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We study the high-velocity regime mode-I fracture instability wherein small microbranches start to appear near
the main crack, using large-scale simulations. Some of the features of those microbranches have been reproduced
qualitatively in smaller-scale studies [using O(104) atoms] on both a model of an amorphous material (via the
continuous random network model) and using perturbed-lattice models. In this study, larger-scale simulations
[O(106) atoms] were performed using multithreading computing on a GPU device, in order to achieve more
physically realistic results. First, we find that the microbranching pattern appears to be converging with the
lattice width. Second, the simulations reproduce the growth of the size of a microbranch as a function of the crack
velocity, as well as the increase of the amplitude of the derivative of the electrical-resistance root-mean square with
respect to the time as a function of the crack velocity. In addition, the simulations yield the correct branching angle
of the microbranches, and the power law exponent governing the shape of the microbranches seems to be lower
than unity, so that the side cracks turn over in the direction of propagation of the main crack as seen in experiment.
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I. INTRODUCTION

The study of the physics of brittle fracture has been very
fruitful in the past two decades [1–3]. New experiments have
shown various new features of dynamic fracture, focused
on Mode-I (tensile) fracture in amorphous brittle materials
[4–7]. In particular, the experiments have shown a sharp
transition between the regime of steady-state cracks and the
regime of unstable cracks [5,6]. In steady state, where the
driving displacement, � (of order �G, the Griffith criterion), is
sufficiently small, a single crack propagates along the midline
of the sample, reaching a steady-state velocity (which is of the
order of the Rayleigh surface wave speed, cR). Increasing �

results in an increased steady-state velocity, yielding a v(�)
curve, until a specific critical point. Increasing the diving
displacement further, beyond this critical point, we enter the
unstable regime, where small microbranches start to appear
nearby the main crack. The experiments have shown that
above the critical point, the size of the average microbranch
(which is log-normal distributed) increases rapidly with the
crack velocity, as measured via the slope of the electrical
resistance of a conductive layer that is pasted on the sample.
The electrical resistance slope exhibits oscillations whose
amplitude increases rapidly as well. Increasing the driving
displacement further, the small microbranches become large
microbranches, generating a complex fracture pattern, and
finally, creating macrobranches [1,6,8].

Some of the new experimental findings could not be
explained via the classical theoretical approach for fracture
mechanics, the linear elasticity fracture mechanics (LEFM)
theory [9]. For example, several predictions of LEFM for
the critical velocity, such as the studies of Yoffe [10] or
Eshelby [11] predicted a single universal critical velocity much
higher than that seen in some of the experimental studies,
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such as in PMMA [1]. Also, experiments have found various
material-dependent features such as the terminal velocity,
at which the crack manages to propagate, as well as the
critical velocity for macrobranches [1]. In regard to the
microbranching critical velocity, the question of universality
is debatable [12], but at any rate, the velocities are much
smaller than the theoretical predictions. For a review, see the
Introduction in Ref. [13]. However, the basic reason for the
failures of LEFM is that the basic equations of LEFM yield a
singularity of the stresses near the crack tip [9], and thus, the
zone nearest to the crack’s tip (the process zone) cannot be
modeled via LEFM.

The failure of LEFM, caused by this singularity, gave rise to
an interest in discrete lattice models and simulations [14–23].
In this kind of model, the basic length-scale, which is the lattice
scale, prevents the singularities that appear in the continuum
approach. The lattice models were successful in reproducing
the behavior of steady-state cracks [14,15,17], including a
material dependency of the v(�) curves, in that it depends
on the specific parameters of the interatomic potential [20,21].
Moreover, the lattice models predict a certain critical point
beyond which the steady-state solution becomes linearly
unstable [18–21]. In the simulations, this is exactly the point
which the crack stops propagating along the midline of the
sample and some additional bonds, not along the midline, start
to break [16,18,20,24]. However, especially in mode-I pure
lattice simulations, the postinstability behavior of the lattice
models do not match the experiments, neither quantitatively
nor qualitatively [20,24].

One recent approach to overcome these difficulties has
been to turn to a more realistic model for an amorphous
material, the continuous random network (CRN) model [25].
The continuous random network was suggested first by
Zachariasen for describing amorphous materials [26], and
specific effective algorithms (using Monte Carlo techniques)
for generating the CRN were offered in Refs. [25,27,28].
Recent accurate 2D experiments using transmission electron
microscopy (TEM) in 2D silica on the structure of this
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amorphous material were reproduced to excellent accuracy
using the Zachariasen model [29,30]. After generating an
amorphous CRN sample, molecular dynamics simulations
were found to yield many of the important qualitative features
of mode-I fracture experiments in amorphous brittle materi-
als [25]. The simulations showed the birth of microbranches
growing nearby the main crack, the increase of the size of the
microbranches as a function of the driving displacement (or of
course, the crack velocity), and the growth of the amplitude
of the derivative of the electrical resistance with respect to the
time as a function of the crack velocity.

Another direction recently examined was that of perturbed-
lattice models [13], which exhibited behavior similar to that
of the CRN model, including the main features mentioned
above. However, these simulations (both the CRN and the
perturbed-lattice simulations) suffered from a significant level
of numerical noise, since each microbranch contained only
a few tens of broken bonds at most. Thus, the statistics that
concerns the most interesting physics, that of the branches,
was quite poor.

These intriguing results, performed on limited-size systems
[O(5×104) atoms] provide strong motivation to conduct larger
simulations both to reduce the overall noise level and to get
closer to at least a mesoscopic system where scaling behavior
might set in. The goal was to achieve at least a two-magnitude
increase in size, i.e., simulations of the order of millions of
atoms [O(5×106) atoms], which necessitated using parallel
(multithreading) computing. In this work we study mode-I
fracture via large-scale simulations, with a particular focus on
the properties of the microbranches that could not be studied
in the previous, limited-size studies. In addition, recently
experiments have been performed with gels, whose three
orders of magnitude slower sound speed (compared to the
classic brittle materials like PMMA or glass) enables direct
visualization by means of moderately fast video cameras,
resulting in clear snapshots of the crack tip [3,7,31]. Using
the larger-scale simulations we can now compare the crack’s
tip shape, both on steady-state cracks in a strip geometry and,
especially, near the origin of the microbranching instability.

The models are presented in Sec. II. In Sec. III we
perform some basic checks of our models, confirming that
the transverse size of the microbranch zone (δy/W ) decreases
with increasing sample width W , for a given scaled driving
displacement �/�G (in the experiments, using macroscopic
sample sizes, the microbranching region width is much smaller
than the sample width and the dynamics of the fracture is not
affected by the sample edges). Next, in Sec. IV we present the
quantitative results concerning the birth and the growth of the
microbranches and their physical features. A short discussion
is presented in Sec. V.

II. MODEL AND MAIN METHODOLOGY

The simulations presented in this study are divided gener-
ally into two kinds. The first one uses the continuous random
network (CRN) model (to model an amorphous material), and
the second employs a perturbed honeycomb- or perturbed-
hexagonal-lattice model. Both kinds of model were described
in depth in Refs. [25] and [13], respectively. We will review
them here shortly.

The CRN model reproduces various structural features of
real brittle amorphous materials (though 2D, in this study) such
as amorphous silicon or silica [29,30,32], and a 3D-extension
of this model should reproduce the real behavior of fracture.
The perturbed honeycomb lattice is the ordered phase of the
CRN, as discussed at length in Ref. [13], and shares similar
features and results (though with less noise). In addition, in
Refs. [29,30] there is clear experimental 2D evidence that 2D
ordered materials share the structural features of the perturbed
honeycomb lattice. Also, the perturbed hexagonal lattice is
a generalization of the hexagonal lattice that was used in
many studies to study dynamic fracture (for example, see
Refs. [1,16,23]), and facilitates comparison with this body
of work.

1. Generating the continuous random network for modeling
amorphous material

We generated two-dimensional CRNs by a 2D-
analogue [25] of the WWW algorithm [27,28]. The potential
that was used in the construction of the CRN included both
a two-body central force and a three-body bond-bending
force [33,34]:

Etot =
n∑

i=1

⎡
⎣ ∑

j∈N (i)

1

4
kr

(| �rij | − a2
i,j

)

+
∑

j,k∈N (i)

1

2
kθ (cos θi,(j,k) − cos θC)2

⎤
⎦, (1)

where | �rij | is the radial distance between each pair of nearest-
neighbor atoms and ai,j = a = 4 is a constant lattice scale (in
contrast to the perturbed-lattice model). kr and kθ are the radial
and the azimuthal (three-body) spring constants, respectively.
cos θi,(j,k) is the cosine of the angles between each set of three
neighboring atoms, defined of course by

cos θi,j,k = �ri,j · �ri,k

|�ri,j ||�ri,k| , (2)

where i is the central atom and (j,k) are its two neighbors. θC =
2π/3 (characterizing a honeycomb lattice). We start from a
pure honeycomb lattice, randomize large number of bonds,
and perform a Monte Carlo procedure, wherein each cycle
we switch two bonds, calculating the optimal positions of the
atoms in the near zone of the switched bonds to determine
the change of energy so as to decide whether to accept the
switch. Finally, we get a CRN that looks like Zachariasen’s
patterns [25,26] and the TEM snapshots of the 2D amorphous
Silica [29,30]. For a in-depth discussion, see Ref. [25].

2. Generating the perturbed lattice

Here we start with a perfect honeycomb or hexagonal lattice
and randomize the lattice scale of each “bond,” ai,j :

ai,j = (1 + εi,j )a, i = 1,2, . . . ,natoms, j ∈ N (i), (3)

where εi,j ∈ [−b,b], and b is constant for a given lattice, and
in this work ranges between 0 � b � 0.1, a = 4. N (i) refers
to the nearest neighbors of site i. For a detailed discussion,
see Ref. [13].
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3. The equations of motion

In our model, between each two atoms there is a piecewise
linear radial force (two-body force law) of the form

�f r
i,j = krk

′
i,j (|�ri,j | − ai,j )r̂j,i , (4)

where

k′
i,j ≡ θH (ε − |�ri,j |). (5)

The Heaviside step function θH guarantees that the force
drops immediately to zero when the distance between two
atoms |�ri,j | reaches a certain value ε > ai,j (the breaking of
a “bond”). In this work we set ε = a + 1. We describe here
brittle materials with an extremely sharp transition from linear
response to failure, though in reality the failure is always
somewhat smoother. Alternatively, we can replace Eq. (5)
with a smoother force law, which instead of a sharp failure
at |�ri,j | = ε, has a more realistic smooth transition, wherein
the force law drops to zero according to [18,20,21]:

k′
i,j ≡ 1 + tanh[αpot(ε − �ri,j )]

1 + tanh(αpot)
, (6)

where αpot is the smoothness parameter, such that when αpot →
∞ the force law reverts to the piecewise linear force law.
The effect of αpot on the fracture feature was investigated
previously [18,20,21] and is reproduced in this paper. The
results in this paper refer to the piecewise linear model, unless
mentioned otherwise.

In addition there is a three-body force law that depends on
the cosine of each of the angles, acts on the central atom (atom
i) of each angle, and may be expressed as

�f θ
i,(j,k) = kθ (cos θi,j,k − cos θC)

∂ cos θi,j,k

∂�ri

k′
i,j k

′
i,k r̂i

= kθ (cos θi,j,k − cos θC)

[ �ri,j + �ri,k

|�ri,j ||�ri,k| + �rj,i(�ri,j · �ri,k)

|�ri,j |3|�ri,k|

+ �rk,i(�ri,j · �ri,k)

|�ri,j ||�ri,k|3
]
k′
i,j k

′
i,k, (7)

while the force that is applied on the other two atoms (atoms
j, k) may be expressed as

�f θ
j,(i,k) = kθ (cos θi,j,k − cos θC)

∂ cos θi,j,k

∂�rj

k′
i,j k

′
i,k r̂j

= kθ (cos θi,j,k − cos θC)

[ �rk,i

|�ri,j ||�ri,k|

+ �ri,j (�ri,j · �ri,k)

|�ri,j |3|�ri,k|
]
k′
i,j k

′
i,k. (8)

Of course, the forces satisfy the relation �f θ
i,(j,k) = −[ �f θ

j,(i,k) +
�f θ
k,(i,j )]. The three-body force law drops immediately to zero

when using a piecewise linear force law when the bond breaks
[Eq. (5)], or may be taken to vanish smoothly, using Eq. (6).
In a honeycomb lattice there are three angles associated with
each atom and in the hexagonal lattice there are six of them
(we note that in the hexagonal lattice this choice is a little bit
arbitrary since there are in general additional optional angles
for each atom). There is a certain preferred angle θC for which

the three-body force law vanishes (in the honeycomb lattice we
set θC = 2π/3 and in the hexagonal lattice we set θC = π/3).

In addition, it is convenient to add a small Kelvin-type
viscoelastic force proportional to the relative velocity between
the two atoms of the bond �vi,j [17–20]:

�gr
i,j = η(�vi,j · r̂i,j ) k′

i,j r̂i,j , (9)

with η the viscosity parameter. The viscous force also vanishes
after the bond is broken, governed by k′

i,j . The imposition of a
small amount of such a viscosity acts to stabilize the system and
is especially useful in the relatively narrow systems simulated
herein.

The set of equations of motion of each atom is then

mi
�̈ai =

∑
j∈3p nn

( �f r
i,j + �gr

i,j

) +
∑

j,k∈3p nn

�f θ
i,(j,k) +

∑
j∈6p nn

�f θ
j,(i,k),

(10)

when p = 1 for honeycomb lattice and p = 2 for hexagonal
lattice. In this work the units are chosen so that the radial
spring constant kr and the atoms’ mass mi is unity. We note
that numerical measurement of the Young’s modulus of the
hexagonal lattices for kθ = 0 yields the well-known analytical
expression E = 2/

√
3kr and is twice as big (E ≈ 2kr ) with

kθ/kr = 10. The Poisson’s ratio is ν = 1/3 as reported in many
previous works [35,36]. In the honeycomb lattice and the CRN
(with kθ/kr = 1), the Young’s modulus is approximately
E ≈ 0.86kr , while the Poisson’s ratio remains similar.
However, the value of kr is not crucial (in this study), since the
results in this paper are in normalized units (�/�G, v/cR).

After relaxing the initial lattice, we strain the lattice
under a mode-I tensile loading with a given constant strain
corresponding to a given driving displacement ±� of the
edges (the top and bottom rows are held tight and do not
allow transverse displacement) and seed the system with an
initial crack (the left boundary condition is also held in a
pure “cracked” state). The crack then propagates via the same
molecular dynamics Euler scheme using Eqs. (4)–(10). We
note that the calculation of �G is obtained by equating of the
energy in the uncracked uniform strain to the energy needed
for breaking the midline bonds in the sample (for example,
see Ref. [17] for the case of square lattice). We parametrize
our results in this paper using the normalized quantity �/�G,
but of course �/�G = KI/KIC (the stress intensity factor
normalized to the Griffith value) [1].

4. Parallelization by GPU computing

As mentioned in the Introduction, the major innovation
of this work, compared to our previous studies, is the use of
large-scale simulations. The previous studies of the amorphous
(CRN) model [25] and the perturbed-lattice model [13] used
approximately 50 000 particles. in this study we wished to use
approximately 5 000 000 particles. These kind of simulations
cannot reasonably be performed by a single CPU, and we
are forced to use multithread computing. We chose to use
GPU computing, parallelizing the code via CUDA [37,38].
This kind of programming obliges the programmer to use the
different levels of memory carefully [38], in order to make
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FIG. 1. (Color online) (a) The microbranching pattern in a perturbed honeycomb lattice for �/�G = 2.8 and η = 2 for f = 1 in the upper
curve, for f = 3 in the intermediate curve, and for f = 9 in the lower curve. x and y have the units of a, the lattice scale, and each figure
depicts the whole sample (except for the the initial seed crack that extends from the left edge of each crack pattern to x = y = 0). (b) The same
for �/�G = 3.4. (c) The same for �/�G = 4.0. In (b) we define δy, the width of the microbranching region, as the difference between the
maximum and minimum y’s of broken bonds.

possible the achieving of an acceleration up to ≈100 faster
than a regular C code using a single CPU. Beside the benefit
of getting the results in a given system much faster, the main
benefit is the possibility to run large-scale simulations, which
was prohibitive before. This tool makes possible the simulation
of millions of atoms in reasonable simulation times.

Our model consists of several modules, each one of which
needs to be rewritten in CUDA. Both amorphous and lattice
models use a molecular-dynamics module for the fracture
simulations that must be parallelized. In addition, for the
CRN, the Metropolis Monte Carlo algorithm for generating
the CRN needs to be parallelized. Furthermore, the electrical
resistance simulations, which we use to determine the crack
velocity [25], is solved by a nonlinear Laplace solver that needs
to be parallelized too. The electrical resistance is calculated
via the method that was used in Ref. [25], by solving the
nonlinear Laplace equation on a grid of resistors (each broken
bond, in the main crack and in the microbranches, is taken into
account) [39]. In Appendix A we discuss the implementation

of the different modules, the parameters that were used, and
the degree of acceleration achieved for the different modules
with the GPU using CUDA.

The various sized lattices we use contain:
(1) 162×272 ≈ 45 000 (N = 80 in the Slepyan model

notation) atoms for the honeycomb lattice and 162×408 ≈
65 000 atoms for the hexagonal lattice, which we call f = 1
(Factor = 1). This size is equal to that used in our previous
studies, Refs. [25] and [13].

(2) 486×816 ≈ 400 000 (N = 240 in the Slepyan model
notation) atoms for the honeycomb lattice and 486×1224 ≈
600 000 atoms for the hexagonal lattice, which we call f = 3
(Factor = 3).

(3) 1458×2448 ≈ 3 600 000 (N = 720 in the Slepyan
model notation) atoms for the honeycomb lattice and
1296×3264 ≈ 4 200 000 (N = 640 in the Slepyan model
notation) atoms for the hexagonal lattice, which we call
f = 8−9 (Factor = 9 in the honeycomb and CRN lattices
and Factor = 8 in the hexagonal lattice).
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FIG. 2. (Color online) (a) The microbranching pattern using the continuous random network (CRN) model for �/�G = 3.6 and η = 2 for
f = 1 in the upper curve, for f = 3 in the intermediate curve, and for f = 9 in the lower curve for continuous random network (CRN) model.
(b) The same for perturbed hexagonal lattice for �/�G = 1.7 and η = 0.25.

In Appendix B we present a brief discussion regarding
the results for the CRN using the parallel GPU Monte Carlo
algorithm. The GPU algorithm reproduced the results of the
CPU code, in particular the agreement [25] of the radial
distribution function with that experimentally determined [32]
for amorphous silicon.

III. OVERVIEW OF THE SIMULATION RESULTS

In Figs. 1(a)–1(c) we present the fracture pattern of the
broken bonds for the small-size perturbed honeycomb lattice
(that was used before in Ref. [13], called here f = 1),
for the intermediate size lattice (f = 3), and for the large
lattice (f = 9), for three values of the driving displacement:
small (�/�G = 2.8), intermediate (�/�G = 3.4), and large
(�/�G = 4). The fracture patterns are plotted in the x-y plane
and depict the full simulated sample, where x and y have the
units of a, the lattice scale. In the large driving simulation for
f = 1 reported upon in our previous work, the microbranches
reached the edge of the sample. In addition, in Fig. 2(a) we
present fracture patterns using the amorphous CRN model
(that was used before in Ref. [25]) with �/�G = 3.6 for the
different sizes of lattices, and in Fig. 2(b), fracture patterns
using a perturbed hexagonal lattice.

In the figures we can immediately see the benefit of
the larger-scale simulations; the noisy fracture patterns that
were obtained using f = 1 (the upper pattern in each figure)
transform to the smoother and more physical-like patterns at
f = 8–9. In Fig. 2(b) we can see clearly the curved power-law
shape of the microbranches (for a quantitative discussion, see
Sec. IV C).

A closer look reveals an important point: For a given
driving displacement, the relative width of the fracture pattern
decreases with the increase of the lattice size. This is crucial
since otherwise the branching pattern in a macroscopic
material would be macroscopic as well, against the evidence of

the experiments [5]. In Fig. 3, we can see the relative fracture
zone width δy/W , when δy is the width of the microbranching
pattern [see Fig. 1(b) for a pictorial explanation], defined as
the difference between the maximum and minimum y’s of
broken bonds, and W is the sample width. For any given value
of �/�G the normalized width of the microbranching pattern
decreases with the lattice width. This effect is seen clearly in
the perturbed honeycomb lattice and in the CRN lattice, and
in a more moderate way in the hexagonal perturbed lattice.
This result is crucial; if the lattice models are physical, then
when increasing the lattice size, the relative fracture zone must
decrease, so that the branching does not remain macroscopic in
the N → ∞ limit, which would conflict with the experimental
results. It can be seen that the dependence of δy on � is more
or less linear. This may be related to the linear increase of the
size of the average microbranch as a function of the driving
displacement [for example, see Fig. 8(b) below].

IV. RESULTS

A. The crack’s tip shape

As mentioned in the introduction, the new experiments
using gels yield clear snapshots of the crack tip [3,7,31]. Larger
scale simulation enable us to compare the crack-tip shape to
the experimental snapshots in both steady-state cracks and near
the origin of instability.

First, we present the very good agreement between exper-
iment and simulations of the crack’s tip shape in steady-state
cracks in the finite-width strip geometry in Fig. 4. In the
upper picture, when the crack length is small comparing to
the sample’s width, the crack has the (well-known) parabolic
shape; no blunting can be seen and LEFM works perfectly
(except for nonlinear effects in the extreme crack-tip zone [7]).
As the crack length grows, the finite width of the strip affects
the crack’s tip shape, generating a “tadpole-like” shape. We
performed lattice simulations in a finite-width strip using
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FIG. 3. (Color online) (a) The scaled width of the microbranching pattern δy/W for (a) a honeycomb perturbed lattice, (b) the CRN model,
and (c) a hexagonal perturbed lattice, for different lattice sizes.

different values of �/�G. Since the simulations have only
a finite number of atoms, the results are scaled to the real size
of the experimental sample. We can see in Fig. 4 the excellent
match of the crack’s tip shape between pure lattice simulations
(described in detail below) and the experiments. This “tadpole”

FIG. 4. (Color online) Several snapshots of the crack’s tip in
steady-state mode-I fracture in experiments on gels. In the upper
picture, when the crack length is small comparing to the sample’s
width, the crack has the (well-known) parabolic shape. As the crack
length grows, the finite size of the strip effects the crack’s tip shape,
generating a “tadpole-like” shape. The lattice simulations for the
crack-tip shape are added to the snapshots in the dashed curves. The
experimental pictures are taken from Ref. [3].

shape is generic for finite-size (strip) lattice simulations, both
honeycomb or hexagonal, with any amount of viscosity. Since
the experimental crack is not exactly symmetric between the
upper and the lower size of the crack, we used several values
of �/�G to get an optimal match between experiment and
simulation (the small �/�G shape is somewhat better on the
upper side and the large �/�G shape is somewhat better in
the lower side).

Moreover, in Ref. [3] there are snapshots of the crack-tip
shape near the origin of the microbranching instability (on the
right-hand side of Fig. 5). In order to reproduce this crack-tip
shape (in addition to using the large-scale simulation), we
set ε = 2a (only for this part in the paper), to magnify the
crack-tip radius compared to the lattice scale a. This enables us
to meaningfully compare the simulation results to experiments
(this value of ε is a bit extreme, but qualitatively, the same
physical effect can be seen using smaller values of ε). The
lattice simulations are presented on the left-hand side of Fig. 5.

We can see that there is a close resemblance between the two
series of snapshots. At first, the crack travels in the midline of
the sample, yielding the parabolic crack tip shape of LEFM.
When a new microbranch is born, the crack tip bifurcates
into two, while very rapidly one “wins” and continues to
propagate, and the other “dies.” The branch that continues
to propagate has a slightly deformed shape compered to its
original shape before it continues to propagate (the crack shape
here significantly differs from the LEFM prediction). All of
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FIG. 5. (Color online) Several snapshots of the crack tip near the
origin of the microbranching instability. On the right, there is a series
of experimental snapshots of the crack tip before, during, and right
after a new microbranch is born. On the left, there is a series of
snapshots of our lattice simulations. Qualitatively, there is a very
close resemblance between the two series. The experimental pictures
are taken from Ref. [3].

these features are reproduced in the lattice simulations. It is
important to mention that both experiments and simulations
reveal that the origin of microbranching in mode-I fracture
always lies in the immediate vicinity of the crack tip itself,
rather than far behind the main crack.

B. Length of microbranches

In this section we present the quantitative results for various
features of the fracture patterns, especially the microbranches.
First, we present the v(�) curve, the total amount of broken
bonds in the microbranches, measured for a crack that reached
the end of the strip, as a function of the crack velocity and the
root-mean square (RMS) of dR(t)/dt , the rate of increase of
the derivative of the electrical resistance with respect to time as
a function of the crack velocity. The results are normalized to
cR , the Rayleigh wave speed, which is calculated for different
values of kθ in Appendix C. The results for the perturbed
honeycomb lattice is presented in Fig. 6, for the CRN in Fig. 7
and for the perturbed hexagonal lattice in Fig. 8.

We can clearly see that in all three models the slope of the
v(�) appears to saturate in the high-velocity regime for the
larger system sizes. This saturation is known from previous
lattice studies [20]. The shape of the curves are similar to the
experimental v(�) curves of real amorphous materials [1]. A
close look at the curves of the total amount of broken bonds in
the microbranches (which is our proxy for the average length
of a microbranch as measured experimentally, which we use to
reduce the statistical noise) as a function of the crack velocity,
using both the honeycomb perturbed lattice and the CRN,
reveals quantitatively what we have seen qualitatively using
small-system sizes. Due to the noisiness of using finite-size
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FIG. 6. (Color online) (a) The v(�) curve of a perturbed honeycomb lattice using different lattice sizes. (b) Total number of broken bonds
in the microbranches as a function of the crack velocity. (c) The root-mean square of the derivative of electrical resistance with respect to the
time as a function of the crack velocity.
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FIG. 7. (Color online) (a) The v(�) curve of a CRN lattice using different lattice sizes. (b) Total amount of broken bonds in microbranches
as a function of the crack velocity.

lattices, rather than two different regimes, with a single
steady-state crack at small velocities, and a sharp increase
in the length of a microbranch in the large-velocity regime, we
get a smooth exponential behavior. However, the exponent of
the curves increases robustly with the lattice size, sharpening
the difference between the steady-state regime and the the
microbranching (large-velocity) regime. In addition we can
see that, in general, the CRN results act like a very perturbed
honeycomb lattice, i.e., for any given �/�G, the number
of broken bonds is larger in the CRN than in the perturbed
honeycomb lattice, similar to what we saw in Ref. [13]. In
addition, using the honeycomb perturbed lattice we can see
the increase of the RMS amplitude of the derivative of the
electrical resistance with respect to the time as a function of
the crack velocity. At high velocities, the RMS amplitude is
approximately three times greater than the amplitude at low
crack velocities, in agreement with the experiments regarding
the RMS of the crack velocity [Fig. 11(c) in Ref. [5]].

Looking at the results for the perturbed hexagonal lattice,
we get one of the most important results of this paper.
In Fig. 8(b), we present the normalized number of micro-
branch broken bonds (per number of bonds in the entire
system) as a function of the crack velocity. The different
curves (using various lattice size) are similar to each other;
however, enlarging the lattice size, the transition becomes
sharper with f . Using f = 8, we can see two different
separate regimes (one of steady-state cracks and one for

microbranching), that looks very much like the transition of
the average microbranch length in the experiments [Fig. 11(a)
in Ref. [5]]. This result verifies the main assumption of the
lattice models. The physical phenomena of microbranching
is qualitatively described by lattice models and simula-
tions; when enlarging the system size, the results become
more quantitatively similar to the (macroscopic) experimental
results.

Nevertheless, quantitatively, the critical velocity that was
found in the experiments was less than the critical velocities
that were seen in our simulations. However, in previous studies
it was shown that in the lattice models, we can control the
critical velocity using different values of αpot [20,21]. Here we
check that this is still valid when using a three-body force law
and a perturbed lattice. In Fig. 9(a), for the case f = 1, we
present the total amount of microbranches using the perturbed
honeycomb lattice. We can see that, first, αpot = 1000 repro-
duces the piecewise linear results, as expected. Second, smaller
values of αpot yields a much larger quantity of broken bonds for
a given �, indicating a much lower critical velocity (because of
the noise in this lattice we cannot realize the zero microbranch
regime). In addition, we check whether using larger-scale
lattices (f = 8) yields the same fracture patterns. In Fig. 9(b)
we can see that fracture patterns remain similar using the
smaller value of αpot (here we used the perturbed hexagonal
lattice), though for a given � the microbranches are larger, as
expected.
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FIG. 8. (Color online) (a) The v(�) curve of a perturbed hexagonal lattice using different lattice sizes. (b) Total size of broken bonds in
microbranches as a function of the crack velocity.
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FIG. 9. (Color online) (a) The total size of microbranches as a function of the driving displacement �/�G using different values of αpot

along with the piecewise linear model (αpot → ∞) using perturbed honeycomb lattice with f = 1. (b) The microbranching pattern in a perturbed
hexagonal lattice using larger-scale lattices (f = 8) for �/�G = 1.6 and η = 0.25 for αpot → ∞ in the upper curve and for αpot = 5 in the
lower curve.

C. Microbranching statistics

Having larger systems enables, for the first time, the
generation of enough statistics to examine important quan-
titative features of the microbranches that have been measured
experimentally [1,5]. Since in this study we obviously are
restricted to 2D features only, we focused here on the branching
angle of the microbranches and on the power-law shape of the
microbranches.

The experimental studies on PMMA finds a narrow distri-
bution of the branching angle between 20◦ � θ � 40◦, with

an average angle of 30◦ [5]. We note that a previous study
using a random perturbed-Born-Maxwell model [40] yielded
the wrong branching angle, namely 15◦. In Fig. 10 we present
the branching angle distribution of all the microbranches
generated using all the values of �/�G in the different
models that were used in this study. We can see that in all
the models studied, the average branching angle is near 30◦,
very much like the experimental branching angle. The variance
is different using the different models, where the variance of
the CRN lattice is the narrowest and thus most similar to the
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FIG. 10. (Color online) The distribution of the branching angle of the microbranches arising nearby the main crack using (a) a perturbed
honeycomb lattice, (b) the CRN model, and (c) a perturbed hexagonal lattice.
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FIG. 11. (Color online) The distribution of the power of the power-law shaping of the microbranches arise nearby the main crack using (a)
a perturbed honeycomb lattice and (b) the CRN model.

experiments. We also note that this result corresponds nicely
with the LEFM microbranch analysis of Ref. [41], which yields
a 27◦ branching angle.

One of the most striking features that was discovered in the
experiments was a power-law shape of the branches, y = axα

(x and y are the spatial coordinates of the microbranch such
that x = y = 0 is the location of the “root” of the microbranch
close to the main crack), with a universal power, α ≈ 0.7, for
several different materials [1,5]. On the one hand, our previous
studies using CRN or a perturbed honeycomb lattice yielded
only straight (α ≈ 1) microbranches [13,25]. On the other
hand, using a perturbed hexagonal lattice [13] we obtained
branches that showed a power-law shape with α ≈ 0.5, though
the results were noisy due to the relatively small number of
broken bonds in each microbranch. We note that the LEFM
analysis of Ref. [41] yields α = 2/3, which is close to the
experimental result, but this analysis assumes symmetric
branching, when our branching (and the experimental results)
is by no means symmetric. We also note that the branches
seen in the elastic beam model [42] or the Born-Maxwell
model [40] look very noisy, without a clear power-law shape.
In this study, using larger lattices we can check the shape of the
microbranches based on relatively large microbranches (≈100
broken bonds in each microbranch). In Figs. 11 and 12(a) we
can see the power distribution for the different kinds of lattices.

We can clearly see that the maxima of all the distributions
are around α ≈ 0.85–0.9, which is indeed less than 1 (straight
lines). Looking closely at the larger lattices (f = 9) in Figs. 1
and 2 we can see the nonlinear power-law shape of the large
branches, especially for the perturbed hexagonal lattice. In
Fig. 12(b) we can see a scatter-plot of α as a function of
the branch size for the perturbed hexagonal lattice case. It is
clear that α converges on the value α ≈ 0.7 for the largest
microbranches, which is close to the experimental value. The
data for all three models is shown in Fig. 13. The other models
do not show the decrease in α for the longest branches that is
apparent for the hexagonal case, and perhaps data for longer
microbranches are needed in the other cases, but in any case the
asymptotic value of the exponent in all cases is less than unity.

V. DISCUSSION

We have used relatively large-lattice fracture simulations
using GPU parallel computing [with O(5×106) particles] for
studying mode-I fracture. We find that the basic results from
small lattices [O(5×104) particles] are confirmed using the
larger-size systems. The fracture patterns look more physical
with a larger system, due to the large number of broken bonds
in each microbranch. The width of the microbranch region
relative to the system width decreases, a necessary condition

(a)

0.5 0.75 1
α

0

5

10

15

20

25

30

D
is

tri
bu

tio
n

Hexagonal
(b

500 1000 1500 2000
Microbranch Length

0

0.5

1

1.5

2

α

Hexagonal
)

FIG. 12. (Color online) (a) The distribution of α, the power-law exponent (y = axα) of the microbranches arising near the main crack for
a perturbed hexagonal lattice. (b) A scatter-plot of the power α of the power-law exponent of the microbranches. We can clearly see that for
the long branches, α converges on the value α ≈ 0.7, which is close to the experimental value.

012403-10



MICROBRANCHING IN MODE-I FRACTURE USING . . . PHYSICAL REVIEW E 92, 012403 (2015)

0 0.2 0.4 0.6 0.8 1
l/lmax

0.5

0.75

1

1.25

1.5
α av

Perturbed Honeycomb
CRN
Perturbed Hexagonal

FIG. 13. (Color online) The distribution of α, the power-law
exponent (y = axα) of the microbranches arising near the main crack
for the perturbed hexagonal, perturbed honeycomb, and CRN models,
as a function of the microbranch length.

if these models are to be taken seriously. The basic properties
of the microbranches, like the total length of the microbranches
and the oscillations of the derivative of the electrical resistance
with respect to the time-based velocity measurements, which
were extremely noisy when using small lattices, look more
smooth and realistic in the larger lattices. In particular, there
is now a clearer transition between the regime of steady-state
cracks, which there is a negligible amount of broken bonds
beside the main crack, and the regime of instability, where
the amount of broken bonds in the microbranches increases
dramatically. The sharp transition is particularly clear in the
hexagonal perturbed lattice [Fig. 8(b)].

In addition, important features of the microbranches that
have been found and studied experimentally are recovered
in our large system simulations. The correct branching angle
is found, and in the CRN lattice the correct variance is also
obtained. The universal power-law shape that was found in
different experimental studies [5] is recovered here, and for
the larger branches, we get the correct power in the hexagonal
perturbed lattice.

In future work, we plan to exploit the power of GPU parallel
computing to run 3D simulations using O(5×106) particles,
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FIG. 14. (Color online) The derivative of the electrical resistance
with respect to the time using a perturbed honeycomb lattice
with �/�G = 3.4 using the different lattice sizes. The plots are
normalized in the x axis to the f = 1 size (i.e., the f = 9 results
are divided by 9, etc.)

with the goal of studying the different aspects concerning
the 3D nature of the microbranches. We intend to check the
similarities and the differences between 2D and 3D mode-I
fracture simulations and to find the regime when the 2D model
is sufficient, and on the other hand, the regime where 3D
simulations are crucial.
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APPENDIX A: GPU-ACCELERATED C CODE

In this appendix we discuss implementation of our codes
using CUDA and the run times of the CUDA runs using
NVIDIA’s Tesla C2050/C2070 GPU for the different modules
that were used in this study and the acceleration ratios between
a single CPU run and the GPU run. We rewrote our C codes
and replaced the main time-demanding functions by CUDA
kernels [37]. CUDA is a computer code language that was de-
veloped by NVIDIA for using its GPUs. We note that, in prin-
ciple, one could use OpenCL, a general language for any GPU
device, but CUDA is optimized for NVIDIA’s graphic cards.

For using GPU computing optimally, the code should be
written as a function of the particular hardware. Naively, the
computational tasks are divided into several blocks, each block
containing a specific number of threads, when the threads in
the same block execute simultaneously. In this work we used
512 threads per block, which is the maximal number of threads
per block available on our graphic card. The parameters of the
physical problem are loaded to the global memory of the GPU
and each thread computes one computational task, such as the
force of one spring that acts on a pair of atoms. Such a naive
choice, however, only produces up to a ten times acceleration,
since there are a lot of calls to the global memory (which is
relatively slow) for each atom calculating the force, especially
in the three-body force law. Thus, we extensively employed
the option of using shared memory (which is almost as fast as
cache memory, shared for all the threads in the same block and
limited to 64 K) to further accelerate the simulations, especially
in the molecular-dynamics module [37,38]. The global mem-
ory of Tesla C2050/C2070 GPU is about 2.5 Gbytes, which is
the limiting factor of the number of atoms in the simulation.
In this work we used double-precision accuracy for all of our
calculations (so using float precision will increase the number
of atoms by a factor of 2, which is not significant; the main
issue of this study is the effect of increasing the number of
atoms by two orders of magnitude).

The underlying plan of the main, molecular dynamics,
module using shared memory is to split the (potentially
random, and thus general) grid of atoms to several physical
zones (very much like Open-MPI as opposed to OpenMP
parallelization) with lists that connect between the zones
applied as a boundary condition for each physical zone; for
the central elastic force law (and also for the viscoelastic force
law) we sort the bonds, and for the three-body force law we sort
the atoms. Each zone (“block” in the CUDA jargon) loads the
locations and the velocities to a fast shared memory, and each
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FIG. 15. (Color online) (a) Simulation times (in [sec]) of 1000 cycles of the molecular-dynamics Euler scheme as a function of the system
size (both using honeycomb and hexagonal lattices) using unoptimized C code with CPU and with CUDA using GPU. (b) The acceleration
run times between GPU and CPU as a function of the system size (for honeycomb and hexagonal lattices).
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FIG. 16. (Color online) (a) Simulation times (in [sec]) for 1000 iterations of a Jacobi-method Laplace solver (for the electrical resistance)
as a function of the system size using unoptimized C code with CPU and with CUDA using GPU (the times are similar also in Red-Black
Gauss Seidel method). (b) The acceleration run times between GPU and CPU as a function of the system size.
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FIG. 17. (Color online) (a) Simulation times (in [sec]) for a WWW Monte Carlo scheme for producing a CRN (simulation stopped while
the energy reaches half of the initial random energy) as a function of the system size using unoptimized C code with CPU, with CUDA using
GPU and with the “old-CPU” code used in Ref. [25]. (b) The acceleration run times between GPU and CPU and the “old-CPU” codes as a
function of the system size.
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FIG. 18. (Color online) (a) The radial distance distribution of the bonds in CRN using different lattice sizes. (b) The angular distribution
of the bonds in the CRN using different lattice sizes.

“thread” calculates the force of a certain bond (for the central
force law) or atom (for the three-body force law). Thus, instead
of several calls to the global memory for each atom’s location,
the calls are for the fast shared memory, and so good efficiency
is then achieved. Since the threads in the same block execute
simultaneously, we have to use CUDA atomic commands to
sum correctly the contribution of the forces exerted by the
neighboring atoms. Then, the new velocities and locations are
calculated by simple CUDA kernels.

The electrical resistance module is basically solving a
nonlinear Laplace equation. We used the methodology that was
introduced in Ref. [39] for calculating the electrical resistance
(a constant grid of bonds with σ = 1), while a cracked bond
in the molecular-dynamics module determines the “cracked”
(σ = 0) bonds in the constant grid of the electrical resistance.
Thus, we used the same well-known methodology of using
the CUDA kernels for solving 2D diffusion equations [38],
including the use of shared memory. We implemented both
Jacobi and red-black gauss-Seidel methods of solution, but
no significant difference (in terms of the number of iterations
for convergence) was found between the methods. In Fig. 14
we can see an example of the derivative of the electrical resis-
tance with respect to the time using a perturbed honeycomb
lattice for a specific �/�G. We can see that using different
size lattices (using the new GPU code in the larger lattices and
the CPU code in the smaller lattice), we can see that the shape
of the curves of electrical resistance look very much like the
experimental RMS amplitude of the crack velocity [5,6] (that
is measured via the electrical resistance [25]).

The parallel Monte Carlo algorithm module for generating
the CRN required extra care. Since the effect on the energy
of each possible switch of bonds should be considered
independently, each switch should be separate from all the
other simultaneous possible switches (to avoid over-lapping
of the switches and their neighboring zone). We mention that
we use the parallel THRUST library (in CUDA) for sorting
efficiently the nearest bonds for each bond, every given number
of cycles.

In Figs. 15(a) and 16(a) we can see the typical run times for
1000 cycles (in seconds) for the molecular dynamics module
and the Laplace solver module as a function of the system size.
We can clearly see the benefit of using GPU computing, while
the main benefit is the possibility to run systems with a large
number of atoms, which with a single CPU was prohibitively

time-consuming. The run time using O(104) atoms with a
single CPU is similar to the run time using O(106) atoms with
a single GPU. In Figs. 15(b) and 16(b) we see the acceleration
ratios between a single CPU and a single GPU (of course, only
for small systems, when a CPU run is available). We can see
the significant acceleration, 40 times faster for the honeycomb
lattice and over 50 times faster for a hexagonal lattice due to the
more demanding three-body force law. In the Laplace solver
the speedup is a little bit lower and stands at approximately
25 times faster for the GPU versus a single CPU.

In Fig. 17 we can see the run times and the acceleration ratio
using a single CPU and the GPU for the Monte-Carlo module.
We can see here that the acceleration ratio is lower than in the
previous modules (about ≈5–10), but still, in larger lattices [of
O(106) atoms], the benefit is clear. We mention that since the
programming using CUDA is much more demanding from the
programmer, especially regarding the memory management,
while reprograming the code, we improved our old-CPU code
(that was in use in Ref. [25]), significantly; the acceleration
ratio of the GPU code to the old-CPU code is ≈60.

APPENDIX B: CRN MONTE CARLO PARALLEL
CUDA ALGORITHM

In previous work [25] we have shown that the CRN shares
similar features with real amorphous matter, like amorphous
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FIG. 19. (Color online) The radial distribution function [RDF or
g(r)] of the the CRN using different lattice sizes.
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FIG. 20. (Color online) (a) The longitude and the transverse sound wave speeds along with the resulting calculated Rayleigh surface wave
speed using Eq. (C1) for the hexagonal lattice as a function of kθ/kr . (b) The same in the honeycomb lattice. The sounds velocities for the
CRN that was used in this paper (kθ/kr = 1) are presented in the ellipse.

silicon [32]. In this appendix we check explicitly the quality
of the parallel GPU algorithm, generating a CRN. In Fig. 18
we can see the radial and angular distributions of the bonds in
the CRN using different lattice sizes, and in Fig. 19 we can
see the radial distribution function g(r) using different lattice
sizes. f = 1 [of O(104) atoms] is the data using the old CPU
code that was in use in Ref. [25], when larger lattices were
produced via the new GPU algorithm.

We can see that the radial and angular distributions and the
g(r) curves are similar under the scaling of the lattice size (the
number of the bonds or angles). This proves the validity of the
parallel GPU algorithm, comparing the old CPU algorithm
(that was verified before against experiments). Moreover,
the RDF in the larger lattice size is smoother due to better
statistics.

APPENDIX C: THE RAYLEIGH SURFACE WAVE SPEED
WITH kθ �= 0 LATTICES

Since the models in this paper use a three-body potential law
(in addition to the central two-body force law) with kθ �= 0, we
need to recalculate the Rayleigh wave speed cR , which is the
terminal velocity for mode-I fracture [9] for different kθ/kr .
The most convenient way to calculate the Rayleigh wave speed
is to calculate first the longitude (primary) cl and the transverse
(secondary) ct wave speeds and then to calculate the Rayleigh
wave speed via the well-known formula [43]:

(
1 − c2

R

c2
t

)2

− 4

(
1 − c2

R

c2
l

)1/2(
1 − c2

R

c2
t

)1/2

= 0. (C1)

For kθ = 0 the expressions for cl and ct , and thus also for cR ,
can be derived analytically for a 2D hexagonal lattice with a

as the lattice scale (for kr = m = 1; the wave velocities scales
as

√
kr/m):

cHex
l = 3√

8
a, cHex

t =
√

3

8
a, cHex

R =
√

3 − √
3

2
a, (C2)

and for a 2D honeycomb lattice:

cHon
l = 3

4
a, cHon

t =
√

3

4
a, cHon

R =
√

3 − √
3

2
√

2
a. (C3)

We calculate cl and ct via measuring the wave velocities by
initiating longitude and transverse small deformations in the
end of the samples in the different lattices that we use in this
study and then find cR via Eq. (C1). The results are shown in
Fig. 20(a) for the hexagonal lattice and in Fig. 20(b) for the
honeycomb and CRN lattices.

We can see that for both lattices, the numerical value for
the wave velocities using kθ = 0 reproduce the analytical
values, Eqs. (C2) and (C3), respectively. In the hexagonal
lattice using kθ/kr = 10 (which was the value used in this
study) the Rayleigh wave speed increases by ≈65% relative to
the kθ = 0 value. In the honeycomb lattice, where we use
kθ/kr = 1 at most, the Rayleigh wave speed increases by
≈12% relative to the kθ = 0 value. We note the CRN speeds
[in the ellipse in Fig. 20(b)] are a little bit slower than the pure
honeycomb lattice. In addition we note that the random noise
of the perturbed lattice changes the wave speeds less than 1%,
and that the wave speeds are not affected at all by αpot.
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