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Nematic liquid crystals in planar and cylindrical hybrid cells:
Role of elastic anisotropy on the director deformations
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Nematic samples filling a flat cell or the annular region between two concentric cylinders with hybrid anchoring
conditions at the boundaries are investigated by setting up and minimizing their Frank elastic free energy. The
coupling with the surfaces is taken to be strong on one side and weak on the other. The equations are numerically
solved and the conditions for which the molecular organization inside the cell becomes uniform are analyzed.
The classical calculation performed by G. Barbero and R. Barberi [J. Phys. 44, 609 (1983)] is reproduced and
investigated from a different point of view, in order to compare the results of planar and cylindrical geometries. The
results suggest that the cylindrical cell presents some unusual features deserving a more complete investigation.
Although most part of the transitional phenomena are found for K11 > K33, a case not common for ordinary
(lyotropic and thermotropic) liquid crystals, it is possible to find a completely uniform cell even for K11 < K33

in both the geometries considered here.
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I. INTRODUCTION

One of the most attractive aspects of Liquid Crystals (LCs)
is the possibility of creating and controlling specific molecular
organizations with the use of external fields or even, when
confining them at the micron scale, with suitable surface
treatments. Amongst the LC features essential in determining
the actual organization obtained, elasticity is crucial. Indeed,
the elastic constants of splay, twist, and bend are key for the
description of many phenomena in the physics of LCs [1–5],
ranging from the formation and the topological charge of
defects [6], the stability of blue phases [7], the sensitivity of
biological sensors based on LCs [8], the pattern formations in
chiral LCs [9], the stability of the bonded boojum-colloids in
nematics [10], and many others. Here we are interested in LC
in confined geometries and in the director deformations
induced by the confinement produced by the surfaces,
particularly in planar and cylindrical geometries when allow-
ing for the difference in elastic constants. Although elastic
constants Kii are often found to be similar in many low-molar
mass LC, justifying the common theoretical assumption of
equal Kii , large anisotropies were predicted by de Gennes for
long molecules [11] and are found in a variety of materials [12].
When cylindrical samples are investigated considering the
elastic anisotropy (i.e., when the elastic constants are allowed
to be different), the non-usual deformations found [13–19]
indicate that this kind of geometry can be more interesting
than the planar one.

The aim of the present work is to investigate a nematic
in an annular region between two concentric cylinders and
the effects of the elastic anisotropy on the director orientation

close to the surfaces for the cases of hybrid anchoring, i.e.,
of a strong anchoring on one side and a weak coupling on
the other. We are also interested in studying the effects of
tuning surface anchoring. Although this is difficult to realize
experimentally, it could be achieved as shown for the case of
LC droplets by using suitable mixtures of surface agents [20]
or photoactive polymer surface coating [21]. The director angle
is affected by the antagonistic alignment on the surfaces,
for instance, when the alignment at the surface with strong
anchoring is planar and the easy axis on the surface with
weak anchoring is homeotropic. The particular case of one
constant approximation in a planar geometry is a classical
problem of elastic theory, that has been explored to get some
information about the anchoring energy of the sample [2].
The anisotropic elastic case, partially reproduced here, was
investigated many years ago by Barbero and Barberi [22]
and is now analyzed here from a different perspective with
the purpose of performing a comparison between the director
behavior in planar and in cylindrical hybrid cells. More
specifically the cylindrical cell considered here corresponds
to the annular region between two concentric cylinders, filled
with nematic liquid crystals. This case has been investigated
in the one elastic approximation by means of elastic theory
and Monte Carlo simulations in a previous work [23], where
evidence was found of the importance of analyzing the effects
of weak anchoring on both the inner and the outer surfaces
clearly emerged.

The present paper is organized as follows. In Sec. II, the
planar hybrid cell is investigated, the equation for the angle
close to the surfaces as function of the parameters of the system

1539-3755/2015/92(1)/012501(8) 012501-1 ©2015 American Physical Society

http://dx.doi.org/10.1051/jphys:01983004405060900
http://dx.doi.org/10.1051/jphys:01983004405060900
http://dx.doi.org/10.1051/jphys:01983004405060900
http://dx.doi.org/10.1051/jphys:01983004405060900
http://dx.doi.org/10.1103/PhysRevE.92.012501


R. T. TEIXEIRA-SOUZA et al. PHYSICAL REVIEW E 92, 012501 (2015)

x

z
y d

FIG. 1. Schematic representation of the planar sample with the
surfaces placed at a distance d .

is obtained for the case of elastic anisotropy. The cylindrical
case is investigated in Sec. III, where the equations and results
are reported. Section IV is dedicated to a general discussion
and to some concluding remarks.

II. THE HYBRID CELL: PLANAR GEOMETRY

A. Statement of the problem

The sample considered in this section consists of a nematic
slab of thickness d along the z-axis, as illustrated in Fig. 1.
The top and bottom surfaces, located at z = ±d/2, are flat and
considered to be infinite both in the x- and y-directions. The
alignment at these surfaces is considered homogeneous, either
homeotropic or planar (parallel to x). Under these assumptions,
the director can be written as n = sin θ (z)i + cos θ (z)k, with
θ (z) denoting the angle between the director and the z-axis.
An alignment parallel to x corresponds to θ = π/2, while
the alignment parallel to z corresponds to θ = 0. The Frank
expression of free energy may be written as

fp = 1

4
K33

∫
V

[k + 1 + (1 − k) cos 2θ (z)] θ ′(z)2 dV (1)

with θ ′(z) = dθ/dz and k = K11/K33 defined as an elastic
constant anisotropy parameter. It expresses the deviation
from the common equal elastic constant approximation cor-
responding to k = 1. The usual procedure of minimizing the
free energy yields the following non-linear Euler-Lagrange
equation:

(k − 1) sin 2θ (z)θ ′(z)2

+ [k + 1 + (1 − k) cos 2θ (z)] θ ′′(z) = 0, (2)

which can be rewritten in the form:

θ ′(z) = Cp√
[k + (1 − k) cos2 θ ]

, (3)

where Cp is an integration constant. By considering that
θ (±d/2) = θsb,a , where the indices b and a indicate the
surfaces located at z = +d/2 and z = −d/2, respectively, it
is possible to obtain an expression for the integration constant
as

Cp = 1

d

∫ θsb

θsa

√
[k + (1 − k) cos2 θ ] dθ. (4)

In this work, the cases in which the surfaces supply strong
anchoring correspond to values of θsa and θsb which are 0 or
π/2. However, in the cases in which the anchoring energy on
the surface is finite, the values of the angle in the vicinity
of the surface must be determined by taking into account
the boundary conditions appropriate to the weak anchoring

situation [2]. The anchoring energy expression considered here
is the Rapini-Papoular one [24]:

fs = − 1
2Wa,b cos2(θsa,b − �a,b), (5)

where Wi is the anchoring strength and �i is the angle
representing the easy direction, i.e., the angle which minimizes
the anchoring energy in the absence of external effects. The
boundary conditions can be written as

±2La,b[k + (1 − k) cos2 θsa,b] θ ′(z = ±d/2)

− sin 2(θsa,b − �a,b) = 0 (6)

with Li = K33/Wi being an extrapolation length. By using the
result of Eq. (3), it is possible to find that

±2Lda,b

√
[k + (1 − k) cos2 θsa,b]

×
∫ θsb

θsa

√
[k + (1 − k) cos2 θ ] dθ − sin 2(θsa,b − �a,b) = 0,

(7)

where, for simplicity, we have introduced the scaled extrapo-
lation length Ldi = Li/d. Equation (7) is numerically solved
to yield the profiles of θsa and θsb, and, again by numerically
solving Eq. (3), it is possible to obtain the profile of the director.
Equation (7) can also be used to determine the critical values of
k or Ldi for which a completely uniform configuration is found
(θ (z) = 0 or θ (z) = π/2), which is obtained when θsa → θsb.

B. Results

Here we describe the various cases studied using the
following concise notation where the two first letters refer to
conditions on the surface located in z = −d/2 and the last two
letters refer to the surface located at z = +d/2. The uppercase
is used to indicate the alignment (X and Z for the slab and
R and Z for the cylinder) and lowercase w,s to indicate
the anchoring condition (w, weak or s, strong). The cases
studied here are labeled as ZwXs and XwZs thus in essence
we consider a case where the homeotropic aligning surface is
weakly anchored and the planar strongly and vice versa.

The first case analyzed is the weak homeotropic, ZwXs,
case and the results are shown in Figs. 2(a), 2(c). One notices
that the larger the scaled extrapolation length Ld , e.g., because
the film thickness d decreases for a given material, the greater
the influence of the elastic anisotropy parameter k. In Fig. 2(a),
the angle at the surface z = −d/2 is presented as a function of
the scaled extrapolation length for some values of the elastic
parameter k. The critical value of Lda for the transition from a
deformed state to a completely uniform one (π/2 − θsa → 0)
becomes higher if K11 is larger than K33. In Fig. 2(b), the
profile of π/2 − θsa as a function of the elastic parameter for
some values of the scaled extrapolation length is shown. As
expected, for Lda = 1.0, the critical value of k corresponds
to the equal elastic constants case (k = 1.0). For cells with
a weaker anchoring energy, the critical value of k tends to
be smaller. To better understand this result, we plot the value
of the scaled critical elastic parameter (defined as kc) versus
the scaled extrapolation length in Fig. 2(c). It is important to
mention that, in this case, i.e., a very small value of π/2 − θsa ,
the distortion corresponds to a small splay.
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FIG. 2. The first three plates (a,b,c) refer to the ZwXs case. Anchoring angle at the surface located at z = −d/2 as a function of the scaled
extrapolation length for a few values of the elastic constant parameter (a) and as function of the elastic anisotropy parameter for some values
of the scaled extrapolation length (b); the dependence of the critical value of the elastic parameter on the scaled extrapolation length (c). The
plate (d) shows the director angle close to the surface located in z = −d/2 versus the scaled extrapolation length for the XwZs case.

The profile of kc as a function of Lda can be analytically
determined from Eq. (7) by rewriting it as a power series in
θsa around π/2 with θsb = π/2 and �a = 0 up to third order.
We then find

π

2
− θsa ≈

{
3(kLda − 1)

2[Lda(k − 1) − 1]

}1/2

, (8)

yielding π/2 − θsa → 0 for kc = L−1
da which coincides with

the curve shown in Fig. 2(c) and implies K11 = Wad, being
the lowest value of splay elastic constant to get a homogeneous
sample.

The XwZs case is quite different, as can be seen by looking
at Fig. 2(d), where the profile of θsa is plotted against Lda for
some values of the elastic parameter. The presence of elastic
anisotropy affects the profile of θsa versus Lda , but the critical
value does not change. This suggests that the elastic anisotropy
parameter plays no role in the transition from a deformed to
a uniform sample, for the XwZs case. Differently from the
previous case, a small distortion corresponds to a very small
bend deformation, and this case seems to be less sensitive to
variations of the elastic parameter. If we now rewrite Eq. (7)
as a power series of θsa around θsa = 0, and again neglecting
terms with order higher than three, with θsb = 0 and �a =
π/2, it is possible to obtain

θsa ≈
{

2(1 − Lda)

3[Lda(k − 1) + 1]

}1/2

, (9)

which yields θs → 0 if Lda = 1, or K33 = Wad.

III. THE HYBRID CELL: CYLINDRICAL GEOMETRY

A. Statement of the problem

In this configuration the nematic sample is confined to the
annular region between two concentric cylinders of radii r1 and
r2 > r1, as can be seen in Fig. 3. The length lc of the cylinders is
assumed to be long enough to be considered as infinite for our
purposes. Since the alignments at the surfaces are considered
as homogeneous planar (parallel to Z) or homeotropic (radial),
the director can be written as n = sin φ(r)r + cos φ(r)k, with
φ being the angle formed by the director and the Z-direction.

2r

1rr
z

FIG. 3. A schematic representation of the annular region confined
between two concentric cylinders and a sketch of the coordinates r, ϕ,
and z. The surfaces are placed at distances r1 and r2 from the center,
with r2 − r1 = d .
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The free energy, in this configuration, can be expressed as

fc = 1

2
K33

∫
Vc

{
k

sin2 φ

r2
+ [k + (1 − k) sin2 φ]φ′2

+ k sin[2φ]φ′

r

}
dV, (10)

in which k = K11/K33 denotes an elastic anisotropy parame-
ter, as before, and Vc is the volume of the cylindrical sample.
By minimizing the free energy, it is possible to obtain the
non-linear differential equation:

sin 2φ

4

[
2k − (1 − k)

(
dφ

dx

)2]

− d2φ

dx2
[k + (1 − k) sin2 φ] = 0 (11)

with x = ln (r/r1). Simple calculations allow us to simplify
Eq. (11) to yield

dφ

dx
= ±

√
Cc + 2k sin2 φ

sin2 φ + k cos2 φ
, (12)

where Cc is an integration constant to be determined. The
anchoring energy is assumed to have the Rapini-Papoular
form

fs = − 1
2W1,2 cos2(φs1,2 − �1,2),

with �i being the angle corresponding to the easy axis, φi the
actual angle at the surface, while the indices i = 1,2 refer at the
surfaces with radii r1 and r2, respectively. By employing
the boundary conditions suitable to weak anchoring, it is
possible to find

Cc = −2k sin2 φs1,2 + {(r1,2/2L1,2) sin[2(φs1,2 − �1,2)] + (k/2) sin[2φs1,2]}2

sin2 φs1,2 + k cos2 φs1,2
, (13)

with Li = K33/Wi . By performing a separation of variables and an integration, from φs1 to φs2, in Eq. (12) and using the
integration constant obtained in Eq. (13), an expression for the angle on the surfaces can be obtained, namely,

±
∫ φs2

φs1

dφ

√√√√ sin2 φ + k cos2 φ

{(r1,2/2L1,2) sin[2(φs1,2−�1,2)]+(k/2) sin[2φs1,2]}2

sin2 φs1,2+k cos2 φs1,2
− 2k sin2 φs1,2 + 2k sin2 φ

− ln
r2

r1
= 0. (14)

Equation (14) is numerically solved for obtaining the angle
at the surfaces and the set of values of the parameters for
which a completely uniform state [φ(r) = 0 or φ(r) = π/2] is
realized when φs1 → φs2.

B. Results

At a first glance it is possible to notice a crucial difference
between Eqs. (14) and (7), which is key to distinguish the
two geometries: it is the importance of the position of the sur-
faces in the equation. For the flat cell the two surfaces are
perfectly equivalent and there is of course no difference if
the planar alignment corresponds to the surface in z = +d/2
or z = −d/2, while in the present case the two surfaces
belong to cylinders of different radii and have a different local
curvature, so that this is a very important issue as also verified
in [25]. Thus, we have analyzed all four combinations of weak
and strong anchoring and planar and homeotropic boundary
conditions, RsZw, RwZx, ZsRw, and ZwRs, for this geometry.
Similar to the previous section, the first two letters denote
the alignment and anchoring conditions at the outer surface
(located at r2) and the last two letters refer to the conditions at
the inner surface (located at r1). The four configurations were
described in detail in Ref. [23]. The cases are investigated
here by changing the extrapolation length, elastic parameter,
and internal radius, while the external radius is kept fixed
(r2 = 20 units). We present results for the behavior of the
angle at the surface with weak anchoring as a function of
the extrapolation length, the internal radius, and the elastic
anisotropy parameter k. Moreover, we show the critical value
of the elastic parameter, kc, as a function of the extrapolation
length.

The results for the RsZw case are shown in Fig. 4. The
profile of the angle at the surface analyzed for different values
of the extrapolation length presents an interesting behavior [see
Fig. 4(a)]: for surfaces with lower values of the extrapolation
length (stronger anchoring) a higher value of k induces lower
values of the angle at the surface. However, this behavior
changes for the values of the extrapolation length higher than
a certain value. In this case, it seems that the surface induces the
reaching of the same angle, independently of the value of the
elastic parameter. Then, the critical value of the extrapolation
length is higher for higher values of the elastic parameter.
When π/2 − φs1 is investigated as a function of the inner
cylinder radius, Fig. 4(b), it is possible to verify that for small
values of the elastic constant, a uniform deformation is found
for thicker samples (small r1). In Fig. 4(c), we show the profile
of the director angle at the surface as a function of the elastic
parameter for some values of the extrapolation length. It is
possible to verify that for a cell with weaker anchoring the
elastic parameter must be higher to observe the completely
uniform state. This result becomes more evident by looking at
Fig. 4(d), where the critical value of the elastic parameter is
plotted against the extrapolation length for a few values of the
inner radius. In this plot, it is possible to see that, for samples
with small value of the extrapolation length, the uniform
deformation can be found for thinner samples (r1 close to r2).

A different behavior is manifested when the anchoring
conditions are inverted, as can be seen in Fig. 5, for the RwZs
case. In this case, the elastic parameter has a greater influence,
as can be noticed from Figs. 5(a) and 5(b). Moreover, a lower
value of the extrapolation length (higher values of anchoring
energy) leads to a higher value of the critical value of the elastic
parameter, as can be appreciated from Figs. 5(c) and 5(d).
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FIG. 4. RsZw case. Profile of φs1 − π/2 as function of L1, for r1 = 14 and a few values of the elastic parameters (a). φs1 − π/2 versus
r1 for L = 10.0 and a few values of the elastic parameter (b). The behavior of φs1 − π/2 as function of k for r1 = 14 and some values of the
extrapolation length (c). Critical values of the elastic parameter versus the extrapolation length, for some values of internal radio (d).
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The more interesting case is, however, the ZsRw one, whose
results are shown in Fig. 6. The behavior of the angle at
the surface is similar to the previous case, but the critical
values of the extrapolation length are lower, due the weak
anchoring with the inner surface. Besides, as discussed also in
[23], the external surface alignment is more effective and the
alignment parallel to Z is energetically preferred. In this case,
these two situations become competitive, which can explain
the non-monotonic behavior of the angle at the surface as
a function of the inner cylinder radius, see Fig. 6(b). The
results for the angle at the surface versus elastic parameter for
few values of extrapolation length are presented in Fig. 6(c).
The profiles of the critical elastic parameter as function of
the extrapolation length, Fig. 6(d), also show an interesting
behavior for the various values of inner radius. Note that the
curves for r1 = 3 and r1 = 18 are very close (respectively,
the lowest and the highest values for inner surface radius
investigated).

Finally, the results of the last case (ZwRs) are shown in
Fig. 7. Although the behavior seems very similar to the RsZw
case, some important differences emerge. The main difference
is in the extrapolation length values required to observe the uni-
form state, see Fig. 7(a). In both cases, however, the profile
of π/2 − φs2 as function of k and the behavior of the angle
as a function of the inner surface radius become close to that
of a uniform state. When we have a weak coupling at the
inner surface, the anchoring energy must be lower than the
opposite case. Moreover, a change in the sample thickness
does not seem to affect the angle in the vicinity of the surface,
for values close to the easy axis direction and, consequently,
the profile of the director. It will be more relevant close to the

conditions for uniformity, which also changes a little with the
elastic parameter, as observed in Fig. 7(b).

In the limit r1,2 → ∞, with the difference (r2 − r1 = d),
the curvature of the cylinders becomes very small and the
sample behavior could be similar to that of a slab. Thus, we
can assume ln(r2/r1) ≈ d/r1,2, and the Eq. (14) can be written

1√
(r1,2/2L1,2)2 sin2[2(φs1,2−�1,2)]

sin2 φs1,2+k cos2 φs1,2

×
∫ φs2

φs1

dφ
√

sin2 φ + k cos2 φ − d

r1,2
= 0, (15)

which provides the same numerical results of Eq. (7).

IV. DISCUSSION AND CONCLUDING REMARKS

We have examined the possibility of tuning the director
deformations in flat or cylindrical hybrid cells by varying
surface anchoring from weak to strong and easy axis from
planar to homeotropic, paying particular attention to the
role of elastic constants anisotropy. As observed in both the
geometries, the elastic anisotropy in a hybrid cell strongly
affects the behavior of the director angle close to the surface.
In the slab case, a planar or homeotropic orientation on
the surface with strong anchoring shows a very different
behavior, which is not the case for the one elastic constant
approximation often used. The curvature and the different
size of the surfaces, however, introduce some interesting
peculiarities for the cylindrical sample. Besides that, in this
kind of geometry, the elastic anisotropy presents a much
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FIG. 7. ZwRs case. Results of the numerical analysis of φs2 − π/2 as function of L2, for some values of the elastic parameters (a). Profile
of φs2 − π/2 versus r1 for L2 = 20.0 and a few values of the elastic parameter (b). (c) φs2 − π/2 versus k for a few values of extrapolation
length. In both cases (a) and (c) we have used r1 = 14. (d) As described in Fig. 4(d).

more complex behavior than the one observed in a planar
geometry. Even in the most similar case, where the alignment
with strong anchoring is parallel to Z and one would expect a
similar behavior of the orientation close to the surface, some
differences emerge. In particular at the threshold where the
cell becomes completely uniform, a small distortion in the
radial direction close to the surface with weak anchoring still
affects the orientation of the director. An important issue to be
noticed is that, for lyotropic and thermotropic liquid crystals,
there is a large variability of the elastic anisotropy parameter.

The results presented here thus offer a rather general solution
allowing reasonable estimates, even for non intuitively obvious
cases, of the director deformations for the full range of elastic
anisotropies.
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