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Yielding transitions in athermal amorphous materials undergoing steady-state shear flow resemble critical
phenomena. Historically, they have been described by the Herschel-Bulkley rheological formula, which implies
singular behaviors at yield points. In this paper, I examine this class of phenomena using an elementary version
of the thermodynamic shear-transformation-zone (STZ) theory, focusing on the role of the effective disorder
temperature, and paying special attention to scaling and dimensional arguments. I find a wide variety of Herschel-
Bulkley-like rheologies but, for fundamental reasons not specific to the STZ theory, conclude that the yielding
transition is not truly critical. In particular, for realistic many-body models with short-range interactions, there is
a correlation length that grows rapidly but ultimately saturates near the yield point.
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I. INTRODUCTION

Numerical simulations and analytic approximations imply
that yielding transitions in athermal amorphous materials,
undergoing steady-state shear flow, resemble critical phe-
nomena. These transitions are characterized by fluctuating
regions of correlated, irreversible, molecular, or granular
rearrangements, whose sizes grow as the shear rates decrease
and the systems approach their yield points. Recent work
on this subject has been influenced by the stochastic model
introduced in 1998 by Hébraud and Lequeux [1]. For example,
Bocquet et al. [2] and Nicolas et al. [3] have studied related
models that focus on elastic interactions between localized
stress-driven events. Lemaı̂tre and Caroli [4] have studied
yielding in zero-temperature molecular-dynamics simulations
of two-dimensional binary Lennard-Jones mixtures. Lin et al.
[5] and Müller and Wyart [6] have developed new techniques
for studying instabilities and scaling behaviors for models of
noncrystalline materials near yield points. Common outcomes
of these investigations are versions of the well known
Herschel-Bulkley (HB) rheology in which the incremental
stress above the yield point is proportional, in many of these
cases, to the square root of the plastic shear rate. This singular
behavior, if accurate, would imply that some kind of collective
motion is occurring at the transition.

From its inception, the theoretical picture that has come
to be known as “soft glassy rheology” (SGR) [7,8] focused
explicitly on Herschel-Bulkley and related rheological behav-
iors. In contrast, the shear-transformation-zone (STZ) theory
[9,10] was never presented clearly in rheological language,
which now seems to me to have been unfortunate. The STZ
theory is an attempt to describe amorphous plasticity in
terms that are closer than SGR to the underlying physics
and statistical thermodynamics of these processes. It is an
intrinsically mean-field theory; it does not explicitly describe
correlations between localized shear transformations, at least
not in its present form. However, it does describe mean-field
collective motion via a thermodynamically defined effective
disorder temperature. The noise generated by driven plastic
deformation disorders the system raises the effective tem-
perature and thereby creates new flow defects (STZs) that,
in turn, contribute to the deformation rate. This nonlinear
mechanism provides a framework in which to describe a vari-
ety of Herschel-Bulkley-like rheological behaviors. A similar

mechanism has been shown to account for the basic features
of dislocation-induced plasticity in polycrystalline materials
[11] where the generation of defects, i.e., dislocations, is a
hardening rather than a softening mechanism.

In fact, HB behavior has appeared implicitly in several
earlier STZ-related papers. For example, in Ref. [12] [Langer
and Manning (LM)], Manning and I analyzed data from
glass-dynamics simulations by Haxton and Liu (HL) [13],
who saw HB power laws at low temperatures and in a
range of relatively high shear rates. Importantly for present
purposes, HL also determined effective temperatures directly
by measuring pressure fluctuations. Similar rheological results
appear (less clearly) in my papers with Egami [14] and Lieou
[15]. In all three of these investigations, our primary interest
was in the transitions from yielding to viscous behavior as
functions of temperature or packing fraction. We presented
our results in the form of log-log plots and thus did not pay
attention to the rheological significance of the low-temperature
data, nor did we pay close enough attention to the yielding
transition itself. My purpose here is to look harder at the latter
aspects of the theory. I particularly want to emphasize the role
of fundamental, dimensional, and scaling arguments. It is these
general arguments, and not system-specific ones, that lead to
the conclusion that yielding in athermal amorphous materials
is not a true critical transition.

II. STZ BASICS

A central feature of the STZ theory is that it treats the
density and orientations of localized flow defects as dynamical
variables. The STZs fluctuate into and out of existence in
the environment of an elastic solid. When present, they
undergo irreversible rearrangements and thus produce plastic
deformation in response to stresses. These local transitions
have been observed directly in simulations and, recently, in
a detailed experimental study of a colloidal glass by Jensen
et al. [16]. The STZ equations of motion that determine
these behaviors are subject to constraints imposed by the
first and second laws of thermodynamics. This theory has
been discussed extensively in the literature [10,17] along
with its applications to shear banding [18], fracture toughness
[19], oscillatory viscoelasticity [20], and the like. In what
follows, I briefly summarize the main features of the STZ
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theory without repeating detailed derivations. As part of this
summary, however, I raise several fundamental issues that I
think need special emphasis.

For athermal systems undergoing steady-state flow in pure
shear, the basic STZ relation between deviatoric stress σ and
plastic shear rate γ̇ pl has the form

q ≡ γ̇ plτ0 = ε0e
−1/χf (σ ). (2.1)

Here, χ is the effective temperature expressed in units of
a characteristic STZ formation energy, and the Boltzmann
factor e−1/χ is proportional to the density of STZs. ε0 is a
dimensionless constant, roughly on the order of unity. It is the
product of the prefactor of the Boltzmann exponential, i.e.,
a site density, and the volume of the deformable core of an
STZ. f (σ )/τ0 is the stress-dependent STZ transition rate to be
specified below. For simplicity, I consider only pure shear in
the x,y plane so that q = qxx = −qyy and σ = σxx = −σyy .

Note that I have introduced a time constant τ0 in Eq. (2.1).
Even in athermal systems, such as those considered here, the
internal dynamics must determine a nonzero time scale on
which local configurational fluctuations relax and dissipate
energy. By introducing τ0, I emphasize that I am not consider-
ing athermal quasistationary (AQS) numerical models, which
exclude any notion of time whatsoever, and therefore do not
allow us to distinguish between fast and slow processes as is
done implicitly in the definition of q in Eq. (2.1). Nor am I
considering models with infinitely long-ranged interactions
or even jammed granular materials in which force chains
may span the system. τ0 must be a well defined few-body
relaxation time. Systems that are driven faster than 1/τ0 behave
differently than those that are driven more slowly; thus q ∼ 1
plays a special role in the following analysis.

Derivations of the Boltzmann factor on the right-hand side
of Eq. (2.1) appear in STZ papers, such as Refs. [10,17]. As
shown there, this elementary statistical formula is valid not
just for equilibrated systems, but also for systems that are
driven persistently away from equilibrium. It follows directly
from the requirement that the statistically defined entropy
be a nondecreasing function of time. χ is the derivative of
the configurational energy with respect to the configurational
entropy (see Sec. III); it should not be thought of as a
“noise temperature” or used, for example, in a Langevin
equation—certainly not without some systematic rationale.

For present purposes, the rate factor in Eq. (2.1) can be
written in the form

f (σ ) =
{
C(σ )

(
1 − σy

|σ |
)

if |σ | > σy,

0, if |σ | < σy.
(2.2)

The yield stress σy locates an exchange of dynamic stability
between nonflowing and flowing states. The fully time-
dependent STZ equations of motion (see Ref. [10]) describe the
behavior of the density of STZs and their average orientations
with respect to the stress. These equations have stable fixed
points for flowing states only if |σ | > σy where the rate at
which STZs are deactivated by making transitions into the
forward direction is balanced by the rate at which new STZs
are formed. In the athermal limit, σy/|σ | is the fraction of STZs
that is aligned with the stress; in Eq. (2.2), it plays the role of
a backstress. σy is a system-specific quantity. It first appears

as a factor in the relation between the rate of work done by the
external driving force and the strength of the mechanical noise
that induces STZ creation and annihilation. (See the discussion
of the noise frequency � in Sec. V.)

The factor C(σ ) in Eq. (2.2) is a linear combination of
STZ transition rates and is a symmetric function of σ . In LM,
Manning and I wrote this term in the form

C(σ ) =
[

1 +
(

σ

σ1

)2]n/2

. (2.3)

Here, I assume that any overall multiplicative constant on the
right-hand side of this equation has been incorporated into the
rate factor 1/τ0. For larger stresses, on the order of or greater
than some σ1, Manning and I assumed that this rate would
grow as the n th power of the stress.

There are numerous possible rationales for choosing n.
For example, n = 1 would be appropriate for a colloidal
suspension in which particle motions are subject to linear
viscous drag. A different possibility, for systems in which
particles interact via short-ranged repulsive forces, is to invoke
Bagnold scaling. As conjectured in LM, if there are no natural
stress scales in the system other than the rate independent
σy and σ1, then dimensional analysis might require that the
dynamic stress σ be proportional to an acceleration, i.e., an
inverse time squared, and thus be proportional to the square
of a dynamic rate. Conversely, the rate C(σ )/τ0 would then
be proportional to the square root of the stress. This result,
by itself, is inconsistent with HB rheology. Nevertheless, the
Bagnold assumption with n = 1/2 fits the Haxton-Liu data
quite nicely because, as shown in LM, the effective temperature
χ and the corresponding STZ density are functions of q =
γ̇ plτ0, which brings the time scale τ0 back into the theory.
This Bagnold analysis seems to me to be plausible but not
compelling in the present context.

III. EFFECTIVE DISORDER TEMPERATURE

The equation of motion for the effective temperature χ is
a statement of the first law of thermodynamics, i.e., energy
conservation. Let U denote the configurational internal energy
as a function of the configurational entropy S. Then χ =
∂U/∂S, and the first law takes the form

τ0χṠ ≈ τ0V ceffχ̇ = 2V qσ − Q, (3.1)

where χṠ is the rate of change of U, ceff is an effective specific
heat, 2qσ/τ0 is the rate at which work is done on the system per
unit volume, V is the volume, and Q/τ0 is the rate at which heat
is dissipated. The second law requires that Q = V κ(χ − θ ),
where κ is a non-negative heat transfer coefficient and θ is the
ambient temperature expressed in the same units as those used
for χ . For the athermal systems considered here, θ ≈ 0. Thus,
the steady-state equation of motion for χ can be written in the
form

τ0χ̇ ≈ 2qσ

ceff
− κχ ≡ 2qσ

ceff

[
1 − χ

χ̂(q)

]
= 0. (3.2)

With these assumptions, I have defined χ ≡ χ̂ (q) in steady
state. Note that the underlying physics is thermal transport,
which somehow must be encoded in χ̂(q).
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To evaluate χ̂ (q), it is useful to think about the analogous
relation between ordinary temperature and relaxation rates
in glasses. Note first that, if we shear or otherwise “stir” a
system more slowly than any of its internal relaxation rates,
i.e., set q � 1, then this system must ultimately reach a
q-independent effective temperature, say χ0. Shearing an
amorphous material necessarily involves rearranging the
particles, i.e., forcing them to move around each other to
accommodate the shear deformation. As we shear slowly, we
bring clusters of particles into unstable configurations from
which they relax relatively quickly into new stable positions.
These persistent rearrangements produce a fluctuating steady
state of disorder, i.e., an effective temperature χ , that is
independent of the shear rate so long as that rate is slow
enough. Achieving the steady-state value of χ requires only
that the accumulated shear strain be large enough, perhaps on
the order of unity so that a statistically significant number of
rearrangements occurs. This argument should be valid whether
or not the STZ model of those rearrangements is accurate.
It is clearly consistent with the HL molecular dynamics
simulations.

This rationale for asserting that χ → χ0 > 0 in the limit
q → 0 is crucial for understanding the fundamental distinction
between realistic many-body systems and some of the models
that have been proposed to describe yielding, e.g., Refs. [1–3]
or the recent AQS study by Salerno and Robbins [21]. The
authors of Ref. [21] cannot compare the imposed strain rate
with dynamic relaxation rates as is necessary in my argument
about χ0. They also have no way to determine whether
extended cascades of events might be affected—perhaps
limited—by other events that can occur simultaneously. Those
questions are also well beyond the scope of the simpler
models described in Refs. [1–3]. This fundamental observation
leads me to conclude that, for purposes of studying yielding
transitions, these models are not in the same universality class
as realistic many-body systems.

The glassy analog of this behavior is that the configurational
relaxation time τα , like 1/q, diverges (or becomes unmeasur-
ably large) as the system approaches an ideal glass transition.
Conversely, the temperature varies increasingly slowly as τα

goes to infinity. Like the glass transition temperature, χ0 is
a system-specific parameter. We will see in Sec. IV that its
nonzero value determines the nature of the yielding transition.

At the other end of the range of shear rates, the glass
analogy implies Arrhenius behavior. Sufficiently far above
the glass temperature, the configurational relaxation rate
τ−1
α (or the inverse viscosity, the diffusion constant, or the

like) appears experimentally to be controlled by a thermally
activated process with a temperature-independent energy
barrier. Similarly, for values of q not too small, the Haxton-Liu
measurements of the effective temperature are well described
by a relation of the form q ≈ q0e

−A/χ , where A is an
activation energy expressed here, like χ , in units of the
STZ formation energy. To interpolate between these two
limiting behaviors in Refs. [12,14,15], my coauthors and
I have postulated a modified Vogel-Fulcher-Tamann (VFT)
formula,

q(χ̂ ) = q0 exp

[
− A

χ̂
− αeff(χ̂)

]
, (3.3)

where

αeff(χ̂) =
(

χ1

χ̂ − χ0

)
exp

[
− b

χ̂ − χ0

χA − χ0

]
. (3.4)

The first term on the right-hand side of Eq. (3.4) is the
conventional VFT divergence at χ̂ = χ0. Here it is cut off
in χ̂ by an exponential factor so that the behavior of q(χ̂ ) in
Eq. (3.3) is dominated by the Arrhenius term for χ̂ − χ0 >

χA − χ0. This interpolation formula has no special physical
significance that I am aware of, and so far, its details have not
seemed crucial for interpreting experimental or computational
data. On the other hand, the parameter A plays a special role
in what follows.

In interpreting Eq. (3.3), note that the STZ theory has an
absolute upper limit of validity where χ̂ → ∞. At such large
values of χ̂ , the density of STZs becomes large, and the theory
is no longer consistent with a model of a solid containing a
dilute population of flow defects. A natural way to formulate
the theory, then, is to choose q0 = 1 so that the maximum
theoretical shear rate is γ̇

pl
max = 1/τ0. Above this rate, the

system has insufficient time to relax between irreversible
rearrangements, i.e., it behaves like a fluid. Adopting this
convention, however, means that we need to use a physically
realistic estimate of τ0.

IV. HERSCHEL-BULKLEY BEHAVIOR

At large stresses and shear rates, the preceding set of equa-
tions immediately produces a generalized Herschel-Bulkley
relation. In this limit,

q ≈ ε0e
−1/χ

(
σ

σ1

)n

≈ q0e
−A/χ . (4.1)

Eliminating χ , we find

σ ≈ σ1

(
q0

ε0

)1/n(
q

q0

)β

, β = A − 1

nA
. (4.2)

Then, for example, the Bagnold choice n = 1/2 and A = 4/3
produces the conventional HB power law β = 1/2. However,
with different choices of parameters, this STZ-based theory
of athermal yielding produces a wide range of rheological
behaviors, well beyond the simple square-root law.

To explore some of these possibilities, I start by reanalyzing
the low-temperature HL data. I have made two changes from
the earlier LM analysis. First, instead of using the microscopic
time scale adopted by HL, I have deduced a presumably more
realistic τ0 by setting q0 = 1. The resulting τ0 is about a factor
of 12 larger than the original HL value but is still a microscopic
time scale. Second, in our previous attempt to fit all the HL
data, including at high temperatures, with as few parameters
as possible, Manning and I used what I now think was an
unrealistically small value of σ1 and thus needed to use a
correspondingly small value of ε0. In simple athermal systems,
however, there is really only one physically meaningful stress
scale, which is set by the shear modulus μ. Both σy and σ1

should be very roughly on the order of μ. Therefore, I have
set σ1 = σy and have measured the dynamic stress σ in units
of σy . Then I have adjusted ε0 to fit the data, finding ε0

∼= 0.26
in accord with my expectation that this parameter should be
roughly equal to unity. Other parameters as given in LM are

012318-3



J. S. LANGER PHYSICAL REVIEW E 92, 012318 (2015)

FIG. 1. (Color online) Log-log plot of stress σ in units of the
yield stress σy as a function of dimensionless shear rate q. The data
points are from HL with rescaled values of q as described in the text.

as follows: A = 1.5 (so that β = 2/3 as observed), χ0 = 0.2
(directly observed as shown in Fig. 2), χ1 = 0.26, χA = 0.3,
and b = 3.

Figures 1 and 2 show the HL data in their original form as a
log-log plot of σ/σy versus shear rate q and a semilogarithmic
plot of the effective temperature χ̂ (q) along with the theoretical

FIG. 2. (Color online) Semilogarithmic plot of the steady-state
effective temperature χ̂ as a function of dimensionless shear rate q.
The data points are from HL with rescaled values of q as described
in the text.

FIG. 3. (Color online) Stress σ in units of the yield stress σy as a
function of dimensionless shear rate q. The data points are from HL
with rescaled values of q as described in the text. The dashed line is
the approximation given in Eq. (4.2) displaced upward by one unit of
the yield stress.

curves evaluated using the full equations given above. In Fig. 2,
note that the upper limit of the data at q ∼= 0.25 occurs at χ̂ ∼=
0.7, which should be about at the limit of validity of the STZ
theory, as intended. Figure 3 is a direct plot of the data in which
the HB form is easily visible with the crossover to the q � 1
behavior squeezed into a small part of the graph near q = 0.
For comparison, the dashed curve shows the approximation in
Eq. (4.2) displaced upward by one unit of the yield stress. As
can just be seen in both the data and the theory, the stress rises
linearly above the yield point,

σ − σy ≈ q
σy

ε0
e1/χ0 . (4.3)

For the chosen parameters, this formula means that the ini-
tial slope of the graph in Fig. 3 is large but finite, approximately
570. The rapid growth of χ and the corresponding growth of
the STZ density cause the material to soften with the result that
the curve bends over into power-law behavior at small values
of q.

To illustrate the variety of rheological behaviors that emerge
from this theory, I show in Fig. 4 a set of five different
curves of stress versus shear rate using all but one of the
same parameters that were used to fit the HL data shown in
Figs. 1–3. The exception is that I have chosen a sequence of
different values of the dimensionless activation energy A that
controls the dissipation rate in Eq. (3.2). From bottom to top in
the figure, these values are A = 2.0, 1.33, 1.1, 1.0, and 0.9.
The corresponding values of the HB exponent are β =
1.0, 0.5, 0.18, 0, and −0.22. The second curve with β = 0.5
is the square-root law that appears in the fluctuation-theory
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FIG. 4. Stress σ in units of the yield stress σy as a function
of dimensionless shear rate q for five different values of the
dimensionless activation energy A. From bottom to top, A =
2.0, 1.33, 1.1, 1.0, and 0.9. The corresponding values of the HB
exponent are β = 1.0, 0.5, 0.18, 0, and −0.22.

literature, e.g., Refs. [1,3,4], and the third and fourth curves
with small values of β are included just to show the transition
between stable and unstable rheologies.

The more interesting cases shown in Fig. 4 are the first and
the fifth. The first at the bottom with β = 1 illustrates one
of the ways in which this theory can produce a conventional
linear Bingham rheology. By far the most realistic way for the
linear law to be observed, however, is when τ0 is a microscopic
time, perhaps a few molecular vibration periods so that shear
rates with q ∼ 1 are out of the range of most experiments.
Then, Eq. (4.3) with a constant χ0 is accurate throughout an
observable range of shear rates q � 1. This is what happened,
for example, in earlier analyses of plasticity in metallic glasses
(e.g., Ref. [22]), where χ0 was more nearly on the order of 0.1
instead of 0.2. Yet another possibility, still within the scope of
this theory, is when materials are intrinsically disordered and
soft, i.e., when χ0 is large, so that the initial slope of σ (q) in
Eq. (4.3) is small and remains linear at observably large shear
rates.

The fifth interesting case in Fig. 4 at the top with β = −0.22
exhibits shear-rate weakening above q ∼= 0.07 and therefore
must be dynamically unstable. Daub and Carlson [23] have
examined a model of this kind in detail and have shown
that it produces both shear-banding and stick-slip instabilities.
More recently, Lieou et al. [24] have applied this kind of
theory—but with β > 0—to granular materials of the kind
that occur in fault gouge. They have added terms to κ

in Eq. (3.2) to account for shear-rate-dependent frictional
dissipation due to collisions between angular grains and to
account for dissipation induced by tapping or other vibrational
perturbations. In this generalization of the theory, the effective

temperature can become a nonmonotonic function of q,
and the volume may also vary nonmonotonically. But these
modifications are beyond the scope of the present discussion
because they implicitly introduce new intrinsic time scales
analogous to τ0.

V. SPATIAL HETEROGENEITIES

As a first step in studying spatial variations in this theory,
I have linearized the equation of motion for χ Eq. (3.2) in the
space- and time-dependent variable χ ′ = χ − χ̂ (q) and have
added a diffusion term,

τ0χ̇
′ ≈ −2σq

ceff

χ ′

χ̂(q)
+ D∇2 χ ′

χ̂ (q)
. (5.1)

Because χ̂ (q) diverges when q → q0, it is best to linearize in
χ ′/χ̂(q) and to define the diffusion coefficient D accordingly.
Diffusion terms of this kind have appeared previously in the
STZ literature, e.g., in Refs. [18,23], but it seems to me that
D has never been given the attention that it needs. D must
have the form �
2, where �/τ0 is the noise-generated attempt
frequency for activation and annihilation of STZs and 
 is
an elementary diffusion length, which I argue must be the
average spacing between STZs. This is in contrast to my
argument in Ref. [25] where I considered self diffusion of
particles and set 
 equal to the size of the STZ core. Here, I
am considering diffusion of energy or perhaps, in the spirit of
Refs. [2,3], stress fluctuations, thus, the spacing between STZs
seems appropriate.

To implement these ideas, I use primarily dimensional anal-
ysis. The only scalar quantity in this system with dimensions
of rate is the power per unit volume σq/τ0. To convert this
quantity into a frequency, divide by a stress times a volume (an
energy), say, σ0v0 and multiply by the only relevant volume,
i.e., the volume per STZ v0e

1/χ . The factors v0 cancel, and
subsequent athermal STZ analysis reveals that σ0 is equal to
the yield stress σy . Thus, � = 2q(σ/σy)e1/χ . Similarly, for
dimension d, 
d = v0e

1/χ . The result is

D = 2a2q
σ

σy

e(1+2/d)/χ , (5.2)

where v0 = ad defines a characteristic interparticle length
scale a.

Static solutions of Eq. (5.1) have the form e−r/ξ , where

ξ 2 = ceffD
2σq

= ceffa
2

σy

exp

[
1 + 2/d

χ̂ (q)

]
. (5.3)

In the large-q limit where q ≈ q0e
−A/χ̂ , Eq. (5.3) becomes

ξ 2 ≈ ceffa
2

σy

(
q0

q

)2ν

, ν = 1 + 2/d

2A
. (5.4)

This growing length scale saturates near the yielding transition,
where q → 0 and χ̂ → χ0.

The full function ξ (q) is shown in Fig. 5 in comparison with
data taken from Fig. 5 of Jop et al. [26]. The data shown here
were obtained by measuring velocity-velocity correlations
in a dense emulsion flowing under pressure through a gap
between parallel glass plates. Correlations between velocity
fluctuations perpendicular to the flow were measured as
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FIG. 5. (Color online) Correlation length ξ/a as a function of
dimensionless shear rate q. The two sets of experimental data (blue
triangles and red squares) are for the two larger forcings shown in
Fig. 5 of Jop et al. [26], and the theoretical scales of length a and
shear rate q are chosen here to be consistent with that data.

functions of two-point separations parallel to the flow at fixed
distances from the center of the gap and, thus, at fixed shear
rates. In computing the theoretical curve, I have used q0 = 18
in order to match the scale of shear rates γ̇ reported by those
authors, and I have set

√
ceff/σy = 0.08 in Eq. (5.3) again

to match the units of length used in Ref. [26]. To optimize
the fit, I chose A = 1.2, which means that the HB exponent
is β = 1/3, and ν ∼= 0.69 in Eq. (5.4). Otherwise, the STZ
parameters (χ0, χ1, χA, and b) are the same as those used in
fitting the HL data in Figs. 1–3. This is the best I can do in
the absence of more detailed information about the rheological
properties of this particular emulsion.

I emphasize that I have not attempted here to construct a
complete theory of the experimental observations in Ref. [26],
even within the assumptions that led to Eq. (5.3). To do that,
I would have had to couple the equation of motion for χ

Eq. (5.1) to a position-dependent and fully tensorial version
of the STZ flow law Eq. (2.1). More importantly, I would
have had to introduce a nonlocal version of that flow law in
which the strain rate on the left-hand side is an exponentially
weighted average of the driving term on the right-hand side
within a neighborhood of size ξ . In other words, I would have
had to develop an effective-temperature version of the nonlocal
rheology described recently by Hennan and Kamrin [27,28] in
their theory of dense granular flows. Their analysis must be
closely related to the one presented here; it should be useful
to explore that relationship.

A nonlocal analysis should not make qualitative changes in
the results shown in Fig. 5, which relate to measurements at
fixed distances away from the center of the gap where shear
rates are constant and nonzero. However, a fully nonlocal
analysis would be essential for computing the velocity profile

across the flow as measured by Jopet al. [26]. We know by
symmetry that, in plug flow of this kind, both the shear rate
and the shear stress change sign from one side of the gap
to the other. Therefore, there is a region near the center of
the gap in which |σ | < σy where a local relation of the kind
shown in Eq. (2.1) cannot be valid. A nonlocal calculation of
the velocity profile is reported in Ref. [26] where it is used to
estimate a length scale whose slow shear-rate dependence may
be consistent with ν = 1/4 as predicted in Ref. [2]. It remains
to be seen whether that behavior can be distinguished from the
saturation effect predicted here.

VI. REMARKS AND QUESTIONS

A principal conclusion of this analysis is that the ther-
modynamic STZ theory, like SGR, predicts a wide range of
Herschel-Bulkley-like rheological behaviors, consistent with
a long history of experimental observations. The surprising
result is that—largely due to the properties of the effective
disorder temperature χ—the yielding transition in this theory
is noncritical. Immediately above the transition, the stress rises
linearly in the strain rate, and the correlation length remains
nondiverging. This result contradicts almost all recent theories
of yielding in amorphous materials. I have argued here that this
disagreement occurs because those recent theories are based on
models or simulation schemes that do not accurately describe
the dynamics of realistic many-body systems.

I emphasize that this predicted deviation from criticality at
the yielding transition is not an artifact of any phenomeno-
logical assumption or of any special feature of the STZ
theory. On the contrary, it emerges from first principles. As
argued in Sec. III, the state of disorder at small dimensionless
shear rate q must be independent of q, i.e., χ → χ0 > 0.
This nonzero degree of disorder means that, in steady-state
deformation, there must be a constant density of some kind of
flow defects and, therefore, a linear relation between q and the
stress increment just above the yield point. This theoretical
conclusion is supported by a close look at the numerical
simulations shown in Fig. 3 and by the experimental data
shown in Fig. 5.

On the other hand, I emphasize that this unexpected
result does not in any way invalidate the evidence that
yielding transitions are generally accompanied by large stress
fluctuations and cascades of extended correlated events. There
are two complementary kinds of questions that need to be asked
in this regard. First, the existing theories have been extremely
useful in identifying the physical mechanisms that underlie
yielding dynamics. In what ways are they accurate? Where,
precisely, might they be missing essential ingredients? Second,
the mean-field STZ theory provides only an approximate
description of the interactions between spatially separated
yielding events. In what ways might it be modified in order to
be more accurate? Does it need to be so modified?

Theoretical evidence in favor of criticality at yielding tran-
sitions has come from stochastic models of the kind originated
by Hébraux and Lequeux [1] and extended in Refs. [2,3].
As argued in Refs. [5,6], the yielding mechanism looks as if
it should be in the same universality class as the depinning
mechanism that produces, for example, broad distributions of
slipping events on earthquake faults. Renormalization-group
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analyses of depinning models have produced scaling relations
similar to the Herschel-Buckley law. (For example, see Fisher
et al. [29].) How precise are these analogies?

The Hébraux and Lequeux model produces a Herschel-
Bulkley exponent of exactly 1/2 in the limit of zero strain
rate. Even if we assume that some limiting approximation
is being made that eliminates the saturation effect (perhaps
by implicitly setting χ0 = 0), the question remains: Why is
β = 1/2 in this class of models? How might it be modified to
produce other values of β? We know that other HB exponents
do occur, e.g., in the Haxton-Liu results discussed here and in a
wide variety of rheological situations. According to Eq. (4.2),
this exponent is determined by the activation energy A, which
controls the heat flow. Is there any analogous physics in
Ref. [1]? Conversely, we must ask: What physics determines A

in the STZ theory? Under what physical circumstances might
we find unstable dynamics with A < 1?

What are the corresponding strengths and limitations of the
thermodynamic STZ theory? We know from recent experience
that the STZ equations of motion, when generalized for
variations in space and time and coupled to the equations of
motion for elastic fields, constitute a self-contained dynamical
theory of amorphous rheology. The theory does a good job of
describing phenomena such as shear-banding instabilities [18],
brittle and ductile failure in the neighborhoods of crack tips
[19], stick-slip behavior of granular materials in earthquake
faults [23,24], and the like. In analogy to the well known
equations of motion for fluids, it seems reasonable to expect
that these rheological equations of motion, when solved

for large systems coupled to external forces and boundary
conditions, will predict chaotic behaviors with heterogeneous
deformations and local failures on many different lengths
and time scales. Will the results of such calculations be
consistent with those based on the depinning analogy? Or
with experimental observations?

A related question is whether the deterministic nature of
the rheological theory presented here might be inadequate
for describing broad distributions of event sizes. The scaling
analysis in Ref. [29] starts with the assumption of a quenched
random pinning force. Hébraux and Lequeux couch their
analysis in terms of probability distributions over the values of
local stresses. Is that kind of analysis essential? Or might the
observed behaviors be results of deterministic chaos as was the
case in our earlier slider-block studies of earthquake dynamics
[30]? Large-scale numerical solutions of the present rheolog-
ical equations of motion might help answer such questions.
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