are shown in Figs. 2(d)–
2(f). As before, the growth of a small PTC nucleus is simulated
until a steady state is reached. The anisotropy of the steady
state is again controlled by A1. Increasing A1 changes the
morphology from faceted to round [Fig. 2(d)]. But here the
round shapes are elongated along the stripes, while the faceted
shapes are elongated perpendicular to the stripes. Unlike
growth into the isotropic phase, the growth kinetics is very
anisotropic for small A1. That is, the growth of the crystal
facet in the [12] direction is faster than the growth of the
[21] facet. This leads to a smaller [12] facet compared to the
[21] facet of the stationary crystal. The ratio of the length of
two facets is dependent on the initial condition and domain
size of the simulation. Thus, they are just metastable or
frozen states and do not represent the overall anisotropy of
the interface energy. But, as there are always facets, we can
conclude that the line energy has strong minima for the [12]
and [21] facets, but we cannot judge the energy ratio between
them.

If we increase the coupling strength B3, the transition from
faceted to round shapes does not change, but the elongation
of the round shapes along the stripes is slightly increased
[see Fig. 2(e)]. The coupling strength in this situation is more
important than for the PTC-isotropic interface.

In case II, the crystal is rotated, and the simulations are done
as before. The PTC no longer fits into the layers of the CSA
phase (see Fig. 3). In this configuration only small crystals
for small A1 can be stabilized. Various attempts to increase
nucleus sizes lead to rotating or vanishing crystals. The [10]
plane of the PTC is parallel to the stripes and stabilized by
the CSA phase. This leads roughly to a hexagon with the
edges in the [10]-direction cut [indicated by dashed red lines
in Figs. 3(c) and 3(d)]. The CSA phase is also distorted near the
interface. If the stripes do not fit the structure of the PTC, the
crystal and the CSA phases are inhomogeneously strained.
This is clearly shown by the bending of the close-packed
particle layers in Fig. 3(b) and the waviness of the stripes in
the CSA phase. The coupling strength increases the discussed
features and leads to nearly rectangular shapes [Fig. 3(b)
and 3(d)]. Thus, case II is energetically penalized by the elastic
stress in the crystal induced by the surrounding CSA phase and
will most likely not occur in the liquid crystal phase transition.
In the following we will concentrate on case I.
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FIG. 2. (Color online) The equilibrium shape of the PTC nucleus in the isotropic phase for (a) B3 = 0 and (b) B3 = −1.6 and (c) the
corresponding contour line and aspect ratio α as a function of A1. The considered examples a-d and e-h correspond to the depicted points in
Fig. 1. The insets show the obtained equilibrium shapes for two selected points. (d) and (e) The morphology of a PTC nucleus in a CSA phase
for A1 = 1.5, where the close-packed direction of the PTC phase is parallel to the stripe in the CSA phase. (d) shows the equilibrium PTC
shapes for B3 = 0 for the considered examples a′-d′, and (e) shows the shapes of growing PTC for B3 = −1.6 for h′-e′, again corresponding to
the depicted points in Fig. 1. The insets again show selected growth shapes. (f) The aspect ratio α as a function of A1 for the equilibrium PTC
shape for B3 = 0 and the growing shape for B3 = −1.6. (g) The definition of crystal unit vectors a1 and a2.

FIG. 3. (Color online) The PTC shape in the CSA phase for A1 =
1.5 and (a) and (c) B3 = 0 and (b) and (d) B3 = −1.6, where the
close-packed crystal direction is perpendicular to the stripe in the
CSA phase. (c) and (d) show a sketch of the PTC shape in the CSA
phase. The red dashed lines visualize the extrapolation to a hexagonal
shape.

B. Topological defect formation

The PTC phase exhibits not only the characteristics of the
crystalline phase but also nematic ordering with topological
defects. Here we examine how the nematic ordering evolves
at the PTC-isotropic and the PTC-CSA interfaces. The sim-
ulations are set up as above. But we restrict ourselves to the
interface in the regime of constant growth velocity. Figure 4
shows the nematic order parameter S(�r) and director n̂(�r) at
the [12] interface. In the PTC phase along the shown direction,
+1 vortices and pairs of − 1

2 disclinations alternate [24].
Towards the isotropic phase, not only does the nematic

order parameter decrease, but also the structure of the ordering
changes [see Figs. 4(a) and 4(c) and details in Fig. 5]. The
+1 vortex splits into two + 1

2 disclinations. This disclination
pair increases its distance and finally vanishes as the nematic
ordering vanishes. Growth towards the CSA phase changes the
situation only a little [Figs. 4(b) and 4(d)]. The PTC and CSA
phases show different nematic ordering, but the splitting of +1
vortices is also observed. Furthermore, in the PTC isotropic
growth the nematic order parameter forms a weak columnar
structure ahead of the growth front. Thus, the PTC isotropic
phase transition has an intermediate stripe phase. The structure
of the topological defects of the nematic director n̂(�r,t) at the
PTC growth front are similar for both cases.

Figure 5 shows the formation process of the topological
defect structure of the PTC phase grown towards the CSA
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FIG. 4. (Color online) The topological structure of the PTC
phase grown from (a) the isotropic phase and (b) the CSA phase.
A magnified view of the area denoted by black boxes in (a) and (b)
is given in (c) and (d), respectively, where the short dashes represent
the director field of the topological structure.

phase. First, fluctuation in the n̂(�r,t) field and nematic order
parameter field S(�r,t) arises at the PTC growth front. This leads
to + 1

2 and − 1
2 disclination pairs [Figs. 5(a) and 5(b)]. Next, two

+ 1
2 disclinations approach each other gradually and coalesce

into a +1 vortex [Figs. 5(c) and 5(e)]. The − 1
2 disclinations do

not move. At the end, a basic unit, the +1 vortex surrounded
by six − 1

2 disclinations, is formed [Fig. 5(f)]. This constitutes
the topological defect structure in the bulk PTC phase. It was
found that the coalescence of two disclinations with the same
charge is energetically unfavored [34]. Nevertheless, during
PTC growth, the advancing interface drives coalescence of
two + 1

2 disclinations. In the following, the kinetics of this
topological defect formation will be discussed in more detail.

FIG. 5. (Color online) Snapshots of the topological defect struc-
ture formation in the region enclosed by the square box in Fig. 4(b)
during the PTC growth in the CSA phase. Here d1 and d2 are a pair
of + 1

2 disclinations. The PTC-CSA interface moves from bottom to
top from (a) to (f), and for (d) and (e) the region around d1 and d2 is
located inside the PTC-CSA interface.

*
*
*
*
*
*
*
*
*
*
*
*

*

FIG. 6. (Color online) The growth kinetics of the PTC-CSA
interface. The displacement of PTC-CSA interface vs (a) time t and
(b) growth velocity for various B3. X is the position of the PTC-CSA
interface at different times, and X0 is the initial position at time t0.

First, we study the growth velocity of the PTC nucleus from
the CSA phase along the direction normal to stripes, as shown
in Fig. 4(b). After some initial relaxation, the displacement
of the PTC-CSA interface increases linearly with time, and
a constant growth velocity Vint is achieved [Fig. 6(a)]. The
dependence of the growth velocity on the coupling strength B3

is shown in Fig. 6(b). Strong and weak coupling regimes can be
identified. For strong coupling, the growth velocity increases
linearly with B3, changing from −1.6 to −0.8. For weak
coupling, when B3 is in the range between −0.8 and −0.4, the
growth velocity shows little dependence on B3. Starting from
the growth velocity Vint, the defect moving velocity Vd is scaled
as Ṽ = Vd/Vint, and time t is scaled as t̃ = t/(as/Vint), with the
lattice constant of the CSA phase as = 2π/

√
1/2 ≈ 8.8858.

This can be used to count the number of lattices in the CSA
phase that the PTC-CSA interface has advanced.

The coalescence of two + 1
2 disclinations is illustrated

in Fig. 7 in more detail. The positions of the topological
defects are easily identified at the minima of the nematic order
parameter S(�r) [Fig. 7(a)]. Initially, there are two minima in
S(�r,t) profiles which correspond to disclinations d1 and d2,
respectively. The two minima approach gradually and coalesce
finally at t̃ ≈ 19.1. To compare the evolution of the density
field and the orientational field, we extract the density profile
when the PTC-CSA interface is sweeping the region around
d1 and d2 at t̃ = 9.95. As shown in Fig. 7(b), the peak value
of the density profile at the position marked by the left vertical
dotted line almost equals that of the bulk PTC phase. However,
the corresponding S(�r,t) profile at the same time (̃t = 9.95)
indicates that the evolution of the orientational field in the
region around d1 and d2 is still far from being complete. The
distance between d1 and d2 versus t̃ is illustrated in Fig. 7(c).
We can see that d1 and d2 move nearly symmetrically. The
velocities of d1 and d2 are given in Fig. 7(d). The largest
velocity occurs about the time t̃ = 9.95. This corresponds to
the moment when the growth front is sweeping the region
around d1 and d2, which corresponds to the state in Fig. 5(e),
and when the density field evolution around d1 and d2 is almost
complete, as shown in Fig. 7(b). As the PTC-CSA interface
approaches the region around d1 and d2, the velocities of d1
and d2 increase rapidly, while they decrease steeply after the
interface moves past them. In other words, the evolution of
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FIG. 7. (Color online) The moving trajectory of two + 1
2 discli-

nations, d1 and d2, corresponding to Fig. 5, as represented by (a) the
S(�r,t) profile and (b) the profile of the density field corresponding to
time t = 130 (i.e., t̃ = 9.95), and (c) the position and (d) the velocity
of d1 and d2. The region between the two vertical dotted lines in (b)
indicates the PTC-CSA interface (the left and the right boundaries
of the interface are determined by the criterion that the height of the
peaks is lower than 0.95 of that in the bulk PTC phase and the CSA
phase, respectively). The inset in (b) is a zoom of the X interval as in
(a), with the arrows indicating the position of the d1 and d2 defects
at time t̃ = 9.95.

topological defect formation is accelerated by the advancing
PTC-CSA interface. When the +1 vortex forms through the
coalescence of d1 and d2, the interface has moved forward by
a distance of about 20 lattice constants from the position when
it passes d1 and d2.

*******************************************************************************************************

*
*
*
*******

***
*

*
* * * ***************************************************************************************************** ******************************************************************************************************* *

* *
**
*****

**
*
*
*

* * * ***************************************************************************************************** *

*

FIG. 8. (Color online) The influences of coupling strength B3 on
topological defects formation kinetics: (a) the velocity of two + 1

2
disclinations during the formation of +1 vortex for various B3 and
(b) the peak value of the velocity curves as shown in (a) as a function
of B3.

Finally, we investigate the influence of coupling strength
on +1 vortex formation kinetics. As shown in Fig. 8(a), with
coupling strength increasing by decreasing B3 from −0.4 to
−1.6, the peaks of the velocity curves increase, and the scaled
time t̃ needed for the formation of a +1 vortex decreases.
This indicates that the evolution from d1 and d2 to a +1
vortex can be completed faster for higher coupling strength.
The dependence of peak velocities of the curves in Fig. 8(a)
on B3 is summarized in Fig. 8(b). For weak coupling strength
when B3 is between −0.8 and −0.4, the peak velocities of
d1 and d2 are nearly the same, and the motions of d1 and
d2 are approximately symmetrical. However, with coupling
strength increasing further (B3 < −1.0), the peak velocities
of d1 and d2 increase substantially, and d1, the disclination
moving along the same direction as the PTC-CSA interface,
has a larger peak velocity than that of d2, which moves opposite
to the PTC-CSA interface. Thus, it is shown that the increase in
coupling strength accelerates the topological defect formation
during PTC growth.

IV. CONCLUSION

In summary, by using the LC-PFC model we investigated
the growth of PTC nucleus from the isotropic phase and
the CSA phase on particle scale. An overall picture for the
growth of the PTC phase was presented for shape evolution
and nematic topological defect structure formation. It was
demonstrated that the shape evolution for the PTC phase
growth is mainly determined by crystalline anisotropy. The
coupling strength exerts little influence on the shape of growing
PTC nucleus. Only the shape of the PTC nucleus grown
from the CSA phase also depends on the misorientation of
PTC and CSA. Moreover, for the formation process of the
nematic topological structure of the PTC phase, the formation
of the PTC topological structure starts from nucleation of
+ 1

2 and − 1
2 disclination pairs at the PTC growth front and

leads to the coalescence of + 1
2 pairs forming a hexagonal

cell consisting of one +1 vortex surrounded by six − 1
2

disclinations. The coupling strength influences the kinetics
of topological defect formation, and strong coupling strength
accelerates the formation of nematic topological structure.
Thus, while morphological shapes of plastic crystals might
look similar to that of metal systems, the dynamics of the
growth process shows strong differences.

Experiments with two-dimensional confined colloids could
be done in order to verify our findings. Colloidal suspen-
sions may be confined on two-dimensional substrates, and
the positional and orientational ordering may be measured
directly [5,35]. In order to analyze defect formation a time
dependent measurement is not necessary, as the defect struc-
ture around an interface already resamples the evolution of
the single defects. Thus, it would be sufficient to focus on the
interface (see Fig. 4).

For future work, it would be interesting and meaningful
to extend the present study to three spatial dimensions. The
topological defect formation of a plastic crystal with crystal
structures, such as simple cubic, body-centered crystal, face-
centered crystal, etc., may provide more amazing scenarios of
topological defect formation. Also, it would be worth studying
the plastic crystal growth with polar and nonspherical particles.
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APPENDIX: SEMI-IMPLICIT FOURIER METHOD
FOR THE LC-PFC MODEL

A system of six coupled nonlinear partial differential
equations needs to be solved in the liquid crystal PFC model.
In order to numerically solve this system efficiently, we
decoupled and linearized it. Considering the tracelessness
and symmetry of the nematic tensor as shown in Eq. (1),
we can extract the variables qi ≡ Qi,1 and q

�

i ≡ Q
�

i,1, with

q = (q1,q2)� and q� = (q�

1,q
�

2)�. The dynamic equations (3)
and (4) thus have the compact form

ψ̇ = 2α1�ψ� + 2α3�iq
�

i ,

q̇i = 4α1�q
�

i − 8α4q
�

i + 2α3�iψ
�. (A1)

The terms containing the operator � can be expanded as

�iq
�

i = (∂1∂1 − ∂2∂2)q�

1 + 2∂1∂2q
�

2,

and the thermodynamic conjugates read

ψ� = ωψ (ψ,q) +
L

ψ

ψ (ψ)︷ ︸︸ ︷
2A1ψ + 2A2(� + �2)ψ +

L
q

ψ (q)︷ ︸︸ ︷
(−B3)�iqi ,

q
�

i = ωq(ψ,q)i + 4D1qi − 2D2�qi︸ ︷︷ ︸
L

q
q (qi )

+ (−B3)�iψ︸ ︷︷ ︸
L

ψ

q,i (ψ)

, (A2)

with the linear parts L
ψ

ψ (ψ),Lq

ψ (q),Lq
q(qi), and L

ψ

q,i(ψ) and
the polynomials

ωψ (ψ,q) = −ψ2 + 2
3ψ3 + 1

2 (2ψ − 1)
(
q2

1 + q2
2

)
,

ωq(ψ,q)i = ψ(ψ − 1)qi + 1
4qi

(
q2

1 + q2
2

)
. (A3)

We define the Fourier wave vector k = (k1,k2)� and introduce
the Fourier transform F of the order parameter fields as

ψ �→ F(ψ) =: ψ̂(k), qi �→ F(qi) =: q̂i(k).

Thus, we can write the differential operators in Fourier space as

� → �̂ := −(
k2

1 + k2
2

) = −|k|2,

� → �̂ :=
(−(

k2
1 − k2

2

)
−k1k2

)
. (A4)

Discretizing (A1) in time using a semi-implicit backward
Euler discretization and transforming the equation to Fourier

space lead to the spectral method used in our calculations.
Therefore, we transform the linear differential operators L∗

∗
of (A2) using the operators defined above and denote them
with a hat, i.e.,

L̂
ψ

ψ [ψ̂] := 2A1ψ̂ + 2A2(�̂ + �̂2
)ψ̂

= [2A1 + 2A2(−|k|2 + |k|4)]ψ̂, (A5)

and the other operators are transformed in an analogous
manner.

The nonlinear polynomials (A3) are evaluated in real space
and transformed afterwards, i.e.,

ω̂ψ (ψ,q) := F(ωψ (ψ,q)). (A6)

Therefore, in each time step the order parameters ψ and q
have to be transformed between real and Fourier spaces using
efficient implementations of F and F−1.

Let 0 = t0 < t1 < · · · < tN = T be a discretization of a
time interval [0,T ], with tn+1 − tn =: τ being the time step
width. The finite difference approximation

˙̂ψ ≈ ψ̂n+1 − ψ̂n

τ
,

with ψ̂n ≡ ψ̂(tn) and ˙̂qi being calculated in an analo-
gous manner, inserted into the transformed equations, us-
ing (A5) and (A6), leads to an iterative procedure: Let
ψ̂0 = F(ψ0), q̂0 = F(q0).

For n = 0,1,2, . . . ,N

(1) Solve(
1 − τ

[
2α1�̂L̂

ψ

ψ + 2α3�̂i L̂
ψ

q,i

])
ψ̂n+1

= (
ψ̂n + τ

[
2α1�̂

{
L̂

q

ψ [q̂n] + ω̂ψ (ψn,qn)
}

+ 2α3�̂i

{
L̂q

q

[
q̂n

i

] + ω̂q(ψn,qn)i
}])

. (A7)

(2) Transform to real space:

ψn+1 = F−1(ψ̂n+1).

(3) For i = 1,2, solve(
1 − τ

[
(4α1�̂ − 8α4)L̂q

q

])
q̂n+1

i − τ2α3�̂i L̂
q

ψ

[
q̂n,n+1

(i)

]
= (

q̂n
i + τ

[
(4α1�̂ − 8α4)

{
L̂

ψ

q,i[ψ̂
n+1] + ω̂q(ψn+1,qn)i

}
+ 2α3�̂i

{
L̂

ψ

ψ [ψ̂n+1] + ω̂ψ (ψn+1,qn)
}])

, (A8)

where q̂n,n+1
(i) are intermediate vectors defined as

q̂n,n+1
(1) :=

(
q̂n+1

1

q̂n
2

)
, q̂n,n+1

(2) :=
(

q̂n
1

q̂n+1
2

)
.

(4) Transform to real space:

qn+1
i = F−1

(
q̂n+1

i

)
, i = 1,2.

In Eq. (A8) the updated values ψn+1 and ψ̂n+1 can be used.
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[23] R. Wittkowski, H. Löwen, and H. R. Brand, Phys. Rev. E 82,

031708 (2010).
[24] C. V. Achim, R. Wittkowski, and H. Löwen, Phys. Rev. E 83,
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