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Emulsions consisting of droplets immersed in a fluid are typically unstable since they coarsen over time.
One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets.
Stability of emulsions is relevant not only in complex fluids but also in biological cells, which contain liquidlike
compartments, e.g., germ granules, Cajal bodies, and centrosomes. Such cellular systems are driven away from
equilibrium, e.g., by chemical reactions, and thus can be called active emulsions. In this paper, we study such
active emulsions by developing a coarse-grained description of the droplet dynamics, which we analyze for two
different chemical reaction schemes. We first consider the simple case of first-order reactions, which leads to
stable, monodisperse emulsions in which Ostwald ripening is suppressed within a range of chemical reaction rates.
We then consider autocatalytic droplets, which catalyze the production of their own droplet material. Spontaneous
nucleation of autocatalytic droplets is strongly suppressed and their emulsions are typically unstable. We show
that autocatalytic droplets can be nucleated reliably and their emulsions stabilized by the help of chemically active
cores, which catalyze the production of droplet material. In summary, different reaction schemes and catalytic
cores can be used to stabilize emulsions and to control their properties.
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I. INTRODUCTION

Emulsions are mixtures of immiscible liquids, in which
droplet formation is typical. Such systems are important in
many areas such as pharmaceuticals, foods, and cosmetics,
where properties like the droplet size distribution and its
stability must be controlled [1]. Besides these technological
applications, droplet formation is also important in biological
systems. For instance, droplets form compartments in the
intracellular fluid [2–6]. Additionally, liquidlike lipid domains
are known to structure the cell membrane [7]. One key aspect
of biological systems is that they are active, i.e., they are
driven away from equilibrium. Recently, we have shown that
nonequilibrium chemical reactions could control the formation
of centrosomes [5], which are one example for liquidlike
substructures in cells. In particular, we suggested that two
centrosomes are nucleated by catalytically active cores and
grow by an autocatalytic reaction. We also demonstrated
that the catalytic cores help to suppress Ostwald ripening
and that two coexisting centrosomes can be stable [5]. This
raises the questions by what mechanisms chemical reactions
could suppress Ostwald ripening in emulsions and under what
conditions chemically active emulsions could be stable.

Stabilizing emulsions over long times is a major challenge
[1]. This is because emulsions typically coarsen, i.e., large
droplets grow and small droplets disappear, which is energet-
ically favorable. There are two different processes that lead
to coarsening: droplet coalescence, which is driven by the
Brownian motion of droplets, and Ostwald ripening, which is
driven by diffusive fluxes between droplets [8,9]. Both these
processes have to be suppressed to stabilize emulsions. Droplet
coalescence can be suppressed in a number of ways, e.g.,
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by utilizing surfactants [10,11] or by simply immobilizing
the droplets [12,13]. In contrast, the diffusive flux leading
to Ostwald ripening is more difficult to suppress. It can
be prevented by trapping particles inside droplets that are
insoluble in the surrounding fluid [14–16].

Droplet coarsening due to Ostwald ripening can be sup-
pressed by continuous shearing of a system [17,18]. Shear
flows break up larger droplets and thus counteract droplet
coarsening. The droplets are in this case typically nonspherical
[19,20]. This raises the question of whether other nonequilib-
rium conditions could also have an effect on droplet coarsening
and the stabilization of emulsions. In fact, chemical reactions
influence the phase separation kinetics of mixtures, leading to
pattern formation and introducing characteristic length scales
[21–24]. Furthermore, more complex reaction schemes such
as autocatalytic reactions have been shown to add interesting
effects, including patterns with multiple length scales [25,26].
Interestingly, a simple case of first-order reactions in an infinite
system is formally related to a phase-separating system with
long-ranged repulsive interactions [22]. Therefore, phase sep-
aration with long-range repulsion is an interesting precedent
for suppression of Ostwald ripening [27–31], which by formal
analogy provides useful information for the study of droplets
with chemical reactions.

In this paper, we study the role of chemical reactions on
droplet dynamics in systems of coexisting liquid phases. We
introduce a general framework to study such active emulsions
both in finite and infinite systems. We use it to show that
Ostwald ripening can be suppressed and emulsions are
typically monodisperse when first-order chemical reactions
are considered. We discuss the typical droplet size and the
characteristic rates of the droplet dynamics and we use these
results to identify the regions in parameter space where active
emulsions are stable. We also test our results by comparing
them to numerical solutions. In addition to the simple case
of first-order kinetics, we also investigate droplets with
autocatalytic reactions, which can describe, for example, the
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dynamics of centrosomes [5]. These droplets catalyze their
own growth and are best discussed in a ternary fluid. One
important property of autocatalytic droplets is that they are
hard to nucleate and tend to be unstable. We discuss nucleation
of autocatalytic droplets by active cores that catalyze the
production of droplet material. These active cores can also
suppress Ostwald ripening and stabilize autocatalytic droplets.

The paper is organized as follows. In Sec. II, we introduce
a continuum theory of phase-separating fluids with chemical
reactions and obtain a coarse-grained description of active
emulsions. In Sec. III, we study the simple case of first-
order kinetics in a binary fluid. In Sec. IV, we consider
autocatalytic droplets in a ternary fluid as an example for a
more complex reaction scheme. The results are discussed in
Sec. V. Throughout the paper, we compare our results to the
classical case of passive droplets without chemical reactions.

II. THEORETICAL DESCRIPTION
OF ACTIVE EMULSIONS

We study droplets of a liquid phase that coexists with
the surrounding fluid. We consider chemical reactions that
can convert soluble components A in the fluid into droplet
material B that phase separates from the fluid. We first discuss
a continuum theory and then derive dynamic equations for
droplet sizes in the emulsion.

A. Continuum theory of ternary fluids

We consider a ternary fluid consisting of soluble building
blocks A, droplet material B, and components of the back-
ground fluid C, which do not participate in the chemical reac-
tions. Volume fractions of components A and B are denoted
φA(r,t) and φB(r,t), respectively; the volume fraction φC

obeys φC = 1 − φA − φB . For an incompressible, isothermal
fluid with constant molecular volumes, the free energy density
f depends on the two volume fractions φA and φB . For
simplicity, we use the form

f (φA,φB) = a

2
(φA)2 + b

2ψ2
(φB)2(ψ − φB)2, (1)

where the positive parameters a and b characterize molecular
interactions and entropic contributions. The double-well po-
tential described by the second term accounts for the separation
into two phases, a C-rich phase with φB = 0 and a B-rich phase
with φB = ψ , while A distributes freely between both phases
[32]. Here, we consider the strong segregation limit, where the
volume fraction φB can vanish in one of the phases.

We are interested in heterogeneous systems where many B

droplets coexist with the C phase, see Fig. 1(a). Such systems
are globally out of equilibrium but in a local equilibrium
approximation the free energy density can be defined in
each local volume element. The state of the system is then
characterized by the total free energy

F =
∫ [

f (φA,φB) + κ̃

2
(∇φA)2 + κ

2
(∇φB)2

]
d3r, (2)

where the integral is over the system volume. Here the terms
proportional to κ̃ and κ penalize strong gradients, which
in particular occur in the interface region between phases

(b)(a) Continuous System Coarse-grained Description

FIG. 1. (Color online) Schematic representations of emulsions
with droplets of enriched B components (dark orange) in a
background of A components (light blue). (a) Full spatiotemporal
description of the volume fractions φA and φB including diffuse
interfaces. (b) Simplified description in terms of the droplet radii Ri

and the average volume fractions φA
0 and φB

0 in the background fluid.

[33]. The width of such interfaces can be discussed by
considering a flat interface between two phases with volume
fractions φB = 0 and φB = ψ far from the interface. In
this case, F is minimized by φB(x) = 1

2ψ[1 + tanh(x/w)],
where w = 2(κ/b)1/2 is the interface width and x a coordinate
normal to the interface [33]. The free energy associated
with the interface per unit area yields the surface tension
γ = 1

6ψ2(bκ)1/2 [32].
These expressions for w and γ also hold in the case of

curved interfaces, as long as the radius of curvature is large
compared to w. Because the surface tension is positive, the free
energy F is minimized by droplet configurations with minimal
interface area [34]. In emulsions, larger droplets, which have a
smaller surface-to-volume ratio, are thus energetically favored
over multiple smaller droplets with the same volume. This
minimization of the interfacial area drives Ostwald ripening in
passive fluids [8].

The dynamics of the concentration fields are described by
the equations [22,23]

∂tφ
A = mA∇2 δF [φA,φB]

δφA
− s(φA,φB), (3a)

∂tφ
B = mB∇2 δF [φA,φB]

δφB
+ s(φA,φB), (3b)

where the first terms describe particle-number-conserving
diffusive movements and chemical reactions are introduced by
a source and sink term s. Here mA and mB denote mobilities
of the components and we neglect hydrodynamic effects for
simplicity [32].

B. Chemical reaction schemes

We discuss chemical reactions in which soluble building
blocks A are transformed into droplet material B, while the
components C are not changed by the chemical reactions.
The reaction flux introduces a source s in Eq. (3). We consider
the form

s = kfφ
A − kbφ

B + kφAφB + φA

N∑
i=1

Qiδ(r − r i). (4)

Here the first-order reactions A → B and A ← B have
the rates kf and kb, respectively, and the rate k describes
the autocatalytic reaction A + B → 2B. We also introduce
catalytically active cores that locally catalyze the reaction
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FIG. 2. (Color online) Chemical reaction schemes of building
blocks A (light blue) and droplet material B (medium orange)
considered in this paper. (a) First-order reactions. (b) Autocatalytic
droplets where B is produced by the reaction A + B → 2B and at
the catalytic cores (dark green), such that the production is effectively
restricted to inside the droplets. Droplet material B is converted back
to A by a simple first-order reaction.

A → B and that therefore can nucleate droplets. The catalytic
activity of the core numbered i at position r i is denoted by Qi ,
see Fig. 2.

Equations (3) and (4) are completed by no-flux boundary
conditions. For the reaction schemes considered here, the total
amount of components A and B is conserved, and thus the total
volume fraction φ̄ = φ̄A + φ̄B is time independent where

φ̄i = 1

Vs

∫
φi d3r (5)

denotes the average volume fraction of component i in the
system, for i = A,B. Here the integral is over the entire system
of volume Vs. Note that when chemical reactions are absent
(s = 0), components A and B are not converted into each other
and the volume fractions φA and φB are conserved separately.

When expressing the reaction rates by Eq. (4), we have
not imposed a detailed balance condition for A � B [35,36].
This implicit breaking of detailed balance is important in
the following as it gives rise to the rich physics of active
droplets developed here. This is motivated in particular by
biological systems, where detailed balance is broken, e.g.,
by the supply of a chemical fuel such as adenosine triphos-
phate [37]. That breaking of detailed balance is important
for droplets to be stable can be seen as follows. If the
chemical reactions would obey detailed balance, the system
could relax to a thermodynamic equilibrium state for which
the free energy F is minimal. Since the components A and
B can be converted into each other, there are no separate
constraints on the numbers of A and B molecules. As a
consequence, the volume fractions φA and φB could relax
to the values at which the free energy density f has a
minimum for a given total molecule number. This is in general
a homogeneous, mixed state without droplets [35]. A state with
droplets could always lower its free energy by shrinking the
droplets and thereby removing the free energy associated with
surface tension. Therefore, in the following we only consider
nonequilibrium situations in which detailed balance of the
chemical reactions is broken and droplets can be stable.

C. Dynamics of active emulsions

We first consider the dynamics of an individual droplet with
radius R. Two different volume fractions φB

− and φB
+ coexist

inside and outside of the interface, respectively. The conditions
of coexistence are governed by local thermodynamic equilib-
rium at the interface. This local equilibrium condition holds if
chemical reactions rates are sufficiently small. The chemical
potentials of the droplet material are equal on both sides of
the interface and the pressure difference between the inside
and outside of the droplet is given by the Laplace pressure
2γR−1. The equilibrium volume fractions inside and outside
of the interface can be determined from these thermodynamic
principles, see Appendix A. They are given by

φB
− ≈ ψ and φB

+(R) ≈ γβ

R
, (6)

for small surface tension, γ � ψRβ−1. Here the coefficient
β = 2/(bψ) describes the effect of Laplace pressure on the
volume fraction at the interface. Note that γβ defines a length
scale, which is related to the interface width by γβ = wψ/6.
Additionally, the coexistence at the interface requires that φA

is continuous across the interface, see Appendix A, while
φC = 1 − φA − φB exhibits a discontinuity at the interface.

The volume fractions φA and φB vary on length scales
that are large compared to the interface width w. We thus
approximate the Eqs. (3) by reaction-diffusion equations inside
and outside the droplet,

∂tφ
A = DA∇2φA − s(φA,φB), (7a)

∂tφ
B = DB∇2φB + s(φA,φB), (7b)

where DA = mAa and DB = mBb are diffusivities.
The volume fraction profile φB within a spherical droplet

can be discussed using Eqs. (7). The radial profile φB(r)
varies on a characteristic length scale l = [DB/(kf + kb)]1/2,
where we have used Eqs. (7) without the contributions of
the autocatalytic reaction, because it does not lead to strong
gradients inside the droplet, see Appendix B. In the following,
we focus on the simple case where l is large compared to
the droplet radius R, i.e., chemical reactions rates are small
compared to DBR−2. In this case droplets are homogeneous
and we thus have φB � ψ inside the droplet, set by the
equilibrium solution at the interface, see Eq. (6).

The volume fraction φB outside of droplets can also be
discussed for a spherical droplet. Here φB(r) exhibits the
same characteristic length scale l given above, since φB

is typically small and the contribution of the autocatalytic
reaction is thus negligible. The total volume flux of compo-
nent B passing a spherical shell at distance r is given by
J (r) = −4πr2DB∂rφ

B(r). In particular, we are interested in
the flux J = limε→0 J (R + ε) of droplet material outside of
the interface. In a steady state, where φB(r) approaches the
volume fraction φB

0 at large r , we obtain

J = 4πRDB(1 + Rl−1)
[
φB

+(R) − φB
0

]
, (8)

see Appendix C. Note that the term Rl−1 can be neglected
for small droplets or small reaction rates (R � l). In this
case and for DA ≈ DB , the volume fraction φA(r) will be
approximately homogeneous throughout the system and we
thus approximate φA = φA

0 . These arguments also show that
droplets are inhomogeneous if chemical reactions are fast
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(R � l). However, as shown below these droplets are typically
unstable.

We can now discuss the dynamics of N droplets
i = 1, . . . ,N of radii Ri that are sufficiently far from each
other that they do not interact directly. Droplet growth is driven
by the addition of B components to droplets. Changes in the
droplet volume Vi = 4π

3 R3
i can thus be related to the flux Ji

and the chemical reactions inside the droplet. Combining these
two effects, the volume growth rate can be expressed as

ψ
dVi

dt
= (

kfφ
A
0 − kbψ + kφA

0 ψ
)
Vi + Qiφ

A
0 − Ji, (9)

where we again consider small droplets or small reaction rates
(0 < Ri � l). Here the term proportional to Vi accounts for the
reactions in the bulk of the droplet and the term proportional to
Qi describes the activity of a catalytic core inside the droplet.
The dynamics of the average volume fraction of B in the
background fluid is given by

dφB
0

dt
≈ kfφ

A
0 − kbφ

B
0 + kφA

0 φB
0 + 1

Vs − Vtot

N∑
i=1

Ji, (10)

where

Ji = 4πRiDB(1 + Ril
−1)

[
φB

+(Ri) − φB
0

]
, (11)

and Vtot = ∑
i Vi is the total volume of all droplets. Here we

have neglected spatial correlations between φA and φB in the
autocatalytic term. Note that the average volume fraction φA

0
of building blocks reads

φA
0 = φ̄ − Vs − Vtot

Vs
φB

0 − Vtot

Vs
ψ, (12)

which results from the mass conservation given in Eq. (5).
We thus arrive at an effective description of dynamic

droplets in the presence of chemical reactions. The state of
the system is characterized by the droplet volumes Vi and the
volume fraction φB

0 in the background fluid. Their dynamics
are governed by Eqs. (10)–(12). The case of conventional
emulsions without chemical reactions is found in the limit
kf = 0, kb = 0, k = 0, and Q = 0. This case, which we call the
passive case, has been well characterized and exhibits Ostwald
ripening [38,39]. In the next two sections, we focus on the
effects of first-order and autocatalytic reactions on the droplet
behavior and compare these active cases to the passive one.

III. DROPLETS WITH FIRST-ORDER REACTIONS

Droplets under the influence of first-order reactions
[kf > 0, kb > 0, k = 0, Qi = 0, see Fig. 2(a)] can be most eas-
ily discussed in the case of a binary fluid. Therefore, we remove
component C for this system, such that φA = 1 − φB . That is,
we consider a system where components A and B undergo
chemical reactions and phase separate from each other. The
associated free energy density is f (φB) = b

2 (φB)2(ψ − φB)2.
The dynamics of the system is of the form of Eq. (3b), with
φA = 1 − φB and s given in Eq. (4).

An emulsion of these droplets can be described by the
droplet radii Ri and the average volume fraction φB

0 in the
background fluid. For the binary fluid, we can write the droplet

growth rate given by Eq. (9) as

dRi

dt
= DB

(
φB

0

Ri

− γβ

R2
i

)
− kbRi

3
, (13)

where we consider small droplets (0 < Ri � l) that form by
strong phase separation, such that the volume fraction of A

components in the droplet is negligible (ψ = 1). The volume
fraction φB

0 changes with a rate

dφB
0

dt
= kf

(
1 − φB

0

) − kbφ
B
0 + 1

Vs

N∑
i=1

Ji (14)

if the total droplet volume is small compared to the system
volume, Vtot � Vs, see Eq. (10). In the following, we analyze
these equations for one, two, and more droplets.

A. Dynamics of a single droplet

1. Large system size

We first investigate a single droplet in the thermodynamic
limit of a large system. Because of the large system size, the
single droplet does not influence the volume fraction φB

0 in
the background fluid and φB

0 is thus constant. The growth
dynamics of the single droplet can then be discussed by
considering Eq. (13) only.

In a passive system where chemical reactions are absent
(kf = kb = 0), the average volume fraction of component B

is conserved and φB
0 is thus set by the initial condition. In

this case, a droplet grows indefinitely if it is larger than a
critical size Rcrit, see the orange line in Fig. 3(a). This critical
radius corresponds to the single steady state of Eq. (13), where
R = Rcrit with Rcrit = γβ/φB

0 . This steady state is unstable,
such that droplets with a radius larger than Rcrit grow, while
smaller droplets shrink and disappear.

In the case of first-order reactions (kf > 0, kb > 0), the
average fraction φB

0 in the background fluid is set by the
balance of the chemical reactions. Thus, we have

φB
0 = kf/(kf + kb), (15)

which is the steady-state solution of Eq. (14) for large Vs. In
this case, there exists a critical radius that is similar to the
passive case discussed above, see Fig. 3(a). In particular, the
associated steady state of Eq. (13) at R = Rcrit is given by
Rcrit ≈ γβ/φB

0 for small reaction rates. However, in contrast
to the passive case, large droplets shrink in the presence of
chemical reactions according to Eq. (13). Consequently, there
exists a stable steady state with a droplet radius R̄ larger than
Rcrit, see Fig. 3(a). For large systems, the stable radius of a
single droplet reads

R̄ ≈
[

3DBkf

(kf + kb)kb

] 1
2

, (16)

which follows from Eq. (13) in steady state for small surface
tension, γ � R̄φB

0 /β. The radius R̄ diverges for vanishing
chemical reactions, such that a droplet in a passive system
grows indefinitely, as discussed above. Conversely, R̄ is finite
in the presence of chemical reactions and faster reaction rates
generally lead to smaller droplets, see Fig. 3(b). Importantly,
Eq. (16) is only valid if the droplet radius R̄ is larger than the
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(a) (b)

(c) (d)

FIG. 3. (Color online) Behavior of a single droplet with first-
order reactions. (a) Growth rate Ṙ = dR/dt given in Eq. (13)
as a function of the droplet radius R in an infinite system. The
passive system (light orange, kf = kb = 0, φ̄B = 1/11) is compared
to droplets with first-order kinetics (dark blue, kf/k0 = 3.6 × 10−5,
kb/k0 = 3.6 × 10−4). The critical radius Rcrit and the stable radius
R̄ are indicated. (b) Bifurcation diagram of the droplet radius as a
function of the rate constant kf with kb = 10 kf . R̄ (solid line) and
Rcrit (dotted line) were determined by solving Eq. (13) numerically.
The saddle-node bifurcation point given in Eq. (17) is marked by
a blue dot. The triangle indicates the scaling predicted by Eq. (16).
[(c) and (d)] Same plots as in (a) and (b) for a finite system with
volume Vs = 1.8 × 106 w3. The maximal droplet volume is Vsφ̄

B in
the passive system. The gray area in (d) denotes the region where
systems are relatively small, Vs � (4π/3)[DB/(kf + kb)]3/2. In all
panels, ψ = 1 and quantities are normalized to the length scale
w = 6γβ generated by the surface tension γ and the associated rate
k0 = DB/w2.

critical radius Rcrit. This condition is violated if the reaction
rates are too fast and droplets will shrink and disappear in
this case. Consequently, there exist upper bounds for the rate
constants above which droplets are not stable. To illustrate this,
we vary the forward rate constant kf while keeping the ratio
kf/kb (and thus also the average volume fraction φB

0 ) fixed. In
this case, droplets do not form if kf exceeds the critical value
kc

f given by

kc
f = 4DB

(3γβ)2

(
φB

0

)4

1 − φB
0

, (17)

which follows from considering Eq. (13) in steady state.
Equation (13) is valid for droplets that are small com-

pared to the characteristic length l = [DB/(kf + kb)]1/2, as
discussed above in Sec. II C. Therefore, Eq. (16) is only
valid if R̄/ l = (3kf/kb)

1
2 � 1 or, alternatively, φB

0 � 1/4.
This condition corresponds to the case of B-rich droplets in
an A-rich background. In the opposite case of a large average
volume fraction of B, φB

0 � 3/4, the system forms A-rich
droplets in a B-rich background. These A-rich droplets are
described by the same theory and thus have the size given by
Eq. (16) but with kf and kb interchanged. In the intermediate
case, where components A and B exist in approximately equal

average volume fractions (kf ≈ kb, φB
0 ≈ 1/2), droplets may

not form and the effective description of emulsions is not
applicable. It has been reported that bicontinuous structures
are then prevalent in the solutions to Eq. (3b) [22,23]. Since
we are interested in the dynamics of emulsions, we only discuss
the case where B-rich droplets form (3kf � kb, φB

0 � 1/4).
Taken together, droplets will grow indefinitely in pas-

sive, thermodynamically large systems. Conversely, first-order
chemical reactions can stabilize single droplets if kf < kc

f (φB
0 )

and φB
0 � 1/4. Combining these two necessary conditions,

the rate constant kf must be much smaller than the rate
k0 = DB/w2 of diffusion across the interface for a single
droplet to be stable.

2. Finite systems

We next discuss the case of a single droplet in a system
of finite volume Vs. Here the average volume fraction φB

0 in
the background fluid changes with time, which influences the
droplet growth. In fact, the droplet volume must be smaller
than the volume Vsφ̄

B of B components in the system.
In the passive case (kf = kb = 0), a single droplet grows

until an equilibrium with the background fluid is achieved.
For a finite system, this occurs at a finite droplet radius R̄, see
Fig. 3(c). In the limit of small surface tension and strong phase
separation, the actual steady-state volume V̄ is very close to
the upper bound and V̄ ≈ Vsφ̄

B is thus a good approximation.
Note that the average volume fraction φ̄B of B in the system
is constant in passive systems.

In the case with chemical reactions (kf > 0, kb > 0), there
are two regimes for the droplet size, depending on how the
system size Rs = (3Vs/4π )1/3 compares to the characteristic
length scale l generated by the reaction-diffusion system. In
large systems (Rs � l), a droplet grows until it reaches the
radius R̄ given by Eq. (16). Conversely, in small systems
(Rs � l), the droplet depletes the background fluid of B

components significantly and its volume can be approximated
by V̄ ≈ Vsφ̄

B , where φ̄B = kf/(kf + kb). These two regimes
for the droplet size are observed in numerical solutions of the
steady states, see Fig. 3(d).

B. Dynamics of multiple droplets

We next study the dynamics of systems containing several
droplets. The dynamics of these droplets is coupled because
they compete for the material in the background fluid.

1. Dynamics of a droplet pair in a finite system

We first discuss the qualitative behavior of a droplet pair in a
finite system. Starting with two droplets of generally different
volume, the initial dynamics are such that the combined droplet
volume Vtot and the volume fractions in the background fluid
approach their steady-state values quickly, see Appendix D.
Apart from small corrections due to surface tension effects,
Vtot is then given by the stationary volume that a single droplet
would reach in the same system, which we discussed in the
previous section. Droplet dynamics on longer times involves
diffusive transport of material between the droplets, as in
conventional emulsions [39].

In the passive case (kf = kb = 0), the material exchange
between droplets is driven by diffusive fluxes which originate
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(a) (b)

FIG. 4. (Color online) Behavior of two droplets as a function of
their radii R1 and R2. The black arrows indicate the temporal evolution
of the state variables R1 and R2 following from Eq. (13), with φB

0 given
by Eq. (14) in steady state. The medium blue and light orange lines
are the nullclines, which indicate where the growth rate of droplets
1 and 2 vanish, respectively. Their intersections are stable (disks) or
unstable fixed points (open circles). (a) Passive system, kf = kb = 0,
with φ̄B = 1/11. (b) First-order reactions, kf/k0 = 1.4 × 10−4 and
kb = 10 kf . Model parameters are ψ = 1 and Vs/w

3 = 5.8 × 104,
where w = 6γβ is the length scale generated by the surface tension γ .

from the differences in the volume fractions φB
+ = γβ/R on the

surface outside the droplets. In particular, φB
+ is bigger for small

droplets than for large droplets. Consequently, the diffusive
material flux is directed from smaller droplets toward larger
ones and thus amplifies initial size differences of droplets, a
phenomenon called Ostwald ripening [8].

This behavior can be discussed most clearly by considering
a droplet pair in the case where the background fluid described
by Eq. (14) has reached a steady state. Figure 4 represents the
dynamics of two droplet radii described by Eq. (13). Stable
and unstable steady states are shown as full and open circles,
respectively. An unstable steady state with two large droplets
of equal size exists. In the vicinity of this state, one droplet
grows at the expense of the other one. Additionally, there are
three stable steady states, which have at most a single droplet,
and there are three unstable steady states with small droplets,
which are related to the critical radius Rcrit. Passive droplets
can thus grow if they start with a radius larger than Rcrit, but
at long times only a single droplet can be stable because of
Ostwald ripening.

Importantly, Ostwald ripening can be suppressed if chem-
ical reactions are occurring (kf > 0, kb > 0). In this case, the
steady state with two coexisting large droplets of equal size
can become stable as shown in Fig. 4(b). In the vicinity of this
steady state, the smaller droplet grows at the expense of the
larger one. In the case where Ostwald ripening is suppressed
by chemical reactions, there are still stable steady states with a
single droplet or even no droplets, see Fig. 4(b). Droplets have
to overcome a critical radius in order to be able to grow. Note
that the critical radius is similar to the one in the passive case.
This is consistent with our result obtained for single droplets,
see Fig. 3.

2. Stability conditions for multiple droplets

In order to discuss the stability condition for coexisting
droplets of equal size, we consider the general case of N

droplets with same stationary radius R̄. The value of R̄ depends
on the number of droplet, the system size, and other parameters
as discussed below. Starting from such a steady state, the
stability of this state is governed by the slow exchange of
material between the droplets, while the total droplet volume
and the background fluid quickly reach their stationary state,
see Appendix D. The slowest rate of relaxation to the steady
state is given by

λ = DBγβ

R̄3
− 2kb

3
, (18)

see Appendix D. Note that λ is independent of the droplet
count, because our effective theory only captures the mean-
field coupling of the droplet dynamics. Importantly, λ can
be either positive or negative. For λ > 0, the steady state is
unstable and larger droplets grow at the expense of smaller
droplets. In this case, the system exhibits Ostwald ripening
and coarsens over time. For λ < 0, the steady state is stable
and Ostwald ripening is suppressed.

In the passive case (kf = kb = 0), the characteristic rate
simplifies to λ = DBγβR̄−3 [14]. Importantly, λ is positive
and Ostwald ripening always occurs. Furthermore, systems
with larger average droplet size coarsen slower, which is
related to the well-known Lifshitz-Slyozov kinetics of droplet
coarsening [39]. In order to verify Eq. (18), we simulate
droplets by solving Eqs. (3) numerically and measure their
coarsening rates, see Fig. 5(a) and Appendix E. Figure 5(b)
shows that the analytical expression of λ can account for the
observed coarsening in passive systems.

In the case of first-order reactions (kf > 0, kb > 0), the
characteristic rate λ can become negative and the steady state
with multiple droplets can be stable. In particular, λ is negative
if the radius of the droplets is larger then the threshold value

Rstab =
(

3DBγβ

2kb

) 1
3

, (19)

which follows from Eq. (18). Therefore, multiple droplets can
be stable only if the stationary radius R̄ of the individual
droplets is larger than Rstab. Whether this is the case depends
on the droplet number density n = N/Vs.

In a state with low droplet density, n � l−3, droplets do
not influence the volume fractions in the background fluid
significantly, and the droplet radius R̄ is given by Eq. (16).
In this case, R̄ is indeed larger than Rstab, because kf must be
smaller than the critical value given in Eq. (17) for droplets to
exist. Consequently, droplets are stable and Ostwald ripening
is suppressed in this case.

In the case of a large droplet number density, n � l−3, the
stationary size of individual droplets is smaller as compared
to the low-density system. This is because the total droplet
volume is limited by the total volume Vsφ̄

B of droplet material
in the system, where φ̄B = kf/(kf + kb). Using the estimate
Vsφ̄

B for the volume of a single droplet in a small system and
considering that this volume must be distributed among the N

droplets, we have

V̄ ≈ kfVs

(kf + kb)N
. (20)

012317-6



SUPPRESSION OF OSTWALD RIPENING IN ACTIVE . . . PHYSICAL REVIEW E 92, 012317 (2015)

104 105 106

Norm. Average Volume
–
V /w3

10−6

10−5

10−4

10−3

Numerics
Eq. (16)

10−5 10−4 10−3

Normalized Backward Rate kb/k0

−2

−1

0

Numerics
Eq. (16)–(17)

0 5000
102

103

1

1

(c) (d)

0 5000
102

103

0 5000
0

2

4

6

0 5000
0

1

2

3

(a) (b)

FIG. 5. (Color online) Numerical simulations of the dynamics of
two droplets. (a) Illustration of the numerical procedure for a passive
system (kf = kb = 0, φ̄B = 1/11). We numerically solve Eq. (3) in
a cylindrical geometry as described in Appendix E. Snapshots (top
panel) are used to measure the droplet volumes Vi as a function of
time t (lower left panel). The rate λ is determined by a linear fit
to the logarithm of the volume difference �V (lower right panel).
(b) Coarsening rate λ as a function of the average droplet volume
V̄ for kf = kb = 0 with φ̄B = 1/11. The analytical prediction (solid
line) given by Eq. (18) is compared to numerical results (symbols)
for Vs/w

3 = 1.5 × 105 (discs) and Vs/w
3 = 1.2 × 106 (squares).

(c) Same as (a) for kb/k0 = 5 × 10−3 and kf/k0 = 5 × 10−4. (d) Rate
λ as a function of the backward rate constant kb with kf = 0.1 kb.
The analytical prediction given by combining Eqs. (18) and (20)
(solid line) is compared to numerical results (orange disks) for
Vs/w

3 = 1.5 × 105.

The steady state of N droplets of size R̄ = [3V̄ /(4π )]1/3

is stable if the corresponding relaxation rate λ given by
Eq. (18) is negative. This is the case for sufficiently large rate
constant kb.

This change of stability as a function of the reaction rates
is shown in Figs. 5(c) and 5(d), which display simulation
results for two droplets with first-order reactions. These
simulations show that the measured relaxation rates agree
with the analytical expression of λ given in Eq. (18). We
can thus use Eq. (18) to determine parameter values at which
multiple droplets are stable. This can be summarized in a single
dimensionless stability number,

χ = Vs

2πDBγβN
· kfkb

kf + kb
, (21)

which is defined such that χ > 1 corresponds to λ < 0 for
the droplet volume given by Eq. (20). Consequently, a steady
state with N droplets is stable if χ is larger than 1. Equation
(21) thus allows us to estimate the maximal number Nmax of
droplets that can be stable at given parameter values. Generally,
more droplets can be stable for faster chemical reactions and
the estimate following from the condition χ > 1 agrees well
with numerical results, see Fig. 6(a). However, droplets cannot
be stable for rate constants kf above the maximal rate kc

f given
in Eq. (17). The value of Nmax thus vanishes as this point is
approached, see Fig. 6(a).
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FIG. 6. (Color online) Stability of multiple droplets with first-
order reactions. (a) The maximal number Nmax of stable droplets
(blue line) as a function of the forward reaction rate constant kf

with kb = 10 kf in a finite system of volume Vs = 2.3 × 105 w3. Nmax

is obtained from a numerical linear stability analysis of Eq. (13).
The theoretical stability boundaries χ = 1 (left black line) given
by Eq. (21) and kf = kc

f (right black line) given by Eq. (17) are
indicated. (b) Stability of possible states in an infinite system as a
function of the reaction rate constants kf and kb. The homogeneous
state φB (r) = φB

0 with φB
0 = kf/(kf + kb) is unstable and bicontinous

structures typically form in the orange hatched region bounded by
the stability condition given in Appendix F (dashed line). Droplets
enriched in B components are stable in the upper blue region, which
is defined by 3kf < kb < 16k0(φB

0 )3, following from Eq. (17). The
color indicates the maximal droplet density nc, which follows from
Eq. (21) for χ = 1. Correspondingly, A-rich droplets are stable in the
lower blue region. The homogeneous state φB (r) = φB

0 is the only
stable state in the white region.

3. Stability of multiple droplets in large systems

In passive systems, droplets undergo Ostwald ripening with
the typical Lifshitz-Slyozov kinetics, where the mean droplet
radius 〈R〉 evolves as 〈R〉 ∝ (tDB/w2)1/3 [39]. In the case
where first-order reactions are occurring, we find that the
behavior depends on the number density n = N/Vs of droplets
in the system. In the case where n is larger than a critical value
nc following from Eq. (21) for χ = 1, large droplets grow
and smaller ones disappear until n falls below nc. If n < nc,
the system evolves toward a stable steady state in which all
droplets have the same size. The size of these stationary
droplets depends on the number density n. If the density is
low, n � l−3, the size of each droplet is given by Eq. (16). For
larger number densities, l−3 � n < nc, droplets are smaller
than in the case of low n and their size is given by Eq. (20).
Note that faster chemical reactions typically lead to a larger nc,
but droplets cannot be stable beyond the critical reaction rate
given by Eq. (17). This is illustrated in Fig. 6(b), which shows
the parameter region in which B-rich droplets are stable. The
figure also shows the corresponding region of stable, A-rich
droplets. Between these two regions, the homogeneous state
is unstable, see Appendix F. Consequently, structures form
spontaneously and critical droplet radii do not exist. In fact,
bicontinous structures have been reported for the symmetric
case kf = kb [22,23].

IV. AUTOCATALYTIC DROPLETS

So far, we considered droplet dynamics under the influence
of first-order reactions. In the context of biology, chemical
reactions are usually more complex. In this section, we
study an autocatalytic system in which the droplet material
serves as a catalyst for its own production. One interesting
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aspect of autocatalytic systems is that droplets are difficult to
nucleate, because droplet material can be produced only from
preexisting droplet material. We therefore introduce active
cores that catalyze the production of droplet material and can
nucleate autocatalytic droplets. Such a system can serve as a
model for the growth of centrosomes [5].

Autocatalytic systems are typically unstable when binary
fluids are considered. This is because the entire system can be
turned into droplet material by the autocatalytic reaction. We
thus discuss autocatalytic droplets in the framework of ternary
fluids with a nonreactive component C introduced in Sec. II.

For an autocatalytic droplet of radius Ri , the growth rate of
the droplet volume Vi reads

dVi

dt
= 4πDB

ψ

(
φB

0 Ri − γβ
) + Vi

(
ksφ

A
0

ψ
− kb

)
+ Qiφ

A
0

ψ
,

(22)

where ks = kf + kψ , see Eq. (9). This equation is accompanied
by Eqs. (10) and (12), which describe the dynamics of the
volume fractions φA

0 and φB
0 outside of droplets.

A. Dynamics of a single autocatalytic droplet

We first investigate a single, autocatalytic droplet (kf = 0,
kb > 0, k > 0, Q = 0), see Fig. 2(b). In systems with a finite
volume Vs, such a droplet can reach a stationary state with a
volume V̄ . This volume is smaller than the system size and
reads

V̄ ≈ Vs

ψ

(
φ̄ − kb

k

)
, (23)

which is valid for small surface tension, see Appendix B.
This expression shows that a sufficiently fast autocatalytic
rate is required (k > kb/φ̄) for droplets to grow. Note that
the stationary volume V̄ scales with the system size and that
the autocatalytic reaction does not set a characteristic droplets
size, in contrast to the first-order reactions discussed above.
Autocatalytic droplets thus behave more like passive droplets,
which also grow up to a certain fraction of the system size.

Similarly to the previously discussed systems, an autocat-
alytic droplet only grows if it is larger than a critical radius
Rcrit, see Fig. 7(a). This critical radius can be estimated by
Rcrit ≈ γβ/φB

0 , where the fraction φB
0 in the background fluid

is given by φB
0 = φ̄ − kb/k. Thus, the critical radius diverges

if k = kb/φ̄, where droplets no longer grow. In an autocatalytic
system, the volume fraction φB

0 of droplet material B is lower
than in a passive system and the critical radius is larger.
Droplets in autocatalytic systems are thus harder to nucleate
than in passive systems.

Interestingly, nucleation can be facilitated and even trig-
gered reliably by an active core, which catalyzes the production
of droplet material B. The critical radius vanishes for a
large-enough catalytic activity Q, see Fig. 7(a). Consequently,
nucleation around an active core is guaranteed if Q is larger
then a critical value Qc. Considering Eq. (22) in the steady
state for small droplets, we obtain Qc ≈ 4πDBγβ/φA

0 with
φA

0 = kb/k following from Eq. (10) for kf = 0. Importantly,
catalytically active cores strongly influence the nucleation
behavior of autocatalytic droplets, but their effect on the steady
state size is small, see Fig. 7 and Appendix B.

(a) (b)

FIG. 7. (Color online) Behavior of a single autocatalytic droplet
in an infinite system (orange; Q1 = 0), in a finite system (blue;
Vs/w

3 = 6.9 × 107, Q1 = 0), and in a finite system with a cat-
alytically active core (green; Vs/w

3 = 6.9 × 107, Q1 = 300 w3k0).
(a) Growth rate Ṙ = dR/dt derived from Eq. (22) as a function of
the droplet radius R for φ̄ = 0.02. The critical radius Rcrit and the
stable radius R̄ derived from Eq. (23) are indicated. (b) Bifurcation
diagram of the droplet radius as a function of the total volume fraction
φ̄ of material. Dotted lines indicate unstable steady states. Model
parameters are k/k0 = 0.02, kb/k0 = 2 × 10−4, and ψ = 0.1, with
k0 = DB/w2.

B. Dynamics of multiple autocatalytic droplets

We next study the dynamics of systems containing several
autocatalytic droplets. In the simple case without catalytic
cores (Qi = 0), large droplets grow at the expense of smaller
droplets and states with multiple droplets are unstable. This can
be seen explicitly by considering two autocatalytic droplets in
a finite system.

This system possesses a steady state with two large droplets
of the same size, which is unstable, see Fig. 8(a). In fact, at
most a single droplet can be stable in this system. Furthermore,
there are critical radii, which droplets have to overcome in
order to grow. Consequently, the dynamics of two autocatalytic
droplets is qualitatively very similar to two droplets in a
passive system, compare Fig. 4(a) and Fig. 8(a). In contrast

0 50 100
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100

0 50 100
0

50

100

(a) (b)Without Catalytically Active Cores With Catalytically Active Cores

FIG. 8. (Color online) Behavior of two autocatalytic droplets as
a function of their radii R1 and R2. The black arrows indicate
the temporal evolution of the state variables R1 and R2 following
from Eq. (22). The medium blue and light orange lines are the
nullclines, which indicate where the growth rate of droplets 1 and 2
vanish, respectively. Their intersections are stable (disks) or unstable
fixed points (open circles). (a) No cores, Qi = 0. (b) Catalytically
active cores, Qi = 300 w3k0. The volume fractions φA

0 and φB
0

are fixed to their stationary state value and model parameters are
kf = 0, kb/k0 = 2 × 10−4, k/k0 = 0.02, ψ = 0.1, φ̄ = 0.02, and
Vs/w

3 = 6.9 × 107.
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to the reactions with first-order kinetics discussed above, the
autocatalytic reaction thus does not suppress Ostwald ripening.

Interestingly, the two autocatalytic droplets can be stabi-
lized by catalytically active cores (Qi > 0), see Fig. 8(b). In the
shown case of equal catalytic activity, Q1 = Q2 = 300w3k0,
the smaller droplet grows at the expense of the larger droplet
until both droplets reached the same size. This is because the
material influx caused by an active core is more important
for small droplets than for large ones and thus promotes the
growth of small droplets. Thus, for sufficiently large Q, the
small droplet can grow at the expense of the large droplet
until both have the same stable size. Interestingly, there are no
critical radii in this case and the single stable state is reached
from all initial conditions. This is because the catalytically
active cores not only stabilize the two droplets but they also
trigger their nucleation, as discussed above. Consequently, the
number of stable droplets will be set by the number of active
cores.

These results can be generalized to multiple droplets
with catalytic cores of equal activity (kf � 0, kb � 0, k � 0,
Qi = Q � 0). A linear stability analysis of Eq. (22) reveals
that the total droplet volume Vtot and the volume fractions φA

0
and φB

0 in the background fluid quickly reach their steady-state
values, while droplets exchange material on a slower time
scale, similarly to the case of a binary fluid discussed above.
The rate λ at which droplets exchange material reads

λ ≈ 4πDBγβ

3ψV̄
+ 2J

3ψV̄
− Q

V̄ k

(
kb + J

ψV̄

)
, (24)

where J is given by Eq. (11) for Ri = R̄. The rate λ

corresponds to the slowest relaxation time to reach a steady
state with multiple droplets of equal volume V̄ for fixed φA

0
and φB

0 , see Appendix G. A steady state with multiple droplets
is stable if λ is negative, which is the case either for a large
flux of B components into the droplets, J < 0, or for large
Q. These cases correspond to fast first-order reactions and
strong active cores, respectively. In particular, we find Eq. (18)
for ψ = 1 in the case of first-order reactions (kf > 0, kb > 0,
k = 0, Q = 0), where J = −kbψV̄ .

In the case of an autocatalytic reaction (kf = 0, kb > 0, k > 0,
Q � 0) droplet material B is predominately produced inside
droplets. In the stationary state, this production is balanced by a
small efflux J > 0 of droplet material. This droplet material is
then recycled into soluble building blocks outside of droplets.
This process leads to a small volume fraction φB

0 < φB
+ , where

we have φB
0 ≈ φB

+ in small systems (Vs/N � l3) and φB
0 ≈ 0

in large systems (Vs/N � l3), with l = (DB/kb)1/2. Because
of the constant efflux of droplet material, autocatalytic droplets
without a catalytic core (Q = 0) will coarsen even faster
than droplets in a passive system, compare Eqs. (24) and
(18). In particular, the coarsening should be fastest in large
systems, where J is maximal. In order to test this prediction,
we measure λ from numerical solutions of Eqs. (3), see
Fig. 9(a). Indeed, both smaller droplets and larger systems
lead to faster coarsening and Eq. (24) gives a good estimate
of λ. Importantly, the rate λ is always positive, indicating
that autocatalytic droplets are unstable and exhibit Ostwald
ripening.
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FIG. 9. (Color online) Behavior of emulsions of autocatalytic
droplets. (a) Rate λ as a function of the average droplet volume
V̄ . The analytical prediction given by Eq. (24) for small systems
(φB

0 = φB
+ , lower blue line) and large systems (φB

0 = 0, upper blue
line) is compared to numerical results for small (orange disks,
Vs/w

3 = 1.5 × 105) and large (orange squares, Vs/w
3 = 8.8 × 105)

systems, which were obtained as described in Fig. 5. Model param-
eters are ψ = 0.1, k/k0 = 100, kb/k0 = 0.01. (b) Maximal number
Nmax of stable droplets as a function of the total volume fraction φ̄ of
material and the catalytic activity Qi of cores within the droplets. The
red dashed line denotes the approximate threshold value of Qi given
in Eq. (25) with φB

0 ≈ 0 valid for large systems. Model parameters
are ψ = 0.1, k/k0 = 0.02, kb/k0 = 2 × 10−4, Vs/w

3 = 6.9 × 107.

Ostwald ripening of autocatalytic droplets can be sup-
pressed by catalytically active core (Q > 0), see Fig. 8(b).
In particular, autocatalytic droplets are stable if Q exceeds the
threshold value

Qstab ≈ 4πDBksR
(
3φB

+ − 2φB
0

)
3ψkb

, (25)

which follows from Eq. (24). Note that Qstab becomes
independent of the droplet radius R in the case of large systems
where φB

0 ≈ 0. Figure 9(b) shows that there is a critical value
Qstab above which multiple droplets are stable. Equation (25)
gives a good estimate for this threshold if the average fraction
φ̄ is large enough. Generally, the stability threshold Qstab is
larger than the critical activity Qc that is required for droplet
nucleation. This can be seen by considering Eq. (25) in the
limit φB

0 ≈ 0 in the parameter regime where droplets form
(k > kb/φ̄). Consequently, catalytically active cores that are
strong enough can both nucleate and stabilize autocatalytic
droplets.

Finally, we consider autocatalytic droplets with cores of
unequal catalytic activities (kf = 0, kb > 0, k > 0, Qi > 0).
In this case, the droplet around the core with stronger catalytic
activity grows faster, see Eq. (22). This difference in the growth
rates can be observed in the simple case of two droplets, see
Fig. 10(a). The figure shows that both catalytic cores nucleate
droplets and that the droplet with larger core activity grows
more quickly. Similarly to the two droplets with equal catalytic
cores shown in Fig. 8(b), there is a single stable steady state,
which is reached from all initial conditions. However, contrary
to the symmetric system, the steady-state droplet volumes are
not equal, but the droplet with the core with higher activity
becomes larger. This can be understood by considering the
growth rates given in Eq. (22) in the simple case of vanishing
surface tension γ . In this case, the fraction φB

0 of droplet
material in the background fluids vanishes, see Eq. (10), and
the ratio of the two droplet volumes is determined by the
ratio of their catalytic activities. Note that if only one of the
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FIG. 10. (Color online) Behavior of two autocatalytic droplets
with cores of unequal activity Qi . (a) Temporal evolution of the
droplet radii R1 and R2 (black lines) following from Eq. (22) for
Q1 = 1000 w3k0 and Q2 = 300 w3k0. The medium blue and light
orange lines are the nullclines, which indicate where the growth rate
of droplets 1 and 2 vanish, respectively. Their intersection (disk)
is the only fixed point, which is stable. (b) Droplet volumes Vi in
steady state as a function of the catalytic activity Q1 of one core for
Q2 = 300 w3k0. In both panels, φA

0 and φB
0 are fixed to their stationary

state values and model parameters are kf = 0, kb/k0 = 2 × 10−4,
k/k0 = 0.02, ψ = 0.1, φ̄ = 0.02, and Vs/w

3 = 6.9 × 107.

catalytic activities is larger than Qstab while the other one is
smaller, only a single droplet is stable, see Fig. 10(b). The
catalytic cores thus can determine how the droplet material is
distributed among the droplets, but they only have a weak effect
on the total droplet volume, which is still well approximated
by Eq. (23).

This behavior has been observed in experiments on cen-
trosomes, which can be described as autocatalytic droplets
with active cores [5]. In this case two cores of equal catalytic
activities occur. However, experiments in which one core
is perturbed lead to unequal centrosomes which can be
understood as a result of unequal catalytic activities [5].

V. DISCUSSION

In practical terms Ostwald ripening inhibits the use of
liquid droplets in many circumstances. This is because larger
droplets tend to grow at the expense of smaller droplets. As
a result, droplets size varies and is hard to control. Therefore,
it is very important to find mechanisms that suppress the
ripening of such liquid emulsions. In this work we demonstrate
that emulsions can be stabilized if the constituents of the
phase separating fluids are converted into each other by
nonequilibrium chemical reactions.

The stability of active emulsions depends on the rate of the
chemical reactions. In the limit of vanishing reaction rates,
Eq. (3b) reduces to the Cahn-Hilliard equation, such that the
active emulsions behave like their classical, passive counter-
parts and undergo Ostwald ripening [33,38]. For intermediate
reaction rates, Ostwald ripening is typically suppressed and
multiple droplets are stable. Large reaction rates lead to the
breakup of droplets.

In the simple case of first-order reactions, droplet material is
produced outside of droplets and converted back into soluble
building blocks inside the droplets. This causes a material
influx that scales with the droplet radius R, see Eq. (11),
while the efflux scales with the droplet volume V ∝ R3, see

Eq. (9). Consequently, large droplets have a tendency to shrink,
because the material efflux dominates the influx. The influx
and efflux are balanced at a specific droplet size at which
droplets are stationary. This stationary droplet size depends on
the chemical reaction rates.

Interestingly, we show in this case that the droplet radius
above which multiple droplets are stable is proportional
to k

−1/3
b , see Eq. (19). Note that in the symmetric case

kf = kb the same scaling was also found for the length scale
of bicontinuous structures [22] and for concentric circular
patterns [28]. We find an additional scaling regime in the
case of small droplet densities, where the stable radius is
proportional to k

−1/2
b for constant kf/kb, see Eq. (16). In both

scaling regimes, the droplet size in the active emulsion can
be controlled by adjusting the rate constants of the first-order
reactions.

Our theory can also be applied to systems with more
complex chemical reactions. As an example, we consider the
case of second-order autocatalytic reactions, where droplets
produce their own material. These autocatalytic droplets can
grow at rapidly increasing rates until they have used up the
material provided in their environment. In the steady state,
the material fluxes are then opposite to those in the case of
first-order reactions. Because of this, Ostwald ripening occurs
at rates that can be even larger than in systems without chemical
reactions. Furthermore, autocatalytic droplets are difficult to
nucleate, because they require preexisting droplet material to
grow.

Our analysis shows that Ostwald ripening can be suppressed
in autocatalytic droplets if catalytic cores are introduced.
This is because the catalytic activity facilitates the growth
of small droplets while having little effect on large droplets.
Active cores therefore allow the control of stability, nucleation
behavior, and the relative size of autocatalytic droplets, while
the sum of all droplet volumes is mainly determined by the
conserved total volume of A and B components in the system.

Our work shows that first-order chemical reactions or
second-order reactions with active cores allow for emulsions in
which several droplets are stable. The concept of autocatalytic
droplets with catalytic cores has been exploited to account
for the growth behaviors of centrosomes [5]. Centrosomes are
collections of proteins that are required for cell division. It is
important for correct cell division that each cell contains two
centrosomes of the same size. Although it has long been known
that centrosomes grow from centrioles, it has been unclear how
centrioles control nucleation and growth of centrosomes. Our
work suggests that centrioles act as active cores nucleating
and stabilizing the growth of centrosomes, thereby suppressing
Ostwald ripening and leading to two centrosome droplets of
equal size in the cell that coexist during cell division.

More generally, recent work has shown that cells contain
chemically distinct compartments that form and are main-
tained by liquid-liquid demixing [4]. Examples are P granules
and nucleoli among others, which can be viewed as liquidlike
droplets in the cell [40]. In each of these cases the number
and size of droplets is probably controlled by the cell, which
could be done using the effects of chemical reactions discussed
here. Furthermore, droplet dynamics associated with size
control and the turnover of the constituents may play a role
in preventing droplets to turn into stable protein aggregates,
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which are often linked to diseases [41]. It will be interesting
to see whether the principles enunciated in this paper apply to
these and other liquidlike compartments in cells.

Controlling the properties of emulsions is also important in
many technological applications. It would thus be interesting
to conduct experiments where Ostwald ripening is suppressed
by chemical reactions. As we show here, these reactions
must be driven away from equilibrium, which could be
achieved, for example, by driving photochemical reactions
by light [21,42]. Alternatively, a system could be coupled via
a semipermeable membrane to a source of fast-diffusing fuel
molecules that drive the chemical reactions between the droplet
components.

Active emulsions stabilized by chemical reactions are an
example of pattern formation far from equilibrium. There
is some similarity with the formation of Turing patterns in
reaction-diffusion systems [43]. Note, however, that our work
generalizes the concept of Turing patterns by combining con-
ventional phase coexistence with chemical pattern formation.
In this case, spatial patterns stemming from reactions and
diffusion of chemical species are combined with the formation
of distinct phases by physical interactions between molecules.
The interfaces of chemically active droplets are thus related
to thermodynamics and very different from interface-like
structures in Turing patterns. As a consequence, the systems
described in this manuscript can exhibit stable emulsions in
parameter regions in which conventional reaction-diffusion
systems would not form patterns.

Ostwald ripening can also be suppressed by other nonequi-
librium mechanisms like shearing the fluid continuously
[17,18]. However, while shearing drives the system from the
boundary, our system breaks detailed-balance locally and thus
belongs to the class of active matter. The advantage of our
system is that it reaches a stationary state with spherical
droplets of a well-defined size. Such uniform emulsions can
also be stabilized by inclusion of additional components inside
droplets, which are insoluble in the background fluid [16].
However, large droplets, which could, for instance, form due
to droplet coalescence, would still grow and Ostwald ripening
might still happen in such systems. In contrast, our theory
predicts that all large droplets are unstable and shrink back
to the single stable size. In our model, emulsions thus can be
stable despite large fluctuations caused by droplet coalescence
and droplet nucleation. These effects will merely broaden the
droplet size distribution.

The precise influence of droplet coalescence in our model
can only be studied if it is extended to take into account
hydrodynamic effects, which are known to influence the dy-
namics of reactive binary mixtures [44,45]. Such an extended
theory may also be necessary to compare predicted droplet
sizes and rates of growth dynamics to experiments, where
fluid convection and Brownian motion of droplets are hard to
eliminate. Moreover, adding hydrodynamics would allow us
to study the interaction of active droplets.
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APPENDIX A: COEXISTENCE IN A TERNARY FLUID

The conditions for equilibrium at the interface between two
coexisting phases read

0 = μA(φA
−,φB

−) − μA(φA
+,φB

+), (A1a)

0 = μB(φA
−,φB

−) − μB(φA
+,φB

+), (A1b)

0 = (φA
− − φA

+)μA(φA
−,φB

−) + (φB
− − φB

+)μB(φA
−,φB

−)

+ f (φA
+,φB

+) − f (φA
−,φB

−) − 2γH , (A1c)

where φi
− and φi

+ for i = A,B denote the volume fractions at
the interface inside and outside the droplet, respectively. Here
μi(φA,φB) = ∂f (φA,φB)/∂φi , γ denotes the surface tension,
and H is the mean curvature of the interface, with H = R−1

for a sphere of radius R. For the free energy density given in
Eq. (1), Eq. (A1a) yields φA

+ = φA
−. The volume fractions of

B, which result from Eqs. (A1), can be expanded to first order
in H :

φB
− ≈ ψ + βγH and φB

+ ≈ βγH, (A2)

where β = 2/(bψ). Equation (A2) also holds for binary fluids
(φC = 0), where the volume fraction of building blocks is
given by φA

± = 1 − φB
± .

APPENDIX B: AUTOCATALYTIC DROPLETS
AT STEADY STATE

We consider a single, autocatalytic droplet of radius R with
an infinitely thin interface (k > 0, kb > 0, kf = 0, Qi = 0).
Away from the interface, the volume fractions φA(r) and
φB(r) are governed by the reaction-diffusion system given in
Eqs. (7). For simplicity, we consider a spherically symmetric
system around the droplet. Inside the droplet (r < R), we have
the boundary conditions φA(R) = φA

0 and φB(R) = ψ , see
Eq. (6), and the steady-state solution to Eqs. (7) thus reads
φA(r) = kb/k and φB(r) = ψ in this region. Outside of the
droplet (r > R), we have φA(r) = kb/k and φB(r) = γβ/R.
Importantly, the volume fraction φB(r) is homogeneous inside
the droplet. Note that this argument also holds for states with
multiple droplets and the contribution of the autocatalytic
reaction to the typical length scale l thus can generally be
neglected.

We next discuss the steady state of a single autocatalytic
droplet including surface tension effects, γ > 0, and catalyt-
ically active cores, Q > 0. For small droplets (R � l), the
dynamics of a single autocatalytic droplet in a finite system
are described by Eq. (22) together with Eqs. (10) and (12). In
the steady state, the droplet absorbs almost all droplet material
B, such that the average volume fraction φB

0 in the background
fluid is negligible, φB

0 = 0. In this case, we can solve Eq. (12)
for φA

0 . Inserting this solution into Eq. (22) in steady state leads
to a quadratic equation for the stationary droplet volume. Only
keeping the linear contributions of the catalytic activity Q and
the surface tension γ , the solution corresponding to the stable
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droplet reads

V̄ ≈ Vs

ψ

(
φ̄ − kb

k

)
+ Qk2

b − 4πDBk2φ̄γβ

(kφ̄ − kb)kkbψ
. (B1)

The second solution to the quadratic equation is unstable and
corresponds to the critical radius.

APPENDIX C: SURFACE FLUXES
OF DROPLET MATERIAL

We can obtain a simplified expression for the flux
J = −4πR2DBφB′(R) of droplet material at the droplet
interface for steady states of the volume fraction φB(r) in
a spherical geometry. At the droplet interface at r = R, we
have φB(R) = φB

+(R). For large r � R, φB(r) approaches the
bulk volume fraction φB

0 . Using Eq. (7b) with a vanishing time
derivative, we have

φB(r) = φB
0 + (

φB
+ − φB

0

)R

r
e(R−r)/l, (C1)

where l = [DB/(kf + kb)]1/2 is a characteristic length and we
neglected the autocatalytic reaction outside the droplet where
φB is small. The flux J at the interface is then given by Eq. (11).

APPENDIX D: STABILITY ANALYSIS
OF BINARY EMULSIONS

The dynamics of an emulsion of N droplets with first-order
kinetics are given by Eqs. (13) and (14). These equations have a
steady state where all droplets have the same radius R̄ and the
volume fraction of droplet material in the background fluid
is given by φ̄B

0 . The stability of this state can be investi-
gated by considering small perturbations Ri(t) = R̄ + R̂i(t)
and φB

0 (t) = φ̄B
0 + φ̂B

0 (t) with R̂i � R̄ and φ̂B
0 � φ̄B

0 . The
associated dynamics to linear order read

dR̂i

dt
= DB

(
φ̂B

0

R̄
− φ̄B

0 R̂i

R̄2
+ 2γβR̂i

R̄3

)
− kbR̂i

3
, (D1)

dφ̂B
0

dt
= −(kf + kb)φ̂B

0 − 4πDB

Vs

N∑
i=1

(
R̄φ̂B

0 + φ̄B
0 R̂i

)
. (D2)

Defining a vector X with X0 = φ̂B
0 and Xi = R̂i for

i = 1, . . . ,N , this can be written as dXi/dt = ∑
j JijXj ,

where the components of the Jacobian J are

J00 = −kf − kb − 4πDBNR̄V −1
s , (D3a)

J0i = −4πDBNφ̄B
0 V −1

s , (D3b)

Ji0 = DBR̄−1, (D3c)

Jii = DB

(
2γβ

R̄3
− φ̄B

0

R̄2

)
− kb

3
, (D3d)

Jij = 0, (D3e)

where i �= j and i,j � 1. The eigenvalues e of J read

e± = 1
2 [J00 + Jii ±

√
(J00 − Jii)2 + 4NJ0iJi0], (D4a)

ẽ = Jii , (D4b)

where the eigenvalue ẽ has multiplicity N − 1 and only
exist for systems with multiple droplets, N � 2. The eigen-
values are ordered, e− < e+ < ẽ, since J0iJi0 < 0 and
J00 < Jii . This can be seen by rewriting Eq. (D3d) as
Jii = γβDBR̄−3 − 2kb/3, where we used φ̄B

0 resulting from
solving Eq. (13) in steady state. Consequently, a system with
multiple droplets can be stable only if ẽ < 0 and it is thus
sufficient to discuss the value of Jii , see Eq. (18). Note that
the eigenspace associated with ẽ describes dynamics where
both φB

0 and Vtot are constant and droplets merely exchanged
material with each other.

APPENDIX E: NUMERICAL CALCULATIONS

We study the dynamics of two droplets in a finite system by
numerically solving Eq. (3) in a three-dimensional, cylindrical
geometry. Starting with an initial configuration that represents
two droplets of slightly different volume, we determined
the temporal dynamics using the XMDS2 framework [46]
with an adaptive Runge-Kutta-Fehlberg time stepper and an
implementation of the spatial derivatives using a spectral
method with 128 and 32 support points in the axial and
radial direction, respectively. The coarsening rate λ is then
determined by a linear fit to the logarithm of the difference
of the two droplet volumes, which are determined from the
volume fraction fields.

APPENDIX F: STABILITY OF THE
HOMOGENEOUS STATE

The dynamics of the volume fraction φB(r,t) of a binary
fluid with first-order chemical reactions (kf > 0, kb > 0, k = 0,
Qi = 0) are given by Eq. (3b) together with the free energy
density f (φB) = b

2 (φB)2(1 − φB)2. The only homogeneous
stationary state is φB(r) = φB

0 with φB
0 = kf/(kf + kb). Per-

turbations of this state grow with a rate

λ(q) = 2DBq2

[
4kfkb − k2

f − k2
b

(kf + kb)2
− w2

8
q2

]
− kf − kb, (F1)

where q denotes the wave vector of the perturbation mode.
The state φB(r) = φB

0 is unstable if there exists a q for which
λ > 0. This is the case if

|kf − kb| <
kf + kb√

3

√√√√1 − w

√
kf + kb

DB

. (F2)

This equation only has solutions for kf + kb < DB/w2, which
thus gives an upper bound for the reactions rates, above which
the homogeneous state is always stable and droplets do not
form.

APPENDIX G: STABILITY ANALYSIS
OF TERNARY EMULSIONS

The growth rate of droplets in a ternary fluid is given in
Eq. (22). There exist stationary states with multiple droplets
of equal radii Ri = R̄, in which the volume fractions in the
background fluid are given by φA

0 = φ̄A
0 and φB

0 = φ̄B
0 . The

stability of such states can be determined from a linear stability
analysis at fixed φA

0 and φB
0 , which yields the perturbation
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growth rate

λ = DBφ̄B
0

ψR̄2
+ ksφ̄

A
0

ψ
− kb. (G1)

Here φ̄A
0 can be expressed as

φ̄A
0 ≈ kbψV̄ + 4πDB

(
γβ − φ̄B

0 R̄
)

ksV̄

[
1 − Q

ksV̄

]
, (G2)

which follows from Eq. (22) in steady state for weak catalytic
cores, Q � ksV̄ , and V̄ = 4π

3 R̄3. Additionally,

φ̄B
0 ≈ φB

+(R̄) − J

4πR̄DB

, (G3)

where J is given by Eq. (11) for Ri = R̄ in the case R̄ � l.
Inserting these two expressions into Eq. (G1) results in
Eq. (24).
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