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Controlling the wetting transitions of nanoparticles on nanopatterned substrates
using an electric current
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We study the behavior of a nanoparticle under electromigration on a nanopatterned surface. We show that
electromigration allows one to control the wetting transitions of the nanoparticle. Suitable surface electromigration
conditions to observe these transitions can be achieved with electric currents larger than 1 μA. Using kinetic Monte
Carlo simulations and analytical modeling, we determine the phase diagram of the wetting states, showing how
wetting multistability is affected by electromigration. In addition, we show that the dynamics of the transitions
is controlled by surface diffusion in our simulations, and we provide a quantitative expression for the transition
time.
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I. INTRODUCTION

Controlling the adhesion, shape, and positioning of
nanoparticles, nanoislands, or quantum dots on various solid
substrates is a central issue in nanoscience. One of the main
strategies to achieve this goal is to use substrate patterning. In
the past decade, many experiments have proposed to deposit
[1,2] or grow [3–5] particles on topographical patterns with
small aspect ratios, such as surface undulations [6], or large
aspect ratios, such as nanopillar forests [3,7–9] and nanopore
arrays [10,11].

When they are successful, these strategies provide some
control on the nanoparticles position and properties. However,
the resulting configuration is static, and it is in general
difficult to change the ordering, positioning, or shape after the
formation process. Hence, nanoparticles on surfaces are often
seen as morphologically static arrays in which one could only
change internal degrees of freedom such as the magnetization
or the charge using external fields. Here, using kinetic Monte
Carlo simulations complemented with analytical models, we
show that one can also control the particle shape and its contact
with the substrate using an electric current.

We focus on the morphological changes related to wetting
multistability, i.e., the possibility for two or more states to
coexist in the same physical conditions. This is one of the
main specificities of particles on high aspect ratio nanopatterns
[12,13]. Indeed, there are three types of wetting states for
nanoparticles on nanopatterned surfaces. They are named after
the equivalent liquid-wetting states [14]: (i) the Wenzel (W)
state, where the particle is in contact with the substrate surface
everywhere in the nanopattern; (ii) the Cassie-Baxter (CB)
state, where the gaps within the pattern are empty; (iii) the
imbibition state, where the particle collapses completely in the
nanopattern, thereby leading to the formation of an imbibition
film.

Here, we discuss the transitions between CB and W states
(Some additional discussions including the imbibition state
are provided in Appendix A). Many experimental observations
of CB and W states for nanoparticles have been reported in
the literature, e.g., SiGe quantum dots trapped in ring-shape
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nanotrenches [15], GaAs/Si(100) nanopillars [3], GaN/Si(100)
nanopillars [7], GaN/3C-SiC/Si nanopillars [8], Ge/Si(001)
nanopillars [9], and GaN/Si nanoporous substrates [10,11].
However, to our knowledge, the transitions between these
states have never been observed.

II. KINETIC MONTE CARLO MODEL

Let us assume that an electric current induces the migration
of surface atoms. In order to implement the behavior of
particles in the presence of a surface electromigration force,
we use a 3D kinetic Monte Carlo (KMC) model similar to
that of Refs. [12,13,16], extended to account for a migration
force F following Refs. [17,18]. Atoms are placed on a cubic
lattice with a lattice parameter equal to a. Each site can be
occupied by a particle atom, a substrate atom, or can remain
empty. Substrate atoms are frozen and do not move. We
implement surface diffusion along the nanoparticle surface
via the hopping of surface atoms. We restrict the motion
of atoms to nearest-neighbor hops. In order to only allow
for diffusion for atoms along the nanocrystal surface, crystal
atoms may move to positions where they have at least one
other atom from the particle in the nearest-neighbor (NN)
or next-nearest-neighbor (NNN) positions. The hopping rates
read

ν = ν0e−(EJ +EM )/kBT . (1)

The first contribution to the energy barrier EJ accounts for
the breaking of bonds between an atom and its neighbors due
to the detachment from its initial position during the hop. We
define EJ = ∑

i niJi , where Ji are bond energies. The index
i = 1,2 corresponds, respectively, to NN and NNN between
atoms in the particle, and i = s1,s2 correspond, respectively,
to NN and NNN between particle atoms and substrate atoms.

The effects of the relative values of different bonds between
atoms can be simply summarized in two dimensionless
parameters.

First, the ratio ζ of nearest-neighbor and next-nearest-
neighbor bond energies controls the anisotropic equilibrium
shape of the nanocrystal. When ζ = 0, the equilibrium shape is
a cube with (100) facets only. A larger ζ leads to the appearance
of (111) and (110) facets. If we had aimed at the quantitative
comparison of our results with one specific system, the value of

1539-3755/2015/92(1)/012406(8) 012406-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.012406


M. IGNACIO AND O. PIERRE-LOUIS PHYSICAL REVIEW E 92, 012406 (2015)

ζ would have been chosen to reproduce the equilibrium shape
of this system. However, in the following we do not wish to
reproduce a specific system, and we therefore use a small ζ

to simplify the analysis of the geometry. Moreover, in order
to observe fast enough morphological changes, we also want
to keep (110) and (111) facets, which are sources of adatoms.
Thus, we use ζ = 0.2 in all simulations.

The second parameter χ = Js1/J1 is the ratio between
nearest-neighbor bonds within the particle and nearest-
neighbor bonds between the particle and the substrate. In the
limit of low temperatures, which correspond to our simula-
tions, one has [12] χ = (γAV + γSV − γSA)/2γSA, where the
γ are surface free energies and A, S, V indicate, respectively, the
particle, the substrate, and the vacuum. The parameter χ , called
the wettability, describes the wetting properties of the particle
on the substrate. If the particle was isotropic like a liquid drop,
χ would simply be related to the wetting contact angle via the
relation χ = (1 + cos θ )/2. In order to use χ to describe our
anisotropic solid-state system, we choose arbitrarily the (100)
orientation as the reference orientation for surface energies γ .
In general, when χ increases, the particle has the tendency to
spread more and more on the substrate, and the equilibrium
shape on a flat substrate becomes thinner and wider. As χ → 1
the particle forms a film: this is the wetting transition. We work
in the regime of partial wetting with 0 < χ < 1. The value of
χ has been extracted from experimental observations of the
equilibrium crystal shape in various systems, e.g., χ = 0.65 for
Si(100) on amorphous SiO2 (SOI system) [19–21], χ = 0.35
for Pt(111) on yttria-stabilized ZrO2 [22], χ = 0.31 for Pt(111)
on Al2O3 [23], and χ = 0.26 for Pt(111) on Si3N4 [22].

The second contribution to the energy barrier, EM , is
caused by electromigration. Following Refs. [17,18], one has
EM = F · δr, where F is the migration force, and δr is the
displacement of the adatom from its equilibrium position to
the position of the barrier. We also simplify the analysis by
assuming that the migration force is constant and along the
z axis orthogonal to the average substrate orientation. This
amounts to neglecting the possible deflections of the electric
current due to the particle and the substrate, but we keep the
main ingredient: the existence of an average force directed
along the current.

We use periodic boundary conditions in the x, y directions
parallel to the average substrate orientation. Particles extend
through the whole system size along the x direction but are
never in contact with their periodic images along y. In the
z direction, the particles cannot hop to heights larger than
zmax. The value of zmax is chosen to be large enough so that
nanoparticles never reach it during the dynamics.

III. PHASE DIAGRAM OF A NANOPARTICLE PARTICLE
ON NANOTRENCHES UNDER AN ELECTRIC CURRENT

We choose a specific substrate geometry with a periodic
array of parallel nanotrenches where both the CB to W and the
W to CB transitions are possible, while this latter transition
is usually difficult to obtain on pillars due to pinning effects.
This reversibility of the transition has been confirmed both
using KMC simulations with nanoparticles on nano-trenches
[12] and with electrowetting experiments of water droplets on
Teflon-covered microscale trenches [24].

We assume that the trenches exhibit a square section and
that the island is periodic in the direction perpendicular to the
trenches. The critical forces above which W → CB and CB →
W transitions are observed depend on model parameters.
Since the migration force F is constant, it can be written
as the gradient of an effective potential energy −Fz. Adding
this contribution with surface and interface free energies, we
obtain a global effective energy. The variation of this global
energy with respect to the island shape provides a criterion
for stability. A detailed derivation is given in Appendix A.
The variation of the shape considered in the stability criteria
are inspired by the observation of the transitions in the KMC
simulations. Considering the variation of shape depicted in
Fig. 2(a1) for the CB → W transition, we find that this
transition is triggered beyond a critical normalized force F̄↓
obeying

(1 − 2χ )

(
2 + F̄↓

2

)1/2

= F̄↓
4v1/2

(2 − χ )1/2, (2)

where we have introduced the normalized force,

F̄ = FN

γ100λ
, (3)

and the reduced volume,

v = N	

λ3
. (4)

Here, 	 = a3 is the atomic volume, λ describes the typical
scale of the patterns, γ100 is the free energy of the (100) facet, N
is the number of atoms in the particle, and the force amplitude
F is chosen to be positive for downward migration. For the
reverse W → CB transition, following the shape variation
depicted in Fig. 2(a2), the critical force F̄↑ is found to obey

(1 − 3χ )

(
2 − F̄↑

2

)1/2

= 1

2v1/2

(
1 − F̄↑

2

)(
3 − 4χ + F̄↑

32v

)1/2

. (5)

In the limit F̄ → 0, we recover the known results describing
stability in the absence of migration force [12], with critical
wettabilities

χ↓0 = 1/2, (6)

χ↑0 = 1/3 − [1 + (1 + 30v)1/2]/(36v), (7)

for the CB → W and W → CB transitions, respectively.
The stability thresholds obtained from KMC simulation

are plotted in Fig. 2(b). They are in good agreement with
the predictions, Eqs. (2) and (5). As a remark, it is actually
difficult to obtain accurate thresholds from the simulations
because the dynamics is very slow near the transitions. This
slowing down of the dynamics will be discussed in the next
section. In addition, differences between the predictions and
the analytical results may originate from our approximations:
(i) we neglect the (110) and (111) facets in Eqs. (2) and
(5), and KMC simulations are performed with ζ = 0.2. The
influence of a nonvanishing ζ on the equilibrium shape of a
crystal on nanotrenches was discussed quantitatively in Ref.
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[12]. (ii) Thermal fluctuations are also neglected, both for their
influence on the values of surface free energies and for their
possible role to help passing over energy barriers. The effect
of temperature on the facet free energies is negligible at the
temperature kBT = 0.5J1 used in the simulations, as discussed
in Ref. [12]. Moreover, although the fluctuation-driven passage
of the system over energy barriers have been observed in
Ref. [12], the quantitative prediction of this effect remains
a challenge. Globally, and given these limitations, the KMC
simulations reported in Fig. 2(b) are in good agreement with
the transition lines discussed above.

The distance between the two transition lines in Fig. 2(b)
indicates the presence of hysteresis, i.e., the transition will
not occur at the same value of the force F for increasing
forces, or for decreasing forces. We see in Fig. 2(b) that, in the
intermediate range χ↓0 < χ < χ↑0, the particle is stable in the
CB and W states, and one can switch from one state to the other
using the migration force. Using numbers discussed above for
χ , we find that this condition can be obtained for Pt(111) on
yttria-stabilized ZrO2 [22], or Al2O3 [23], but not for Si(100)
on amorphous SiO2 [19–21], where χ is too large. For larger
values of χ > χ↑0, the particle spontaneously comes back to
the W state in the absence of migration but can be lifted to
a CB state using upward migration. In the opposite regime
χ < χ↓0, the particle spontaneously relaxes to the CB state
without migration, but can be collapsed to the W state in the
presence of downward migration.

Using these results, it is possible to obtain a W → CB →
W cycle in the intermediate range χ↓0 < χ < χ↑0. Let us
indeed consider a particle placed initially on the top of the
pattern in a CB state as in Fig. 1(a). In the absence of migration,
the particle is stable in this position. Then, we switch on the
migration force in the downward direction with F̄ > F̄↓. If the
force is strong enough, the surface atoms migrate downward,

FIG. 1. (Color online) A nanoparticle on a nanopatterned sub-
strate under an electric current can be used as a nanoswitch. The
nanoparticle can switch between the Cassie-Baxter state (a, e),
and the Wenzel state (b) using electromigration induced by the
electric current. The CB → W → CB cycle is obtained using the
normalized migration force F̄ = 0, F̄ = 2.22, F̄ = 0, F̄ = −2.22,
and F̄ = 0. Other simulation parameters: ζ = 0.2, kBT = 0.5J1,
N = 203, χ = 1/3, and λ = 20a, where a is the lattice parameter.
Lower panel: evolution of the position of the center of mass Zc.m.

during the cycle.

leading to a transition to the W state in Fig. 1(b). We then
switch off the migration force. The particle is stable in the W
state, as shown in Fig. 1(c). A strong enough migration force
with |F̄ | > |F̄↑| is then turned on in the upward direction. The
particle comes back to the CB state; see Fig. 1(d). Once again,
and as shown in Fig. 1(e), if the force is switched off, the
particle stays in the CB state. We conclude that the system
behaves like an addressable bistable nanoscale switch.

IV. TRANSITION DYNAMICS

Finally, we will discuss the dynamics of the transitions.
An order of magnitude of the transition time can indeed be
obtained from a simple analysis. Let us consider the evolution
of a lengthscale 
 describing the size of the island. The shape
evolves due to the migration of adatoms on the lateral facets,
creating a total mass flux J . On the one hand, the gradient of
chemical potential on the particle surface under the action of
the migration force is ∼F/kBT . As a consequence, the total
mass flux is J ∼ 
DCeq(F/kBT ), where D and Ceq are the
adatom diffusion constant and equilibrium concentration on
the facets, respectively. On the other hand, mass conservation
imposes that J ∼ dN/dt ∼ d(
3/	)/dt , where N = 
3/	

is the number of atoms of the island, and 	 is the atomic
volume. Combining the two expressions of J , one finds
d
/dt ∼ DCeqF/(
kBT ). Since the island is displaced by a
distance ∼λ during collapse, the total transition time is

T ∼ 
λkBT /(	DCeq|F |). (8)

The order of magnitude provided by this expression is in
agreement with the simulation results presented in Fig. 2(c).
Indeed, since [16] DCeq = 2 × 10−4ν0, Eq. (8) predicts Tc ∼
8 × 108ν−1

0 /F̄ . In the KMC simulations presented in Fig. 2(c),
both transitions CB → W and W → CB are consistent with
a form T ∼ A/(F̄ − F̄c) with F̄c ∼ 1 and A ∼ 108ν−1

0 . Here
the term F̄c accounts for the wetting effects, which lead to a
finite threshold for the transitions, as obtained in Eqs. (2) and
(5). Modeling more precisely the diffusion of mobile adatoms
on the lateral facets of the island biased by the migration force,
we obtain effective dynamics for the CB → W transition. A
detailed and lengthy expression is provided in Appendix B for
the time Tc of transition from the CB state to the W state. This
expression with no fitting parameter is in good agreement with
the KMC simulations, as seen in Fig. 2(c).

V. DISCUSSION

In order to determine the possibility of migration-induced
transitions in experiments, we evaluate the order of magnitude
of the ratio F/Fc. In the case of metals, the migration
force is dominated by the wind force, which originates in
the transfer of momentum of conduction electrons to mobile
surface adatoms. Previous studies have shown that F = ZeE,
where Z is an effective valence, e is the electronic charge,
and E is the electric field. Assuming a current I distributed
homogeneously in the particle of size w along the trenches, and
w⊥ perpendicularly to the trenches, we have E = ρI/ww⊥,
where ρ is the resistivity. In addition, transitions are observed
for a critical force F = Fc, corresponding to the dimensionless
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FIG. 2. (Color online) Migration-induced transitions. (a1, a2) Schematics of the intermediate configurations during the CB → W and
W → CB transitions, and KMC snapshots. (b) Phase diagram in the presence of migration. The black solid line corresponds to the predicted
transition from CB to W from Eq. (2). The prediction for the reverse transition from W to CB is the red solid line, corresponding to Eq. (5).
The distance between the two lines indicates the presence of hysteresis. Symbols represent the final state in the KMC simulations: CB (circle)
and W (square). The initial state is the W state for the upper curve (W → CB transition) and the CB state for the lower curve (CB → W
transition). Other KMC parameters: ζ = 0.2, kBT = 0.5J1, N = 203, and λ = 20a. (c) Transition times T↓ (black) and T↑ (red), in units of
1/ν0, as a function of |F̄ |. KMC simulation results: CB → W (black circle) and W → CB (red squares). The dashed lines report the predicted
limit of stability from Eqs. (2) and (5). The solid line is the analytical model for the CB → W transition (described in Appendix A), with no
fitting parameter. Other KMC parameters: ζ = 0.2, χ = 0.3, kBT = 0.5J1, N = 203, and λ = 20a. Inset: same data in log scale. The dashed
lines correspond to T↓ = 0.7 × 108/(F̄ − 1.2) and T↑ = 108/(F̄ − 1.9).

relation F̄ = F̄c. We then find

F

Fc

= Zeρ

F̄c	γ100
I

h

w⊥
, (9)

where we have used the relation N = λhw corresponding to
our geometry. One remarkable consequence of Eq. (9) is that
the threshold at fixed current I does not depend on size of the
pattern. Furthermore, since we generically expect w⊥ ∼ h,
the dependence on the particle size must be weak. Using
typical orders of magnitude F̄c ∼ 1, Z = 10 to 20 [25–27],

ρ ∼ 10−8 to 10−7	m−1, and γ100 ∼ 0.1 eVÅ
−2

, we find that
for the largest electric currents usually available in STM or
AFM are I ∼ 1 μA [28,29], F/Fc ∼ 10−1 − 10−2. Hence,
the observation of transitions would require higher electric
currents, at least 10 μA to reach the threshold.

The timescales of the transition can also be inferred. We
use a typical particle size with an aspect ratio around one, i.e.,

w ∼ w⊥ ∼ w ∼ 
, and Eq. (8) leads to

T ∼ kBT

DCeq

1

ZeρI


3λ

	
. (10)

We assume DCeq ∼ 109 s−1 and kBT ∼ 0.1 eV. KMC simula-
tions presented in Figs. 1 and 2 performed with a small particle
composed of N = 203 = 8000 atoms would correspond to a
switching time of the order of 1 s, but again with a very high
critical current larger than 1 μA.

Globally, the timescales can be changed by several orders
of magnitude by changing the migration force, the particle
size, or the temperature. But in contrast to the critical force Fc,
the transition time at fixed current I is seen to increase with
increasing island size 
 or pattern size λ. Therefore, assuming
a fixed current ∼10 μA, the transitions should be observable
experimentally in accessible times only for particles up to
100 nm. Observing transitions with larger particles would
require higher currents, which are beyond the reach of standard
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experimental setups with STM and AFM tips [28,29] and
would therefore require a specific device.

Finally, we speculate that another possible strategy to
induce migration at the surface could be to use an electron
beam. However, there is to our knowledge no experimental
observation of electron beam-induced surface migration with-
out damage in the crystal.

In summary, we have shown that, for nanoparticles with
significant surface diffusion on frozen substrates, the wetting
transitions of a nanoparticle on nanoscale trenches can be
controlled by electromigration. Such electric currents could
be transmitted from an AFM or STM tip; however, currents
larger than those usually available could be necessary. Based
on kinetic Monte Carlo simulations and on analytical models,
we have obtained a quantitative understanding of the phase
diagram and of the transition dynamics.
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APPENDIX A: PHASE DIAGRAM FOR A NANOPARTICLE
ON NANOTRENCHES IN THE PRESENCE OF A

MIGRATION FORCE

In this section, we derive analytical expressions for the
transition lines for the CB → W and W → CB transitions.
Here, we also consider the CF state, shown in Fig. 3, where
CF denotes the capillary-filling state [12], which is the
specific imbibition state [12,30] associated with the nanotrench
geometry. On the one hand, the W → CF transition must be
avoided in order to obtain the two-state nanoswitch discussed
in the main text. On the other hand, this transition can be used
to obtain a three-state nanoswitch. Below, we obtain a criterion
for the W → CF transition.

FIG. 3. (Color online) Schematic of the three states: (a) CB, (b)
W, (c) CF, and snapshot from KMC simulations.

FIG. 4. (Color online) Schematic of the intermediate configura-
tions for the three transitions (a) CB → W, (b) W → CB, and (c)
W → CF, and corresponding snapshots from KMC simulations.

In order to simplify the equations, we consider the limit
ζ → 0 where the (110) and (111) facets can be neglected. The
crystal then exhibits (100) facets only.

1. CB → W transition

First, let us consider the CB → W transition. The geometri-
cal parameters are shown in Fig. 4(a). As discussed in the main
text, the intermediate geometry is inspired by the observation
of KMC simulations.

A simple way to account for the migration force is to
consider and effective free energy E − F

∫
V

dV (z/a3), where
E is the surface and interface free energy, the migration force
F is positive when it points downward.

The effective free energy during the CB → W transition is
parametrized by the length h∗ and reads

ECB→W

γav
= 2hλ + 3

2
wλ + h∗λ + (1 − 2χ )

(
λ

2
w + 2wh∗

)

− F

γava3

(
λwh∗2

4
− λwh2

2

)
. (A1)

Using mass conservation

V = λwh + λ

2
wh∗, (A2)

the energy Eq. (A1) is rewritten as

ECB→W

γav
= 2V

w
+ 3

2
wλ + (1 − 2χ )

(
λ

2
w + 2wh∗

)

− F

γava3

(
λh∗w

8
− V 2

2wλ
+ V h∗

2

)
. (A3)

We now assume that the shape of the island relaxes at scales
faster than the transition time. The equilibrium width weq of the
island is then obtained by solving the equation ∂wECB→W = 0,

weq =
(

2V + FV 2

2λγava3

3λ
2 + (1 − 2χ )

(
2h∗ + λ

2

) − Fλh∗2

8γava3

)1/2

. (A4)
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Inserting this expression into Eq. (A3) leads to

ECB→W

γav
= 2

(
2V + FV 2

2λγava3

)1/2

×
(

3λ

2
+ (1 − 2χ )

(
λ

2
+ 2h∗

)
− Fλh∗2

8γava3

)1/2

− FV h∗

2γava3
. (A5)

Using reduced units F̄ = FλN/(γ100λ
2) and v = N	/λ3, the

critical force giving the condition of stability of the CB state
is given by limh∗→0 ∂h∗ECB→W = 0,

(1 − 2χ )

(
2 + F̄

2

)1/2

= F̄

4v1/2
(2 − χ )1/2. (A6)

2. W → CB transition

The observation of KMC simulations reveals that the
intermediate stage in the W → CB transition is the formation
of a tunnel inside the trench, as depicted in Fig. 4(b). The
length of the dewetting tunnel is denoted as c � 0 as shown
in Fig. 4(b). The energy of the system during this transition is
now

EW→CB

γav
= 2hλ + λw + λ2

2
+ cλ + λ(1 − 2χ )(2w − 3c)

+ F

γava3

(
λ3(w − 2c)

16
− λwh2

2

)
. (A7)

Using mass conservation V = λwh + λ2

4 (w − 2c), we can
calculate once again the equilibrium width of the island during
the transition,

weq =
[

2V + λ2c − F
γava3

(
V 2

2λ
+ λ3c2

8 + V λc
2

)
λ(3 − 4χ ) + Fλ3

32γava3

]1/2

. (A8)

leading to the equilibrium free energy at fixed c

EW→CB

γav
= 2

[
2V + λ2c − F

γava3

(
V 2

2λ
+ λ3c2

8
+ V λc

2

)]1/2

×
[
λ(3 − 4χ ) + Fλ3

32γava3

]1/2

+ 2cλ(3χ − 1)

+ FV λ

4γava3
. (A9)

The limit of stability of the Wenzel state is obtained for
limc→0 ∂cEW→CB = 0 and reads

(1 − 3χ )

(
2 − F̄

2

)1/2

= 1

2v1/2

(
1 − F̄

2

)(
3 − 4χ + F̄

32v

)1/2

. (A10)

3. W → CF transition

When χ or F is large, and points downward, the Wenzel
state becomes unstable and the particle collapses into the
CF state. The intermediate geometries are similar to those

observed for the W → CB transition, except that c > 0, i.e.,
instead of a tunnel, we observe a finger invading the trench
in the vicinity of the particle, as shown in Fig. 4(c). The free
energy in the intermediate stages is now

EW→CF

γav
= 2hλ + λw + λ2

2
+ cλ + λ(1 − 2χ )(2w + 3c)

− F

γava3

[
λ3(w + 2c)

16
− λwh2

2

]
. (A11)

Once again, using mass conservation V = λwh + λ2

4 (w + 2c),
we find the equilibrium shape

weq =
[

2V − λ2c − F
γava3

(−V 2

2λ
− λ3c2

8 + V λc
2

)
λ(3 − 4χ ) − Fλ3

32γava3

]1/2

. (A12)

Then, we obtain the equilibrium free energy at fixed c

EW→CF

γav
= 2

[
2V −λ2c− F

γava3

(
−V 2

2λ
− λ3c2

8
+ V λc

2

)]1/2

×
[
λ(3 − 4χ ) − Fλ3

32γava3

]1/2

− 2cλ(3χ − 2)

− FV λ

4γava3
. (A13)

The condition of stability limc→0 ∂cEW→CF = 0 gives the
threshold of the transition,

(2 − 3χ )

(
2 + F̄

2

)1/2

= 1

2v1/2

(
1 + F̄

2

)(
3 − 4χ − F̄

32v

)1/2

. (A14)
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FIG. 5. (Color online) Phase diagram with the CF state. The solid
lines report the limits of stability obtained from Eqs. (A6), (A10), and
(A14). Symbols indicate the final state in a long KMC simulation:
CB (circle), W (square), and CF (triangle). Other KMC parameters:
ζ = 0.2, kBT = 0.5J1, N = 203, and λ = 20a.
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4. KMC simulations

A comparison between KMC simulations and the analytical
predictions is presented in Fig. 5. Given the limitations
discussed in the main text, the KMC simulations reported in
Fig. 5 are in good agreement with the three transition lines
discussed above.

APPENDIX B: DYNAMICS OF THE CB → W TRANSITION

The transition from CB to W state results from the
transfer of mass between the top and bottom facets. This
mass transfer is mediated by adatoms diffusing on the lateral
facets of the island. These adatoms obey a diffusion equation
[31,32],

∂P (z,t)

∂t
= −∂J (z,t)

∂z
, (B1)

J (z,t) = −D
∂C(z,t)

∂z
+ D

ξ
C(z,t), (B2)

where we have assumed for simplicity that the concentration
only depends on the z coordinate. In the following, we use the
so-called quasistatic approximation [32], where the adatom
diffusion is supposed to be fast, so that one may assume
∂P (z,t)/∂t = 0 in Eq. (B1). The quasistatic approximation re-
lies on the assumption that the adatom concentration profile is
not affected by the slow evolution of the island shape. This may
be summarized in the separation of scales D/∂t
 � 
, where

 is the typical size of the island, and 	 is the atomic volume.
Since ∂t
 ∼ (	/
)j , with a diffusion mass flux j ∼ DCeq/
,
where Ceq is the equilibrium adatom concentration on facets,
the condition of validity of the quasistatic approximation may
be rewritten as 
 � 	Ceq, which is always verified because
	Ceq is smaller than an atomic length. As a consequence,
the concentration C does not depend explicitly on time and
exhibits a simple form,

C(z) = Aξ + B exp(z/ξ ), (B3)

where A and B are constants. We separate the lateral facets into
two zones: (i) −h < z < 0, where the facet width is W = λ,
and (ii) 0 < z < h∗, where the facet width is W ∗ = λ/2.
At the boundary between the two zones, we assume the
continuity of C and J . While the continuity of J strictly
follows from mass conservation, the continuity of C is a
more delicate assumption, which relies essentially on the
fact that the matching region between the two zones is
small.

In addition, we assume local equilibrium at z = h

and z = h∗, leading to two boundary conditions for the
concentration: C(h∗) = Ceqexp[μ(h∗)/kBT ], and C(−h) =
Ceqexp[μ(−h)/kBT ]. The local chemical potentials at the top
and bottom facets are obtained from the variation of the total
energy of the particle:

μ(z = −h) = ∂E

∂h

∂h

∂N
= 2	γav

w

μ(z = h∗) = ∂E

∂h∗
∂h∗

∂N
= 2	γav

(
1

w
+ 2 − 4χ

λ

)
, (B4)

leading to �μ = μ(z = h∗) − μ(z = −h) = −2	γav(2 −
4χ )/λ. Note that the z axis is pointing downward.

The boundary conditions lead to a linear system of equa-
tions for A±,B±. We solve this system in the limit ξ � h,h∗
and μ 	 kBT . The time evolution of h(t) and h∗(t) is then
given by

dh(t)

dt
= −W	

S
A−D,

(B5)
dh∗(t)

dt
= W ∗	

S∗ A+D,

where

A− = W ∗Ceq

[
�μ/kBT + (h + h∗)/ξ

Wh∗ + W ∗h

]
. (B6)

and A+ = WA−/W ∗. In addition, S = weqλ and S∗ = weqλ/2
denote, respectively, the top and bottom surface facets.
Defining

� = Ceq	WW ∗D
(

W

S∗ − W ∗

S

)
, (B7)

H ∗(t) = h∗(t)

(
W − W ∗S∗

S

)
+ W ∗V

S
, (B8)

a1 = 2�

ξ

S − S∗

WS − W ∗S∗ , (B9)

b1 = 2�

{
�μ

kBT
+ 1

ξ

[ −W ∗V
SW − W ∗S∗

(
1 − S∗

S

)
+ V

S

]}
.

(B10)

One then has dH ∗2/dt = a1H
∗ + b1. This equation is easily

solved, and the total time for the transition from CB state to
W state is obtained as

T↓ = 2

a1

{
H ∗(T↓) − H ∗(0) + b1

a1
ln

[
H ∗(0) + b1

a1

H ∗(T↓) + b1
a1

]}
.

(B11)

In order to compare this analytical expression of T↓ to the
KMC simulation results, we use the expressions of the physical
constants derived in Ref. [12]:

D = ν0a
2 exp[−J1(1 + 4ζ )/kBT ], (B12)

Ceq = exp[−2J1β(1 + ζ )/kBT ], (B13)

γ100 = J1

2
(1 + 4ζ ). (B14)

This result is shown in Fig. 2(c) of the main text.
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