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Diffusion-controlled growth rate of stepped interfaces
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For many materials, the structure of crystalline surfaces or solid-solid interphase boundaries is characterized
by an array of mobile steps separated by immobile terraces. Despite the prevalence of step-terraced interfaces
a theoretical description of the growth rate has not been completely solved. In this work the boundary element
method (BEM) has been utilized to numerically compute the concentration profile in a fluid phase in contact
with an infinite array of equally spaced surface steps and, under the assumption that step motion is controlled by
diffusion through the fluid phase, the growth rate is computed. It is also assumed that a boundary layer exists
between the growing surface and a point in the liquid where complete convective mixing occurs. The BEM results
are presented for varying step spacing, supersaturation, and boundary layer width. BEM calculations were also
used to study the phenomenon of step bunching during crystal growth, and it is found that, in the absence of
elastic strain energy, a sufficiently large perturbation in the position of a step from its regular spacing will lead
to a step bunching instability. Finally, an approximate analytic solution using a matched asymptotic expansion
technique is presented for the case of a stagnant liquid or equivalently a solid-solid stepped interface.

DOI: 10.1103/PhysRevE.92.012404 PACS number(s): 81.10.−h, 68.05.−n, 68.08.−p

I. INTRODUCTION

The mobility of interphase boundaries plays a crucial role in
the description of many important processes, from the growth
of protein crystals to the heat treatment of alloys. In studying
the motion of interfaces, the first level of classification is the
distinction between rough and faceted (smooth) interfaces. A
rough interface atom attachment to the growing phase occurs
readily at any point on the boundary, and rough interfaces
are characteristic of solid-liquid interfaces in most metals and
alloys. On the other hand faceted interfaces are identified
by the presence of immobile terraces separated by steps of
roughly atomic height. The description of crystal growth from
the vapor as the lateral motion of steps across the surface was
first introduced by Frankel [1] and Burton et al. [2]. In many
alloy systems the interface between a precipitate and the matrix
phase can also be described by a series of mobile steps. Thus
Aaronson [3] extended the ideas of Burton et al. and proposed
the so-called ledge mechanism in solid-solid systems. To date,
electron microscopy studies, most notably those employing
the scanning tunneling microscopy technique [4], confirmed
the ledge mechanism in many systems, such as pure Si [5]
grown from the vapor and alloying systems [6,7], including
steels [8,9] and aluminum alloys [10–16].

The other set of classification in crystal growth theories
are diffusion-controlled and/or interface-controlled systems.
In the latter case, most theories assume some rate-controlling
event to occur on the surface, either as a result of nucleation
rates or some process such as adsorption, surface diffusion,
or step incorporation [17–19]. Another real possibility is
that the solute transfer to the surface may be limited by
mass transfer or diffusion through the bulk solution. Despite
the importance of diffusion-controlled growth only a limited
number of analytic solutions are available. For a planar, rough
interface growing in an infinite system the concentration
profile can be obtained, and the solution has been utilized in the
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well-known Mullins and Serkerka instability theory [20,21].
The diffusion-controlled growth of a paraboidal-shaped den-
drite has been solved exactly by Ivantsov under the assumption
of no capillarity effects. The more general case has been the
subject of many theoretical studies and has led to the solvability
criterion of velocity selection for dendritic solidification. In
many alloy systems platelike precipitates with approximately
parabolic tips are observed, and several studies have been
conducted to predict the precipitate growth rate from the
Ivantsov approach [22–24]. In these studies the relationship
between the velocity of the plate tip and supersaturation at a
specific tip curvature was predicted. However, the predictions
of these models usually show a significant deviation from
experimental results [25]. In order to explain this discrepancy
several authors examined factors such as anisotropy of the sur-
face energy [26], nonideal solution [27], and, most importantly,
inability of a smooth parabola to represent the step-terrace
geometry [28].

For faceted interfaces, reliable modeling of the diffusion-
controlled ledge mechanism needs a geometry in which mobile
steps, as sinks of solute, are positioned at discrete locations
along the interphase boundary. This geometry differs from
classical models where a uniform flux along the rough interface
is assumed. For the case of smooth interfaces, the most general
form of the diffusion equation would be the following:

D∇2c − vK

∂c

∂x
− vS

∂c

∂y
− vD

∂c

∂z
= 0, (1)

where vK , vS , and vD are kink, step, and surface velocities,
respectively, D is the diffusion coefficient in the matrix phase,
and c is the concentration. The solution of Eq. (1) with different
simplifying assumptions has been considered in the literature.
One of the first models developed by Burton et al. [2], known
as the BCF model, assumed that steady growth occurs only
at energetically favorable kinks. In addition, it was assumed
that the relative motion of any sinks such as kinks or steps
is negligible when compared with the bulk diffusion fluxes.
Therefore they solved D∇2c = 0. Using a set of geometric
approximations, and defining the influence region for kinks,
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steps, and the solidification front, they calculated the interface
velocity for systems with equally spaced steps.

When the ledge mechanism is dominant, attachment of the
adatom can happen anywhere along the step, which is itself
rough. Therefore, in this case, kink formation is unnecessary
for the progress of crystal growth. Thus, the term in Eq. (1)
that includes the kink velocity can be eliminated. Chernov [29]
modified the BCF diffusion model. He made the simplifying
assumption that the distance between two successive kinks
is so small that one can consider a step as a long sink, and
thus the concentration profile is merely dependent on two
dimensions perpendicular to the step line. Instead of using an
approximate solution by a geometrical division of the domain
(as was done by the BCF model), D∇2c = 0 was solved
analytically, using a conformal mapping technique, in two
dimensions for an infinite and periodic array of steps. However,
Chernov used an attachment-limited boundary condition at
the steps, rather than a diffusion-controlled condition. In the
Chernov approach each step is a source point, and the height
of the step is negligible in comparison with the length of the
terraces. Besides simple mass transfer limitations, Ohara [30]
considered the effect of heat evolution (or absorption) at the
crystal interface and derived an equation to account for the
simultaneous transfer of heat and mass and concluded that
simultaneous heat transfer effects are negligible. In another
study by Jones and Trivedi [31], the height of the step was
considered explicitly and diffusion control was assumed. The
analytic solution was obtained in the limit of a zero Péclet
number and is valid for a single isolated step. Atkinson
further improved the previous method by calculating the
concentration profile in the case of small Péclet numbers
by utilizing Fourier transformations, multiple scale analyses,
and a singular perturbation method for an isolated step [32],
multiple steps [33], and steps close to an external surface [34].
In addition, a finite-difference based diffusional growth model
has been used for numerical modeling of the ledge density
effects, ledge nucleation kinetics, and the presence of multiple
precipitates on solute buildup in the matrix [35–40].

The other phenomenon that can be addressed by solving
the diffusion equation is step bunching, which refers to the
tendency of a regular spaced step train to become unstable
and to form regions of closely spaced steps separated by long
terraces. The case of crystals grown from deposition through
a vapor phase step bunching has been well studied. In an early
treatment of step bunching, Frank explained this phenomenon
using an impurity mechanism [41]. A more recent stability
analysis [42] has shown that step bunching can occur due to an
asymmetric flux to a step arising from the Ehrlich-Schwoebel
barrier [43,44].

Crystals grown from the melt the asymmetry in flux and
hence step bunching can be provided by flow in the liquid.
A far-field liquid flow in the direction of step motion the
regular array is stabilized against bunching, whereas flow
in the direction counter to the step growth direction acts to
destabilize the interface. In several studies Bredikhin and
co-workers [45–48] have studied step bunching, and they
conclude that, even in the absence of liquid flow, a regular train
of steps is inherently unstable due to the interaction between
traveling inhomogeneities of step density and diffusion in the
solution. The boundary element method (BEM) computations

performed here will help address step bunching during
diffusion-controlled growth.

The purpose of the present work is to provide numerical and
analytic solutions to a growth process of facetted interfaces not
yet considered, that is, the diffusion-controlled growth of an
infinite train of equally spaced steps. We begin by introducing
the boundary element technique for the case where a boundary
layer is assumed in the liquid adjacent to the crystal-melt inter-
face and determine the concentration field and growth velocity
as a function of step separation and boundary layer width.
In addition, we examine the instability of an equally spaced
train of arrays by applying a perturbation to a single step and
calculating the velocity of the neighboring steps to determine
the final stable arrangement of a train of steps. Finally, we
present an approximate analytic solution based on a matched
asymptotic technique for the case of no boundary layer, which
is valid for the case of growing precipitates in alloys.

II. BOUNDARY INTEGRAL FORMULATION

Consider a coordinate system in which the steps are moving
at constant velocity in the direction x and the interface as a
whole migrates in the y direction. If the step spacing is large,
it is reasonable to neglect the velocity in y, and the diffusion
equation can be rewritten as

D∇2c + vx

∂c

∂x
= 0, (2)

where vx is the step velocity, D is the diffusivity in the matrix,
liquid or vapor phase, and c is the concentration. The two-
dimensional geometry also assumes that the steps are straight.
Further we assume that the steps are energetically favorable
sites for atom attachment and no surface adsorption at the
terraces is allowed.

For convenience we can rewrite Eq. (2) in a dimensionless
form by defining a Péclet number px = vxh

D
which is scaled

by the step height h and a scaled concentration given by the
form used by Atkinson: u = c−c0

ce−c0
. The scaled variables yield

the following:

∇2u + px

∂u

∂x̃
= 0. (3)

The value of scaled concentration varies between zero for
the far field limit and unity for the equilibrium condition. For
developing the boundary element formulation, we employed
the method used by several authors [28,49–51], which relies
on a variable transformation in order to reduce the problem to a
Helmholtz equation. The variable transformation has the form
u = φe− px

2 x̃ . After substituting the final Helmholtz equation
obtains as

∇2φ −
(

px

2

)2

φ = 0. (4)

The fundamental solution corresponding to Eq. (4) should
satisfy the equation

∇2G(r,r′) −
(

px

2

)2

G(r,r′) = −δ(r,r′), (5)

where r and r′ are vectors representing field and boundary
points, respectively, δ is the Dirac delta function, and G(r,r′) is
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the Green’s function for the corresponding Helmholtz equation
and is expressible as a function of K0, the modified Bessel
function of the second kind of order zero i.e.:

G(r,r′) = 1

2π
K0

[(
px

2

)
|r − r′|

]
, (6)

where the Péclet number is defined as a positive quantity.
From Green’s theorem, the boundary integral formulation

is established:

αu(r) −
∫

u(r′)
∂G(r,r′)

∂n′ e
px
2 (r ′

x−rx ) d�(r′)

+ px

2

∫
G(r,r′)u(r′)

∂r ′
x

∂n′ e
px
2 (r ′

x−rx ) d�(r′)

= −
∫

G(r,r′)
∂u(r′)
∂n′ e

px
2 (r ′

x−rx ) d�(r′), (7)

where the parameter α is a constant and its value depends
on the location of r. When r lies inside the domain α takes
the value of unity, and when r lies on a smooth boundary α

takes the value 1
2 . In the above equation ∂

∂n′ is the directional
derivative of the corresponding function in the direction of
the outward pointing normal n′ to the surface element d�.The
derivative of the fundamental solution appearing in the first
integral is

∂G

∂n′ = px

4π
K1

(
px

2
|r − r′|

)
(r − r′) · n′

|r − r′| , (8)

where K1 is the modified Bessel function of the second kind
of order one.

For boundary integral implementation we follow the pro-
cedure explained in detail in Ref. [52] and used in several
studies [49,51]. Equation (7) can be rewritten as

αu +
∫

�

uq∗ d� −
∫

�

qu∗ d� = 0, (9)

where we have taken q∗ as the coefficients of u and u∗ is
the coefficients of q = ∂u(r′)

∂n′ . The boundary � is discretized
into N straight line segments where uj and qj are respectively
approximated as constants, such that they can be removed from
the integrals. This yields

1

2
ui +

N∑
j=1

(∫
�

q∗ d�

)
uj −

N∑
j=1

(∫
�

u∗ d�

)
qj = 0. (10)

After integration the whole set of equations can be ex-
pressed in matrix form as

[A]{Y} = [F], (11)

where Y is the vector of unknowns u or q. For each case the
total number of unknowns should be equal to the number of
the possible equations for the whole domain. Therefore, we
can find the value of scaled concentration and flux for every
element on the boundary of the domain. In a postprocessing
step one can calculate the concentration at any point in the
interior from the known boundary terms.

It is common to employ numerical methods such as
Gaussian quadrature for the integrals appearing in Eq. (10)
and the matrix elements of [A] [28]. However, singularities

occur when r = r′. The singularity problem is usually solved
by estimating the Bessel functions in the limit of small
r = r′, which results in integrable functions. However, to avoid
this difficulty we utilized the analytical integration results
developed by Ang [53]. Here the integral over any element,
including the singular elements, can be computed without
resorting to the more expensive Gaussian quadrature or similar
numerical integration schemes.

Using the mass conservation principle for the step element
we can calculate the relationship between flux, concentration,
and velocity as

D
∂c

∂x
= vx(c − cs), (12)

where x is perpendicular to the step element and cs is the
concentration in the solid. After scaling x with the step height
h and using the dimensionless concentration in an equilibrium
condition we have

∂u

∂n′

∣∣∣∣
step

= px

(
1 − 1

�

)
− pxu, (13)

where ∂u
∂n′ |step

is the flux at the step and � = ce−c0
ce−cs

is the
supersaturation. Therefore, since scaled concentration is unity
under equilibrium conditions, ∂u

∂n′ |step
= −px

�
represents the

linear relationship between supersaturation and Péclet number
under the assumption of local equilibrium at the step face.

III. RESULTS AND DISCUSSIONS

Figure 1 shows the geometry of the domain we consider
in this study. The interface consists of a series of steps of
uniform height as well as terraces, which is the characteristic
geometry of the ledge mechanism. Figure 1 is a snapshot from a
molecular dynamics simulation [54] of pure Si (the red atoms)
solidifying into an Al-Si liquid. The faceted interface is a
vicinal 111 boundary.

In this study we assumed that steps are equally spaced.
Therefore a domain whose bottom boundary includes a single
step and has a length equal to the half distance of neighboring
terraces can represent the whole system. The computational
domain in the vertical direction extends up to the length
(δ). By setting the scaled concentration to zero all along the
top boundary we are assuming that there exists a boundary
layer of dimension δ after which convective mixing fixes the
liquid composition at its average value. Clearly, the effect of
convection limits the solution to solid-liquid or solid-vapor
systems, and the stagnant case, valid for alloys, will be treated
in a subsequent section. Since the height of the step is on the
order of atomic height, we assume the concentration along
the step is constant and the step is in equilibrium (u = 1).
In the previous conformal mapping solution by Jones and
Trivedi the concentration along the step varies considerably,
and an advantage of the BEM is the ability to maintain a fixed
value of u = 1 along the step face.

To set the boundary conditions along the two sides of the
computational domain we exploit the fact that the system is
periodic in x. Therefore, we solve the Helmholtz equation
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FIG. 1. (Color online) The geometry of the computational do-
main and the boundary conditions used in the boundary integral
formulation. The periodicity in the x direction is given by λ, and
the length along y is boundary layer thickness δ. The equilibrium
concentration is assumed along the step face, and a zero flux condition
is applied at the immobile terraces.

subject to the following:

u

(
−λ

2
,y

)
= u

(
λ

2
,y

)
,

∂u

∂n′

∣∣∣∣
x=− λ

2

= − ∂u

∂n′

∣∣∣∣
x= λ

2

. (14)

Here we must distinguish the actual step spacing λ with the
x dimension of the computational domain, which has been
denoted by T . A simple geometric expression relates the two
quantities: λ = T cos θ + h

2 sin θ where θ is the angle between
the terrace and periodicity direction. There are several different
ways to apply the above boundary condition in a boundary
integral code. We followed the method explained in detail in
Ref. [53], which requires the addition of two sets of unknowns,
rather than one, for each element at the sides of the domain,
and at the same time two sets of constraint equations based on
periodic boundary conditions given above.

In the following results all elements were the same length,
set equal to the length of the step face. Thus, the total number
of nodes is in proportion to the terrace length and δ. That is,
T/h + 1 and T/h along the bottom and the top boundaries
of the domain, respectively, and δ/h on the two vertical sides.
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FIG. 2. (Color online) Concentration profile along the four
boundaries for a system with dimensions T = 10h and δ = 10h.
The position of the step is the center of domain II.

As mentioned above, all integrals in the BEM procedure were
evaluated analytically.

The value of the Péclet number for solidification where
the diffusion coefficient in liquid phase is on the order of
10−5 cm2

s
and for a system like Al-Si, with step height of h =

3.15×10−8 cm, would be on the order of 10−6. Therefore the
velocity of the step is negligible when compared with the bulk
diffusion flux, and the term including Péclet number in Eq. (2)
could be ignored. Thus, the Helmholtz equation reduces to the
Laplace equation. The equivalent boundary condition would be
zero flux for side boundaries, which is similar to the boundary
condition used in other studies [2,29]. The range of validity of
the Laplace equation assumption will be investigated below.

The scaled concentration and flux along the boundary of
the domain are shown in Figs. 2 and 3, respectively, for a
domain with terrace length of T = 10h and diffusion length
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FIG. 3. (Color online) Flux across for all boundary nodes bound-
ary for a system characterized by T = 10h and δ = 10h.
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FIG. 4. (Color online) Concentration profile for an isolated step with px = 10−3. The dimension of the domain are T = 10h, δ = 80h.

of δ = 10h. A range of Péclet numbers are summarized in the
plots.

The origin of the domain is the upper left corner; therefore
regions (I) to (IV) represent the left, bottom, right, and
top sides of the domain, respectively. Therefore, region (II)
includes two half size terraces and the step. We can observe a
nearly linear variation of concentration along the side edges,
from zero to a value between zero and unity. However,
the concentration profile along terraces is neither linear nor
symmetric. For Péclet numbers less than 10−3 the effect of
velocity can be ignored. However, for higher Péclet numbers
the concentration difference along the terraces decreases.
Figure 3 shows that the flux along the left and right boundaries
is almost zero, and across the step the flux decreases for higher
Péclet numbers.

Figure 4 shows the concentration profile in the liquid sur-
rounding the step where T = 10h, δ = 80h, and px = 10−3.

In these results we can see the asymmetry of the concen-
tration profile with respect to the step. The asymmetry is a
result of treating the step explicitly in the computation. In
cases where the step is considered as a source point [2,29]
the concentration field is radially symmetric about the step. In
addition, a fast drop in concentration with increasing distance
normal to the step is captured, and again we did not make the
assumption of variable concentration along the step as was
done in previous studies [31,33].

Figure 5 shows the concentration profile for a case where
T = 10h and δ = 50h and a Péclet number an order of
magnitude more than that shown in Fig. 4, px = 10−2. As
expected, at higher velocities concentration profile is closer
to equilibrium along the terraces. It should be noted that
we ignored the solute trapping during transformation in this
study and assumed that concentration along the step is in
equilibrium. In addition, comparison between concentration
isolines shows that asymmetry of the concentration profile
increases by increasing the velocity.

As was shown in Eq. (13) we can define a relationship
between Péclet number, supersaturation, and flux at the step
where under the assumption of equilibrium concentration
along the step face it simplifies to the relationship ∂u

∂n′ |step
=

−px

�
. If the step velocity is sufficiently low and the dimensions

of the domain are such that the Laplace equation is a good
description of the concentration profile, then the derivative
∂u
∂n′ |step

is a constant and a linear relationship is predicted
between the Péclet number and the supersaturation. In the
results of Figs. 6 and 7 the BEM-computed velocities are
compared with this linear prediction.

In Fig. 6 we show the effect of terrace length on the
relationship between supersaturation and scaled velocity. At
a constant supersaturation, the scaled velocity is higher for
larger step spacing. However, the effect of terrace length can
be ignored when the terrace length is more than a critical value,
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FIG. 5. (Color online) Concentration profile for an isolated step with px = 10−2 (T = 10h and δ = 50h).
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FIG. 6. (Color online) The Péclet number vs step spacing show-
ing the effect of step separation on the kinetics of the transformation.
The width of the boundary layer for all simulations is constant and
equal to 50h.

which is roughly T = 40h. However, this critical value is a
function of boundary layer dimension, and for a system with
longer δ this critical value increases. It is also evident from
Fig. 6 that the linear relationship between step velocity and
supersaturation is obeyed for small � but deviates sublinearly
for higher �. The value of the supersaturation where the
departure from linearly begins appears to decrease slightly
with increasing step spacing.

The other geometric parameter affecting the relationship
between scaled velocity and supersaturation is boundary layer
width, the relationship of which is shown in Fig. 7. This figure
suggests that for a certain supersaturation, the scaled velocity
is higher for the systems with smaller layer widths. In addition,
deviation from linearity occurs at lower Péclet numbers, for the
systems with longer δ. For a system with a very small boundary
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FIG. 7. (Color online) Effect of boundary layer size on the
growth kinetics of transformation. Step separation for all simulations
is constant and equal to 10h.

layer, even at a Péclet number around 0.04, the linear relation
between px and � is still valid.

IV. STEP BUNCHING

In this part we are use the technique and results we obtained
in the previous section to test whether the step bunching
phenomenon can occur in diffusion-controlled crystal growth.
From experimental observations it has been suggested that
equally spaced steps are inherently not stable and step trains
tend to form bunches of steps close to each other, where
each of these bunches are separated with a long terrace. It
is interest to speculate as to the origin of step bunching in
the case of diffusion-controlled growth from a condensed
phase. As mentioned in the introduction the generally accepted
mechanism of the step bunching instability in vapor growth
systems is an asymmetry of the flux at each step. As shown in
the concentration profiles in Figs. 4 and 5 the step geometry
itself introduces a natural flux asymmetry, which we suggest is
the underlying cause of the instability. It should be noted that
the asymmetry is absent in the analytic solution in Ref. [29].

The problem of bunching in crystals is very important,
since it is closely related to the problem of defect formation. A
rigorous treatment of the step bunching problem would entail
a linear stability of the equal step spacing geometry; that is, the
step spacing is perturbed by an infinitesimally small amplitude
perturbation with some prescribed wavelength. The change
with time is then formulated, and if the amplitude increases
with time the interface is unstable. However, since the base
state of the problem cannot be solved analytically, the linear
stability investigation is difficult. Therefore, in this study we
will take a simplified approach which will yield the increase
of flux to each step after a single step is repositioned by some
amount along the interface. Although the procedure is not
able to determine if the step array is linearly stable or not, it
will show that perturbations of sufficient size can lead to step
bunching.

The procedure adopted can be illustrated with reference
to Fig. 8, which shows the central portion of three separate
systems. The total number of steps in each computation is
25, the diffusion boundary length is taken as δ = 50h, and all
other boundary conditions are the same as described above.
The top portion of Fig. 8 shows the step separation when all
steps are equally spaced by T = 8h. The middle figure shows

FIG. 8. (Color online) Geometry of the system in the vicinity
of the central step. The top figure corresponds to no perturbation,
whereas the middle and bottom figures correspond to perturbations
of the central step equal to h and 2h, respectively.
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FIG. 9. (Color online) Scaled flux at each step at different terrace length perturbations for the systems with initial terrace lengths of (a) 8h

and (b) 12h. A boundary layer of δ = 50h was used for all computations.

a perturbation, equal to h, of the center step in the negative
x direction, and the bottom figure shows the case of a 2h

perturbation. In each case the BEM calculation provides the
flux, and hence velocity, of each step. If the center step and
those trailing it exhibit a velocity that is lower than the equally
spaced case and the steps leading the center step show an
increased velocity, then the interface is unstable with respect
to step bunching.

Figure 9 shows the result of the analysis. The left plot
corresponds to the case where the unperturbed system consists
of steps spaced by 8h, and the notation in the legend lists
the length of the leading terrace used in each calculation. As
expected the step velocity is equal for the equally spaced steps.
However, the results clearly show a tendency to step bunching
with the trailing steps slowing down and the leading steps
speeding up after the perturbation is introduced. In this case the
influence of the perturbation extends over roughly five steps to
either side of the central step. Furthermore, as the perturbation
increases in magnitude the effect is amplified, which implies
the step bunching will grow after the initial perturbation. The
right plot of Fig. 8 shows the same procedure for the case of an
initial 12h spacing of steps. The qualitative trend is equivalent
to T = 8h result.

For a better comparison of the effect of a perturbation
on step bunching behavior for different terrace lengths, we
perform a series of BEM calculations in which the perturbation
is kept fixed at 10% of total terrace length. In other words, for
the system with terrace length of 10h the perturbation is h, and
for the case of T = 100h perturbation is 10h. Furthermore,
in order to accurately compare the change in step velocity
in each computation, the flux at each sets is normalized by
the baseline flux obtained from the case of equally spaced
steps. As above, in each computation the total number of
steps is 25 and δ = 50h. The results are presented in Fig. 10,
and the data show that for equal percentage of perturbation,
the change in flux of steps is increased for smaller terrace
lengths. The numerical results suggest that an interface with
closely spaced steps is more susceptible to step bunching than

interfaces with longer terraces. In the long wavelength limit,
i.e., infinitely spaced steps, the interface appears to be neutrally
stable. It is important to note that the computations presented
here neglect any elastic interaction between steps, which will
affect the equilibrium concentration at the step face [55]. It
is expected that the inclusion of elastic energy will tend to
stabilize the system for small wavelength perturbations (small
step spacings).

V. ANALYTIC SOLUTION, STAGNANT CASE

As mentioned in the previous section, the assumption of a
boundary layer implies convective mixing occurs in the liquid
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FIG. 10. (Color online) Comparison of the normalized step ve-
locity for an equal percentage of perturbation (10%) at the terrace
length range of T = 10h to T = 200h. J is the scaled flux for a
perturbed system, and J0 is the scaled flux of steps in an equally
spaced system.
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phase. In this section we formulate an analytic solution to the
diffusion-controlled growth of a step-terraced interface for the
case of no convection. The solution will be applicable to the
growth of stepped interfaces in solid-solid systems.

To proceed we note that as the boundary layer width δ

increases, the concentration gradient at the step decreases
linearly with the distance y, and eventually the growth rate will
approach zero. However, in the computation we have neglected
the velocity of the interface in the y direction. Inclusion of a
vy term, no matter how small, will guarantee a finite flux and
growth rate in the limit δ → ∞ [56,57]. The above discussion
implies that an approximate solution can be developed using a
matched asymptotic expansion. A similar approach has been
employed in Ref. [32].

Now we can consider the more complicated case where the
velocity in any x or y direction cannot be ignored. Therefore
the diffusion equation in the unscaled coordinates would be

D∇2u + vx

∂u

∂x
+ vy

∂u

∂y
= 0. (15)

To obtain an “outer” solution note that sufficiently far from
the interface (y ∼ T ) all variations of u in the x direction
become vanishingly small. The diffusion equation reduces to
∂2u
∂y2 + vy

∂u
∂y

= 0, and the outer solution is given by

uout(x̃,ỹ) = A′ exp(−pyỹ) + B ′, (16)

where, anticipating the inner solution, we have rescaled all
lengths by x̃ = x/h, ỹ = y/h, and λ̃ = λ/h. In the above
solution, the boundary condition u(x̃,ỹ → ∞) = 0 forces B ′
to be zero.

To formulate the inner solution we identify a small
parameter as h the step height and rescale all length variables
in the diffusion equation. The result is simply ∇2u = 0 where
all terms of order of the Péclet number have been neglected.
An approximate general solution to the Laplace equation for
a periodic step train has been derived by Chernov using a
conformal mapping procedure. Assuming a step spacing much
larger than the step height, the general solution is given by

uin(x̃,ỹ) = A

2
ln

[
sin2

(
π

λ̃
x̃

)
+ sinh2

(
π

λ̃
ỹ

)]
+ B. (17)

Chernov completed the problem by applying a kinetically
limited boundary condition at the step. Here we apply
a diffusion-controlled condition. Noting that the solution
assumes the steps are represented by point sources of solute,
we apply the boundary condition u(1,0) = u(0,1) = 1, which
means, on the surface of a half cylinder surrounding the step
with radius equal to the height of the step, the composition is
equal to the equilibrium composition. Applying this boundary
condition, the constant B can be obtained as

B = 1 − A ln

(
π

λ̃

)
. (18)

So far we have determined the solution of the diffusion
equation for the inner and the outer regions. However, there are
two constants remaining in Eqs. (17) and (16). To complete the
problem we apply a formal matching procedure, which is given
by uout(ỹ → 0) = uin(ỹ → ∞). For the inner region [Eq. (17)]
the sin term can be neglected relative to the sinh term, and,

using the definition of sinh ( π

λ̃
ỹ) = exp( π

λ̃
ỹ)−exp (− π

λ̃
ỹ)

2 , the limits
become

uin(x̃,ỹ) = A

[(
π

λ̃

)
ỹ − ln

(
2π

λ̃

)]
+ 1, (19)

uout(x̃,ỹ) = A′(1 − pyỹ
)
. (20)

A solution for the concentration field, valid over the entire
domain, can be obtained via u(x̃,ỹ) = uin + uout − umatch,
where umatch is the value of the field under the matching
procedure. Therefore the final result reads

u(x̃,ỹ) = A

2
ln

[
sin2

(
π

λ̃
x̃

)
+ sinh2

(
π

λ̃
ỹ

)]
+B + A′ exp(−pyỹ) − A′(1 − pyỹ), (21)

where A = − pyλ̃

π−py λ̃ ln ( 2π

λ̃
)
, A′ = π

π−py λ̃ ln ( 2π

λ̃
)

and B is deter-

mined based on Eq. (18).
The concentration profile resulting from Eq. (21) for x̃ = 0,

which represents the profile from the step into the liquid, is
shown in Fig. 11. Notice that the inner solution decreases
linearly and without bound as ỹ tends to infinity, whereas the
matched asymptotic solution exhibits the correct exponential
decay for large ỹ.

Our ultimate goal is to determine the growth rate from the
analytic solution to the concentration field. Recall the step
is treated as a semicircle with radius equal to the step height.
Thus, for calculation of the flux it is easier to transform Eq. (21)
to cylindrical coordinates, which is given by

u(r,φ) = A

2
ln

[
sin2

(
π

λ̃
r cos φ

)
+ sinh2

(
π

λ̃
r sin φ

)]
+B + A′ exp(−pyr sin φ) − A′(1 − pyr sin φ).

(22)

For sufficiently small r , that is, in the vicinity of the step,
the next to last term can be expanded in a Taylor series and,
when combined with the last term, leads to a contribution of
order p2

y , which will be neglected. With this simplification,
the concentration does not vary with φ in the region near the
step. In other words, ∂u

∂φ
|
r→1

= 0. In addition, the gradient of
the concentration in the radial direction is equal at all angles
including φ = π

2 . Using these assumptions we obtain

∂u

∂r

∣∣∣∣
r=1, any φ

= ∂u

∂r

∣∣∣∣
r=1, φ= π

2

= Aπ

λ̃

[
cosh

(
π

λ̃

)
sinh

(
π

λ̃

)
]

−A′py[exp(−py) + 1]. (23)

Applying the mass conservation principle, the flux into the
inner semicircle with the area of πh, is equal to the flux at
the step with height of h. In scaled coordinates, π ∂u

∂r
= ∂u

∂n′ .
Combining Eqs. (13) and (23) and noting that u = 1 at the
step, the step velocity is then given by

px = π�λ̃

2π2� − λ̃π ln
(

2π

λ̃

) , (24)

where the py term appearing in the constant A was converted
using py = pxsin(h/λ) ≈ px/λ̃. Also, the terms involving the
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FIG. 11. (Color online) Results of the matched asymptotic analysis showing the inner and outer regions and the final composition profile.
The profile is shown as a function of ỹ and x̃ is set equal to the step position, i.e., x̃ = 0.

hyperbolic functions were simplified under the assumption of
large λ̃.

The above approximate result predicts that the step velocity
in the x direction decays to zero as the interstep spacing
λ̃ increases. Unfortunately, this behavior contrasts with the
analytic results obtained by Jones and Trivedi and Atkinson
for the case of an isolated step. However, the decrease in px

with spacing predicted by the above result is characterized by
a slowly varying logarithmic dependence. Figure 12 shows
the scaled velocity versus supersaturation for different step
spacing values computed using Eq. (24). Based on this model,
for a specific supersaturation, the step velocity is higher for
a smaller step spacing. The variation with λ̃ is large for step
spacings that are relatively small, as is evident from the curves
labeled λ̃ = 10 to 50. For larger spacings the variation is
much slower with a small difference observed for the order
of magnitude change from λ̃ = 100 to 1000. For comparison

0 0.05 0.1 0.15 0.2 0.25 0.3
10

−3

10
−2

10
−1

Δ

P
x

λ=10h
λ=50h
λ=100h
λ=1000h
Jones and Trivedi

FIG. 12. (Color online) Scaled velocity of the step vs supersatu-
ration for different λ. The results of Ref. [31] are compared with the
calculation of the present study.

the Jones and Trivedi result is shown by the open circles, and
the two results compare favorably in the vicinity of λ̃ = 100.

VI. CONCLUSION

The boundary element method has been used to compute the
growth rate and concentration profile for the case of an infinite
and periodic array of mobile interface steps separated by
immobile terraces. An important assumption in the numerical
study is the existence of a boundary layer at the interface,
beyond which there exists complete mixing in the fluid. The
BEM results therefore describe the case of vicinal surfaces
growing into a liquid or vapor. Growth rates have been
computed as a function of two important variables: the step
spacing and the boundary width. The computations indicate
that the step velocity varies linearly with supersaturation for
low supersaturation and deviates below linear at high �. The
departure from linear behavior occurs at lower supersaturation
for increasing boundary layer width. The BEM computations
were also used to study the effect of geometry of the system
on the tendency for step bunching. We have investigated the
special case where the position of one central step is perturbed.
It was concluded that the equally spaced steps are not stable to
sufficiently large perturbations, and the system tends to form
separated bunches of steps.

For the case of a stagnant liquid or a step-terraced interface
separating two crystalline phases, an approximate analytic
solution has been derived. The solution is based on a matched
asymptotic expansion technique, and the solution valid in the
vicinity of the step is formulated from a conformal mapping
procedure. The results predict that for a given supersaturation
the step velocity decreases with increasing step spacing.
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