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Hydrogen self-dynamics in liquid H2-D2 mixtures studied through inelastic neutron scattering
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We have measured the dynamic structure factor of liquid para-hydrogen mixed with normal deuterium (T =
20 K) at two different concentration levels using incoherent inelastic neutron scattering. This choice has been
made since the presence of D2 modifies the self-dynamics of H2 in a highly nontrivial way, acting both on its
pseudophononic and its diffusive parts in a tunable way. After an accurate data reduction, recorded neutron
spectra were studied through the modified Young and Koppel model and the H2 center-of-mass self-dynamics
structure factor was finally extracted for the two mixtures. Some physical quantities (i.e., self-diffusion coefficient
and mean kinetic energy) were determined and compared with accurate quantum calculations, which, in addition,
also provided estimates of the velocity autocorrelation function for the H2 centers of mass. These estimates,
in conjunction with the Gaussian approximation, were used to simulate the H2 center-of-mass self-dynamics
structure factor in the same range as the experimental one. The agreement between measured and calculated
spectra was globally good, but some discrepancies proved the unquestionable breakdown of the Gaussian
approximation in these semiquantum systems at a level comparable to that already observed in pure liquid
para-hydrogen.
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I. INTRODUCTION

Understanding the microscopic dynamics of liquid systems
exhibiting moderate quantum effects (a.k.a. semiquantum
liquids), such as 4He above the λ transition, 3He warmer
than its Fermi temperature, molecular hydrogen, deuterium
and tritium, neon, and their various mixtures, is still one
of the open problems in condensed matter physics [1]. In
general, semiquantum liquids are systems that are fluid at a
temperature lower than their Debye temperature [2]. However,
differently from the highly quantum fluids (e.g., superfluid
4He and degenerate liquid 3He), the corresponding quantum
statistics (Bose-Einstein or Fermi-Dirac) seems to play no
significant role in the translational dynamics of the particles
composing semiquantum liquids [2], so that it is sensible to
apply the Maxwell-Boltzmann statistics to describe most of
their properties.

Several theoretical approaches to the semiquantum liquid
dynamics have been tried in the past, but, despite some
interesting results, none of them has come out as thoroughly
satisfactory. On the computational side, centroid molecular
dynamics (CMD) [3] and ring polymer molecular dynamics
(RPMD) [4] are surely the simulation techniques producing the
best results for semiquantum liquids, but their scope is limited
to evaluate the time-correlation functions of operators linear
in r or p only. The Feynman-Kleinert linearized path integral
does not seem to suffer these limitations [5], but its capability
to precisely reproduce the dynamic structure factors of liquid
hydrogen and deuterium is still a matter of discussion [6].
Given this scenario, any precise experimental determination
of dynamic quantities (i.e., time-correlation functions or their
frequency spectra) that can be compared to corresponding

*Corresponding author: daniele.colognesi@isc.cnr.it

theoretical predictions becomes highly valuable, like, for
instance, a recent experiment on pure liquid H2 [7,8]. In
this study, we now aim to obtain experimental results on
the microscopic single-particle dynamics of para-hydrogen
(p-H2) in its liquid mixtures with normal deuterium (n-D2).
This hydrogen-based liquid system has been selected for two
reasons: first because of the clear and evident semiquantum
character of its components, which has attracted a number
of theoretical studies, simulations, and experimental works
[9] and second because of the peculiar molecular hydrogen
properties when H2 is interacting with thermal neutrons. [As
explained in detail in the literature [10], it is possible to
single out the self-dynamics of the p-H2 molecular center
of mass (c.m.) in a condensed system by means of inelastic
neutron scattering.] In other words, the neutron scattering
double-differential cross section of a collection of p-H2

molecules can be easily related to the self-part of the c.m.
dynamic structure factor Ss,c.m.(Q,E) (with Q and E being the
wave-vector and energy transfers, respectively), which is an
intrinsic physical property of the hydrogen-containing system
under investigation related to the single molecule dynamics. At
this stage, it is a common practice to try to connect Ss,c.m.(Q,E)
to the power spectrum of the velocity autocorrelation function
(VACF). Whenever Ss,c.m.(Q,E) is not available in a wide
Q range so that a low Q extrapolation becomes possible, this
connection is attempted by means of the well-known Gaussian
approximation (GA) [11]. This approximation has been proved
to be exact in some simple model systems: a perfect gas, a
harmonic solid, and a fluid in which the particle movements
are governed by the Langevin equation. Even though it has
been found by some neutron scattering experiments [12] and
simulations on classical fluid argon that there exist areas of
the (Q,E) kinematic plane in which the GA does not hold
precisely, the latter is still widely used, and no complete critical
assessment about its validity has been undertaken, especially
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in connection with semiquantum liquids. In this respect, the
mentioned work on pure liquid p-H2 [7,8] was able to detect
clear experimental evidences of a deviation from the GA four
times larger than in liquid Ar (see Fig. 3 in Ref. [7]), probably
due to the more quantum nature of the former system. Thus,
the purpose of this study is to investigate the GA when applied
to p-H2 mixtures with deuterium: here the quantum character
of H2 is stronger than in the pure liquid hydrogen, as shown by
comparing the respective zero-point c.m. mean kinetic energy
values [13], which are dominated by the pseudophononic
dynamics of the system. In addition, one observes a lower
value of the H2 self-diffusion coefficient Ds since the diffusive
motion of H2 is hindered by an increased density and, possibly,
by the formation of short-lived D2 cages around the molecule
[13]. Summarizing, this study aims to represent a significant
step forward in the knowledge on the applicability range and
the limits of the GA since the presence of D2 modifies the
self-dynamics of H2 in a highly nontrivial way, acting on both
its pseudophononic and its diffusive parts in a tunable way.

The rest of this paper will be organized as follows: The
experimental procedure will be described in detail in Sec. II,
while in Sec. III we will work out the self-dynamics structure
factor of liquid para-hydrogen starting from the experimental
neutron spectra. Section IV will be fully devoted to the compu-
tational details concerning the quantum dynamics simulations
performed on the H2-D2 mixtures under investigation, in
order to extract their VACF’s. In Sec. V, we will discuss
the obtained results and we will check the validity of the
GA: the physical quantities derived from the experimental
spectra will be compared to their estimates obtained from
the aforementioned quantum simulations. Section VI will be
finally devoted to conclusions and perspectives.

II. EXPERIMENTAL DETAILS

Neutron scattering measurements were carried out on
IN4C, a spectrometer located at the Institut Laue-Langevin
(Grenoble, France). IN4C [14] is a so-called hybrid-geometry
spectrometer, where a crystal monochromator fixes the initial
neutron energy, and a chopper system determines the final
neutron energy by time-of-flight (TOF) analysis. The thermal
neutron beam emerging from the reactor is first collimated
(divergence, 1◦) before impinging, with a Bragg angle varying
between 19◦ and 32◦, on the double focusing monochromator
[15]. In the case of our experiment, the selected value
of incoming neutron wavelength was λ0 = 1.153 Å from
the (006) Bragg reflection of an array of highly oriented
pyrolytic graphite crystals. This corresponds to an incoming
neutron energy E0 = 61.521 meV. Two rotating disk choppers,
upstream the monochromator, are used both to suppress
contaminations from higher-order monochromator reflections
and to minimize the background produced by thermal neutrons
and gamma rays coming from the moderator. The beam is
finally reduced to short pulses by a Fermi chopper and hits the
sample after passing through another collimating diaphragm.
Neutrons scattered by the sample are then collected by 300
3He tubes covering angles from 13◦ up to 120◦. In addition, a
3He-filled multidetector allows to observe forward scattering
from 8.7◦ down to an angle of about 2.4◦.

TABLE I. Thermodynamic conditions of the measured liquid
samples, including sample number, species, temperature T , hydrogen
concentration c[H2], pressure p, total molecular density n, and
counting time t .

T c[H2] p n t

No. Species (K) (%) (mbar) (nm−3) (s)

(1) Vanadium 100.00(1) 8883
(2) Empty can 20.7(2) 43090
(3) Pure D2 20.26(4) 0.0 358.3(4) 25.52(4) 58008
(4) H2-D2 20.22(1) 24(2) 600(30) 24.4(1) 50400
(5) H2-D2 20.26(2) 50(1) 759(6) 23.24(5) 46180

A comprehensive description of the samples (including
species, temperature, hydrogen concentration, pressure, total
molecular density, and counting time) can be found in Table I.
As far as the total molecular density is concerned, the reported
estimates were obtained from reliable thermodynamic data
available in the literature: Ref. [16] for pure hydrogen,
Ref. [17] for pure deuterium, and Ref. [18] for hydrogen-
deuterium mixtures. Another important issue is the rotational
population of the hydrogen (and deuterium, to a lesser extent)
molecules composing the experimental samples: as it will be
made clear later in this section, equilibrium hydrogen (e-H2)
has been always employed. This is hydrogen in which the
ortho-para distribution is in thermodynamic equilibrium at the
actual temperature of the sample. In this respect, considering
the temperature values reported in Table I, one can assume
for the two mixture samples to deal only with para-hydrogen
species since at T = 20 K, the para-hydrogen concentration
is very high: c[p − H2]/c[e − H2] = 99.821% [16]. On the
contrary, normal deuterium (n-D2) has been used for preparing
both the pure D2 sample and the two mixture ones. It exhibits
a concentration of the ortho-deuterium (o-D2) which can be
estimated to be around c[o − D2]/c[n − D2] = 66.7%, i.e.,
identical to the room temperature case. The choice to employ
n − D2 instead of pure o-D2 was dictated by experimental
reasons and is justified by the modest differences in the
liquid-deuterium neutron cross section in the two cases.

After performing a calibration measurement at T = 100 K
making use of an appropriate vanadium rod (43.0 mm long,
15.0 mm diameter), we inserted the sample container (i.e., the
scattering cell) into the instrumental sample chamber equipped
with an Orange cryostat, we cooled it down to the desired
temperature (about T = 20 K), and then we measured the cell
neutron spectrum for a counting time of about 12 h dividing
this run into six subruns. The cell was made of aluminum
with a circular-slab geometry (annulus) and consisted in two
concentric cylinders giving rise to a 1.0-mm void to be filled
with the liquid sample, exhibiting an average diameter of 15.0
mm. The external diameter of the container was 20.0 mm
coinciding with the horizontal beam size (about 20 mm,
including penumbra). The container total height (75.0 mm)
was rather bigger than the vertical beam size (about 60 mm,
including penumbra), so the cell was masked with cadmium
wraps in order to exclude its bulky ends which contained no
liquid sample (the annulus vertical size being only 55 mm). In
this way the portion of cell irradiated by neutrons was reduced
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to 43 mm, identical to the length of the vanadium rod used for
calibration purposes.

Subsequently, the temperature of the cell was increased
to T = 23 K and normal deuterium gas (air liquide, 99.9%
assay) was allowed to condense in it. The pressure of the
gas handling system was initially set to p = 900 mbar
(slightly larger than the corresponding saturated vapor pres-
sure, SVP = 834.44 mbar [17]). Then, the cell temperature
was slowly decreased (in order to prevent the formation of
solid plugs in the tubes) to T = 4 K where the pressure
reached the final value of p = 0.97 mbar and n-D2 froze in
the sample container. At this stage, knowing the exact initial
volume of the D2 gas in the handling system, we were sure
that the cell was completely filled with the sample. Later
on, the temperature was raised again to 20 K and a neutron
measurement (divided into nine subruns) was started, lasting
for about 16 h. The stability of the thermodynamic conditions
during this measurement was satisfactory: the temperature and
pressure uncertainties were estimated to be around 0.04 K and
0.4 mbar, respectively.

As for the mixture samples Nos. (4) and (5) (see Table I),
they were obtained in a different and more elaborate way.
Let us summarize the main steps of the procedure followed
to produce the former liquid H2-D2 mixture [i.e., sample No.
(4) with c[H2] = 24%], recalling that the latter was prepared
similarly. The first part of mixture preparation was the off-line
production of liquid p-H2 by means of an external conversion
cell (volume: 23.5 cm3) filled with liquid hydrogen (alpha
gas, 99.999% assay) and left at temperatures cycling between
15 and 19 K for 24 h. At the bottom of the conversion cell
some powder of a paramagnetic catalyst, made of Cr2O3 on
an Al2O3 substrate, had been inserted in order to speed up
the conversion from ortho- to para-hydrogen. Then, gaseous
para-hydrogen was produced boiling off the liquid at T = 26
K and then mixed with normal deuterium in a buffer volume
at room temperature under a total pressure of about 3 bar.
The exact amount of gaseous mixture needed to fill up
the sample cell (identical to the can already used for pure
n-D2) with the corresponding liquid was condensed in it at
T = 20 K. Then, the cell was slowly cooled down to T = 2
K, so to decrease the vapor pressure of the gas handling
line to an extremely low value: 1.37 mbar. This step was
regarded as very important in order to prevent an undesired
separation of the mixture [19], where the more volatile gas
(i.e., H2) could concentrate in the buffer volume, while the
less volatile (i.e., D2) condensed in coldest point of the
gas line, namely, the sample cell. This would have altered
the mixture composition in quite a noticeable way. At the
end, the sample can was isolated from the rest of the gas
handling line and warmed up to the requested experimental
temperature (20 K). It is worth noting that the mixture was
prepared on a time scale of few hours, surely too short to alter
the c[p − H2]/c[e − H2] and c[o − D2]/c[n − D2] ratios in
absence of specific paramagnetic catalysts. It was estimated
(see next section for details) that the present geometry of
the selected liquid mixtures gave rise to a total scattering of
12.3%, 18.2%, and 23.8% of the incoming neutron beam for
samples Nos. (3), (4), and (5), respectively. The corresponding
single scattering values were evaluated to be 11.5%, 16.4%,
and 20.7%.

III. DATA ANALYSIS

At the end of our neutron scattering experiment on IN4C,
time-of-flight data recorded by each single detector bank were
normalized to the incoming neutron counts of the monitor,
purged of noisy tubes, corrected for detector efficiency, and
binned into 188 angular intervals, ranging from θ = 13.1◦
to 120.3◦. Subsequently, processed time-of-flight data were
automatically subtracted of the flat fast neutron background
and then transformed into energy-transfer (E) spectra, correct-
ing for the well-known kinematic factor

√
(E0 − E)/E0 [20].

These new data sets exhibited energy-transfer values up to
56.1 meV. Finally, the usual vanadium spectra normalization
was operated, taking into account the minute angular effect
due to the Debye-Waller factor of this metal. Neutron data
(now transformed into the E domain and plotted in Fig. 1
for a selected example at θ = 23.43◦) exhibited an average
resolution �E = 3.52 meV at the elastic line. This resolution
figure turned out to be only slightly increasing with θ (e.g.,
from 3.23 meV at θ = 13.07◦ to 3.85 meV at θ = 120.12◦), as
it was derived from the mentioned vanadium rod calibration
measurements. As for the �E variation with E (keeping θ

fixed), we relied on the instrumental routines [21] which
pointed out (for the present instrumental configuration) a
rapid decrease of �E down to a minimum placed at E =
12.32 meV, where �E is reduced to 74.7% of its elastic
line value, followed by a neat increase so that the elastic line
value is quickly regained at E = 27.91 meV. Finally, at E =
54.30 meV, �E amounts to 168.9% of the vanadium estimate.

The outputs of this part of the data analysis procedure
are the so-called �(θ,E) spectra, particularly suitable for the
following operations:

(a) empty can scattering subtraction after considering
sample attenuation;
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FIG. 1. (Color online) Main panel: experimental raw spectral
data as in Table I, corrected for the kinematic factor, in the angular
range 21.83◦ < θ < 25.92◦ (average value: θ = 23.43◦). The empty
can spectrum is plotted as a dashed black line and the pure liquid D2

one as a dotted red line, while the dotted-dashed green line and the
full blue line represent the two H2-D2 mixtures at c[H2] = 24% and
50%, respectively. Inset: same data as in the main panel, but zoomed
to show the experimental statistical accuracy.
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(b) sample self-shielding evaluation and correction;
(c) multiple scattering evaluation, simulation, and subtrac-

tion.
Points (a) and (b) were implemented using a Monte

Carlo routine which simulated the scattering cell in the two
conditions: empty and filled with the various samples. In
these simulations, no simplified model was employed for the
normal deuterium total scattering cross section σt,n-D2 (E0),
which, on the contrary, was obtained from the experimental
results of direct measurements on liquid n-D2 at T = 19 K
up to E0 = 78.2 meV [22]. As for the total cross section
of the H2-D2 mixtures, a proper linear combination of the
aforementioned quantity σt,n-D2 (E0) with the total scattering
cross sections of liquid para-hydrogen at T = 16 K [22]
σt,p-H2 (E0), was assumed to be accurate enough for the self-
attenuation correction.

As for point (c), multiple scattering spectra were accurately
simulated through the analytical approach suggested by
Agrawal and Sears [23], in conjunction with the Vineyard
approximation [20], the well-known modified Young-Koppel
model for both H2 and D2 [10,24], and the GA for the
molecular c.m. dynamics [11]. Following the various tasks
of the calculation we can sketch the entire multiple scattering
evaluation procedure in three main steps:

(c-i) Using model VACF’s for the D2 and H2 centers of
mass to generate the respective center-of-mass self-scattering
laws in an appropriate portion of the kinematic plane (Q,E)
through the mentioned Gaussian approximation. It has been
verified that the following rectangular zone was sufficiently

large for our purpose: 0.1 Å
−1

< Q < 12 Å
−1

, −16 meV <

E < 80 meV.
(c-ii) Applying the modified Young-Koppel model to

transform the self c.m. scattering laws into double-differential
cross section including the rotational dynamics of both D2 and
H2 through appropriate convolutions. The first eight rotational
levels of D2 and H2 (labeled by j ′), 0 � j ′ � 7, have been
considered in this calculation.

(c-iii) Implementing the cited formulas by Sears [23] in
the case of an annulus, making use of the energy-dependent
self-attenuation factors already evaluated in points (a) and (b).
This final step has been accomplished through a Monte Carlo
code since the analytical approach was too demanding for a
complex geometry like that of our scattering cell (see previous
section for the cell details).

To sum up, the only needed input data were the VACF’s
for liquid D2 and H2-D2 mixtures as in Table I, which have
been taken from the quantum simulations reported in Sec. IV.
The stability of the multiple scattering simulation results was
checked by replacing the GA-simulated self center-of-mass
scattering laws with their coarser versions obtained via a
quantum version of the simple Egelstaff-Schofield model [25]
(see Appendix A for details). Visible changes were observed
in the single scattering spectra, but no detectable discrepancy
was present in the multiple scattering ones.

At this stage, �(θ,E) spectra were transformed into
constant-Q data, �(Q,E), through interpolation routines. This
transformation made possible the determination of inelastic
spectra at Q values approximately ranging in the interval

1.4 Å
−1

< Q < 8.0 Å
−1

in steps of 0.2 Å
−1

.

The following move of the data reduction procedure
included the subtraction of the scattering due to deuterium
from the spectra of samples Nos. (4) and (5). This was
accomplished making use of the experimental pure deuterium
spectrum [i.e., sample No. (3)], properly scaled to account
for sample molecular densities and D2 concentrations. A
detailed justification of this operation in the case of inelastic
neutron scattering from liquid H2-D2 mixtures can be found
in Ref. [13]. After this subtraction, processed neutron spectro-
scopic data contained only scattering from p-H2 and so could
be dubbed as �p-H2 (Q,E). In the aforementioned reference
it is also shown that in the present energy transfer range
�p-H2 (Q,E) contains only one relevant rotational term, which
is related to the j = 0 → j ′ = 1 hydrogen transition. Under
this important assumption one can extract the self-part of the
c.m. dynamic structure factor Ss,c.m.(Q,E) making use of the
cited modified Young-Koppel model [10]:

�p-H2 (Q,E) = σ0−1

4π
j 2

1 (Qd/2) exp[−2Wv(Q)]Ss,c.m.(Q,E)

× ⊗ δ(E − E0−1), (1)

where σ0−1 = 4 × 80.26 barn [20,26] is the neutron cross
section for the j = 0 → j ′ = 1 rotational transition in H2,
jn(x) is a spherical Bessel function of the first kind, d is the
internuclear distance in the H2 molecule (i.e., d = 0.742 Å
[27]), Wv(Q) is the exponent of the Debye-Waller factor due
only to the H2 intramolecular vibration [24] (totally negligible
in the present Q range), and E0−1 is the energy shift due to the
j = 0 → j ′ = 1 rotational transition in H2 (i.e., E0−1 = 14.7
meV [27]). The experimental estimates of the self-part of the
p-H2 c.m. dynamic structure factor Ss,c.m.(Q,E) have been
reported in Figs. 2 and 3 for samples Nos. (4) and (5),
respectively.
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FIG. 2. (Color online) Experimental estimates of the self-part
of the para-hydrogen center-of-mass dynamic structure factor
Ss,c.m.(Q,E), in the H2-D2 mixture sample No. (4) (i.e., c[H2] = 24%,
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IV. QUANTUM DYNAMICS SIMULATIONS

In order to provide the H2 VACF’s required for the analysis
of the experimental samples Nos. (3)–(5), as well as to
extend the results theoretically to the entire concentration
range, we have performed a series of CMD simulations.
In these simulations, all interactions were modeled by the
spherically symmetric Silvera-Goldman potential [28], the
only difference between H2 and D2 being the molecular
mass 2mH = 2.016 amu versus 2mD = 4.028 amu. The total
number of molecules was always N = N [H2] + N [D2] =
256, and the H2 concentrations of the 14 thermodynamic
states listed in Table II were realized by assigning the lighter

mass to N [H2] of the particles and the heavier mass to the
remaining ones. Since CMD is basically a classical molecular
dynamics technique in a quantum mechanical force field, we
have calculated these forces by very short path integral Monte
Carlo (PIMC) simulations at each time step, using the primitive
algorithm and a Trotter number of P = 64 for the number of
beads on the classical ring polymers replacing the quantum
particles in PIMC. Although more time consuming than the
usual implementation, this avoids sampling problems due to
the stiff internal modes of the polymers and allowed us to use
a time step �t = 0.005 ps. The classical dynamics was kept
at a temperature T = 20 K by means of a Gaussian thermostat
[29], and the overall molecular densities (n) of the mixtures
were taken from Refs. [16–18]. At each thermodynamic state
we have performed 10 independent runs of 105 time steps
(500 ps) each, in order to get an estimate of the statistical
uncertainty of the results. The VACFs were calculated up to a
maximum time lag of 2.5 ps and multiplied by a Welsh window
[30] before Fourier transforming. Since a CMD simulation
yields the Kubo transform [31] 〈�v(0) · �v(t)〉(k)

D2,H2
rather than

the proper quantum mechanical VACF for the D2 and H2

c.m.’s, the spectral functions fD2,H2 (ω) were obtained from
the relationship

fD2,H2 (ω) = 2mD,H

3πkBT

∫ ∞

−∞
exp(−iωt)〈�v(0) · �v(t)〉(k)

D2,H2
dt.

(2)

Examples of the results are reproduced in Fig. 4 for se-
lected thermodynamic conditions, while a complete three-
dimensional plot of the H2 VACF as a function of both concen-
tration c[H2] and time t is reported in Fig. 5. The latter shows
an increment of the first dip (centered around t = 0.2 ps) as
c[H2] gets smaller providing a clear illustration of physical fact
that H2 increasingly feels a caging effect when the deuterium
concentration (and the molecular density) are raised.

TABLE II. Thermodynamic conditions of the liquid samples simulated at T = 20.0 K and computational results, including simulation
number, number of H2 molecules N [H2], hydrogen concentration c[H2], total molecular density n, center-of-mass self-diffusion coefficient Ds

for H2 and D2, center-of-mass mean kinetic energy from path integral Monte Carlo steps 〈Ek〉P for H2 and D2, and center-of-mass mean kinetic
energy from VACF spectra 〈Ek〉f for H2 and D2. See main text for details.

c[H2] n Ds,H2 Ds,D2 〈Ek〉P
H2

〈Ek〉P
D2

〈Ek〉f

H2
〈Ek〉f

D2

No. N [H2] (%) (nm−3) (Å
2

ps−1) (Å
2

ps−1) (K) (K) (K) (K)

(o) 256 100.0 21.24 0.850(1) 61.77(1) 60.45(1)
(i) 230 89.84 21.79 0.764(1) 0.702(3) 63.27(1) 49.01(2) 61.99(1) 48.72(3)
(ii) 205 80.08 22.29 0.701(1) 0.650(2) 64.68(1) 49.87(1) 63.33(1) 49.53(2)
(iii) 179 69.92 22.79 0.638(1) 0.587(1) 66.06(1) 50.72(1) 64.79(1) 50.44(1)
(iv) 154 60.16 23.25 0.581(1) 0.542(1) 67.44(1) 51.58(1) 66.12(2) 51.29(1)
(v) 139 54.30 23.51 0.556(1) 0.518(1) 68.18(1) 52.06(1) 66.88(2) 51.77(2)
(vi) 128 50.00 23.70 0.535(1) 0.499(1) 68.76(1) 52.41(1) 67.44(3) 52.09(1)
(vii) 102 39.84 24.13 0.491(2) 0.461(1) 70.00(1) 53.21(1) 68.70(2) 52.91(1)
(viii) 84 32.81 24.42 0.467(2) 0.438(1) 70.89(2) 53.73(1) 69.55(4) 53.45(2)
(ix) 77 30.08 24.53 0.455(2) 0.427(1) 71.22(1) 53.92(1) 69.92(2) 53.65(1)
(x) 64 25.00 24.72 0.439(2) 0.413(1) 71.75(2) 54.26(1) 70.45(3) 54.00(1)
(xi) 51 19.92 24.91 0.423(1) 0.400(1) 72.32(2) 54.63(1) 71.01(3) 54.35(1)
(xii) 26 10.16 25.26 0.395(2) 0.375(1) 73.35(3) 55.27(1) 72.16(4) 55.04(1)
(xiii) 0 0.00 25.60 0.348(1) 55.90(1) 55.62(1)
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FIG. 4. (Color online) Simulations of the velocity autocorrela-
tion function spectrum f (ω) for H2 and D2 centers of mass calculated
in the thermodynamic conditions Nos. (vi), (viii), (x), and (xiii) (see
Table II for details). H2 spectra are plotted for Nos. (vi) (dotted
blue line), (viii) (dashed red line), and (x) (full black line), i.e., for
c[H2] = 50.0%, c[H2] = 32.8%, and c[H2] = 25.0%, respectively.
A single D2 spectrum is reported for No. (xiii) (dashed-dotted green
line), which corresponds to the pure deuterium simulated sample.

One important piece of information contained in these
spectra is the self-diffusion coefficient of the molecules, which
is determined by the zero frequency value of fD2,H2 (ω):

Ds,H2 = πkBT

4mH
fH2 (0) = 1

3

∫ ∞

0
〈�v(0) · �v(t)〉(k)

H2
dt. (3)

Our CMD predictions for the self-diffusion coefficients for
H2 as well as for D2 are included in Table II. Note that
the uncertainties given there are merely the statistical errors
and that the actual values may be slightly different since the
self-diffusion coefficient is known to depend on system size
[32]. For instance, from additional RPMD simulations of the
equimolar mixture [i.e., No. (vi)] with P = 64, we find that
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0.0

0.2
0.4

0.6
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) /<
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FIG. 5. Three-dimensional plot of the Kubo-transformed velocity
autocorrelation functions 〈�v(0) · �v(t)〉(k) for the H2 centers of mass,
simulated in the thermodynamic conditions Nos. (o)–(xii) (see
Table II for details). For graphic reasons, data have been normalized
making use of their t = 0 values 〈�v2〉.

the self-diffusion coefficient of H2 changes from 0.496 to

0.507 Å
2

ps−1, and that of D2 from 0.467 to 0.478 Å
2

ps−1, as
the total number of molecules is increased from N = 256 to
500. On the other hand, varying, for the larger system, the Trot-
ter number from P = 32 to 128, the self-diffusion coefficient
of H2 decreases from 0.517 to 0.496 Å

2
ps−1, and that of D2

from 0.486 to 0.467 Å
2

ps−1. In the present context, potential
corrections in the percent range are not important since we
are primarily interested in the change of the self-diffusion
coefficient with concentration. Another important and easily
accessible physical quantity is the mean kinetic energy of the
molecules’ c.m., 〈Ek〉D2,H2

. Interestingly, there are two routes
to this property in CMD. As in PIMC simulations, the mean
kinetic energy may be calculated from the average potential
energy stored in the “springs” of the polymers. Although
this “crude energy estimator” [33] 〈Ek〉PD2,H2

is considered to
be inferior to, e.g., the virial estimator [34], the statistical
uncertainties are quite small in our case and probably smaller
than the systematic error due to the finite Trotter number P .
Alternatively, the mean kinetic energy may also be calculated
from the spectral function fD2,H2 (ω) again [35]:

〈Ek〉fH2
= 3

4
�

∫ ∞

0
ω coth

(
�ω

2kBT

)
fH2 (ω)dω. (4)

Obviously, this prediction is likewise affected by the finite
value of P , but also by the overall quality of the simulated
VACF and the specific way (such as windowing) in which
fD2,H2 (ω) is calculated via Eq. (2). Both estimates of the
kinetic energy are reported in Table II and should be contrasted
to the value of 30 K for a classical system at T = 20 K.
Finally, the GA expression [11] for the self-intermediate
scattering function was applied to fH2 (ω) in order to yield
simulated neutron spectra. These, including the experimental
energy resolution discussed in Sec. III, were dubbed S(GA)

s,c.m.
and are reported in Figs. 6 and 7 for simulation Nos. (x) and
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FIG. 6. (Color online) GA calculations of the self-part of the
para-hydrogen center-of-mass dynamic structure factor S(GA)

s,c.m.(Q,E)
in the H2-D2 mixture sample No. (x) (i.e., c[H2] = 25.0%, see

Table II) shown for Q values ranging from 1.4 Å
−1

(black line,

the most peaked and leftmost) to 4.6 Å
−1

(pink line, the least peaked
and rightmost).
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(vi), respectively. From now on, we will drop the subscript
“H2” from symbols like f (ω), Ds , and 〈Ek〉 to simplify the
notation since we will be dealing with hydrogen only.

V. DISCUSSION

Although the original aim of the present experimental work
was the study of the limits of the GA when applied to a
semiquantum liquid mixture, from these measurements it is
also possible to extract interesting and original information on
other physical properties of the systems under investigation. As
a matter of fact, to the authors’ knowledge there are really few
experimental spectroscopic data in the literature comparable
with the present ones. Given this scenario, we have inspected
Figs. 2 and 3 and starting from the following qualitative
observations, we have tried to obtain a better understanding
of some significant physical properties of these semiquantum
liquid mixtures:

(a) The Q range explored is large enough to describe a
complete and continuous change of the self-c.m. dynamics,
spanning from a clearly diffusional regime at low values

of momentum transfer (say, for Q � 2.4 Å
−1

) to an almost

free-particle behavior at high Q values (say, for Q � 3.6 Å
−1

).
In the middle, there is an interesting crossover where no
simplified physical picture seems indeed possible.

(b) The H2 c.m. spectral sets reported in the two aforemen-
tioned figures are quite similar, but not identical, proving that
the density and concentration effects on the H2-D2 mixtures are
indeed detectable by inelastic neutron scattering. In particular,
the spectra collected at the lowest-Q values exhibit rather
different values of peak widths.

Continuing with a quick check of the results, if now Figs. 6
and 7 are also considered, one can add a further preliminary
conclusion:

(c) The use of the GA in conjunction with the VACF spectra
derived from appropriate quantum calculations are able to
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FIG. 7. (Color online) GA calculations of the self-part of the
para-hydrogen center-of-mass dynamic structure factor S(GA)

s,c.m.(Q,E)
in the H2-D2 mixture sample No. (vi) (i.e., c[H2] = 50.0%, see

Table II) shown for Q values ranging from 1.4 Å
−1

(black line,

the most peaked and leftmost) to 4.6 Å
−1

(pink line, the least peaked
and rightmost).

describe, at least at a qualitative level, the experimental H2

c.m. neutron spectra in their full (Q,E) double range.
Thus, the rest of the present discussion will be developed

along the lines sketched in the three points above, trying (a)
to understand the mentioned crossover regime in the self-
dynamics structure factor of the H2 c.m.’s in order to obtain a
physical picture of the interplay between single-particle diffu-
sion, cage rattling, and pseudophonons [36]; (b) to extract from
the experimental spectra [i.e., Ss,c.m.(Q,E)] relevant physical
quantities which could be sensitive to the differences existing
between the two liquid samples; (c) to compare experimental
Ss,c.m.(Q,E) with simulated S(GA)

s,c.m.(Q,E) in order to work out
the non-GA contributions and to study their behavior as a
function of both Q and liquid density and concentration. Each
topic will be dealt with in a separate subsection.

A. Understanding the crossover between diffusional
and free-particle regimes

As we have observed above, the H2 c.m. neutron spectra

comprised in the momentum transfer range 2.4 Å
−1

< Q <

3.6 Å
−1

exhibit a peculiar crossover regime between a
diffusional behavior and an almost-free particle recoil. This is
evident for both the experimental Ss,c.m.(Q,E) and the simu-
lated S(GA)

s,c.m.(Q,E) obtained by means of the GA. Obviously, as
we will see in the last part of this section, differences between
Ss,c.m.(Q,E) and S(GA)

s,c.m.(Q,E) indeed exist in both mixture
samples, but from a qualitative point of view the agreement
is remarkable and can be easily verified by simply inspecting
Figs. 2, 3, 6, and 7. This is a crucial point because it allows
using the GA as a tool to provide a physical interpretation
of the aforementioned crossover regime. The idea is to
decompose S(GA)

s,c.m.(Q,E) in single and multiple pseudophonon
excitation terms, similarly to what is normally done in the
case of incoherent scattering from a monatomic crystalline
solid [20]. However, the long-time diffusional behavior typical
of the liquid state makes this decomposition slightly more
difficult since the modulus of the time-dependent mean square
displacement |γ1(t)| [see, e.g., Eq. (A7) in Appendix A] has
no upper limit as t grows to infinity, and so the corresponding
self-intermediate scattering function I (GA)

s,c.m.(Q,t) cannot be
rigorously developed as a power series in Q. Nevertheless,
it is possible to solve the problem, for example, by factorizing
I (GA)
s,c.m.(Q,t), that is, by splitting γ1(t) into a diffusional part

γ
(d)
1 (t) plus a solidlike part γ

(sl)
1 (t). In this way |γ (sl)

1 (t)| is
limited and the power series in Q can be written exactly as

I (GA)
s,c.m.(Q,t) = exp

[− Q2γ
(d)
1 (t)

]{
1 − Q2γ

(sl)
1 (t)

+
∞∑

n=2

[− Q2γ
(sl)
1 (t)

]n

n!

}
. (5)

After applying the Fourier transform to the previous equation
and rearranging the sum as explained in Appendix B, one
finally obtains

S(GA)
s,c.m.(Q,E) = S(d)

s (Q,E) ⊗ [
S(sl,0)

s (Q,E) + S(sl,1)
s (Q,E)

+ S(sl,M)
s (Q,E)

]
, (6)
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where ⊗ stands for the convolution product, S(d)
s (Q,E) is

the diffusional term, while S(sl,0)
s (Q,E), S(sl,1)

s (Q,E), and
S(sl,M)

s (Q,E) are the solidlike terms and represent the zero
pseudophonon contribution, the single pseudophonon contri-
bution, and the multipseudophonon contribution, respectively.
Their actual expressions are all given in Appendix B.

Following Eq. (B1), we have split the simulated f (ω)
spectra for the thermodynamic conditions Nos. (vi) and
(x) (see Fig. 4) into fd (ω) plus fsl(ω), making use of
the following τ1 values: �

−1τ1 = 0.3256 and 0.5402 meV−1,
respectively, for Nos. (vi) and (x). These figures, together
with the corresponding Ds values, entailed the respective
areas of fsl(ω) to be Asl = 0.6977 and 0.8508, and the
respective solidlike c.m. mean square displacements to be

〈�u2〉sl = 0.7615 and 0.5459 Å
2
. This choice has been made

by exploiting Eq. (B2) in conjunction with the values of
the c.m. mean square displacement for polycrystalline solid
hydrogen (〈�u2〉pc) at various temperatures and densities [37],
extrapolated to the molecular densities of the present liquid
samples by means of a simple Grüneisen model applied to
the zero-point values of 〈�u2〉pc. An example of the separation
procedure operated on the simulated f (ω) for sample No. (vi)
is plotted in the inset of Fig. 8. Once fd (ω) and fsl(ω) have
been obtained, it is straightforward to calculate the distinct GA
contributions S(d)

s (Q,E), S(sl,0)
s (Q,E), and S(sl,1)

s (Q,E) or, to
be more precise, S(d)

s (Q,E) ⊗ S(sl,0)
s (Q,E) and S(d)

s (Q,E) ⊗
S(sl,1)

s (Q,E), in the momentum transfer range 2.4 Å
−1

< Q <

3.6 Å
−1

. These physical quantities have been reported (without
including the instrumental resolution) in the main panel of
Fig. 8 for sample No. (vi) only, as sample No. (x) yielded very
similar spectra. The total (resolution free) S(GA)

s,c.m.(Q,E) has

FIG. 8. (Color online) Main panel: GA calculations of the self-
part of the para-hydrogen center-of-mass dynamic structure factor
S(GA)

s,c.m.(Q,E) in the H2-D2 mixture sample No. (vi) (i.e., c[H2] =
50.0%, see Table II) shown for Q values ranging from 2.6 to 3.4 Å

−1

(full black line). The purely diffusional components are also reported
(dashed red line) together with the single-pseudophonon terms (dotted
blue line). All plots do not include the instrumental resolutions and
have been vertically shifted (0.04 meV−1) for graphic reasons. Inset:
separation of the corresponding simulated f (ω) (green full line) into
diffusional (dashed red line) plus solidlike (dotted blue line) terms
used for the calculations plotted in the main figure.

been also plotted for comparison. The physical interpretation
of this crossover regime from the diffusional behavior to
the almost-free particle recoil is now clearer: one observes
the purely diffusional term to quickly broaden and lose its
intensity as Q grows since the overall peak area is controlled
by the solidlike Debye-Waller factor. In addition, the nearby
peak, due to the excitation of a single pseudophononic mode
combined with molecular diffusion, is also getting broader
and decreasing along with Q, but its intensity reduction is
less prominent as the solidlike Debye-Waller factor is now
contrasted by a Q2 factor. Finally, the difference between the
total spectrum and the sum of the two aforementioned peaks
is simply S(d)

s (Q,E) ⊗ S(sl,M)
s (Q,E), which although already

present at Q = 2.6 Å
−1

(amounting to 34.8% of the total
spectrum) becomes the most relevant contribution at larger Q

values (reaching 62.1% of the total spectrum at Q = 3.4 Å
−1

).
Its physical meaning is naturally related to the excitation of
two or more pseudophononic modes, always combined with
molecular diffusional modes.

B. Extracting two relevant physical quantities

In the previous subsection we have tried to describe, making
use of physical models and simulations, the intermediate
regime lying between the self-hydrodynamics (roughly dom-
inated by the Fick’s laws) and a situation of (almost) free
molecular recoil. Now, the target is the opposite: from the
extremal regimes we will work out experimental estimates
of two physical quantities of key importance for the H2

c.m. self-dynamics, namely, self-diffusion coefficient and mean
kinetic energy.

An estimate of the H2 self-diffusion coefficient in the
two isotopic liquid mixture samples we are considering here
can be obtained by studying their lowest Q-value spec-

tra Ss,c.m.(Q,E), for examples for 1.4 Å
−1 � Q � 2.4 Å

−1
,

where the incoherent scattering process probes spatial scales
large enough to highlight the diffusional motion of the H2

centers of mass. However, it is important to stress that
IN4C is by no means a spectrometer designed to perform
high-precision quasielastic neutron scattering measurements
since neither its Q and E ranges, nor the corresponding
instrumental resolutions �Q and �E, are optimized in
order to accomplish such a task. For this reason, this study
will provide only a tentative estimate of the aforementioned
diffusional quantity in a Q range which is normally described
as that of space-dependent self-diffusion domain [38]. In
order to circumvent all the difficulties entailed by such a
space-dependent diffusional regime (where a complete theory
for quantum and semiquantum fluids does not exist yet), we
have focused on one simple spectral feature, namely, the full
width at half maximum (FWHM). So, the selected Ss,c.m.(Q,E)
spectra have been fitted by a heuristic multi-Voigtian model
(up to three independent Voigt function peaks) which has been
analytically deconvoluted for the effect of the instrumental
energy resolution. Subsequently, the resolution-free fitted
data have been corrected for the detailed balance effects
by multiplying each spectrum by exp[−E/(2kBT )], so to
obtain an approximately symmetric peak profile. At this stage,
FWHM values have been determined through an interpolation
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FIG. 9. (Color online) Experimental estimates of full width at
half maximum of the para-hydrogen center-of-mass dynamic struc-
ture factor Ss,c.m.(Q,E) in the H2-D2 mixture samples Nos. (4) (full
black squares with error bars) and (5) (empty red circles with error

bars). Only the lowest momentum transfer values (i.e., 1.4 Å
−1 �

Q � 2.4 Å
−1

) have been considered for such an analysis. Full black
and dashed red lines represent data best fits obtained assuming a
jump-diffusion model for samples Nos. (4) and (5), respectively.
Dotted black and dotted-dashed red lines stand for analogous data
best fits, but using a continuous diffusion model.

procedure yielding the estimates reported in Fig. 9 for samples

Nos. (4) and (5) in the 1.4 Å
−1 � Q � 2.4 Å

−1
range.

These results were first analyzed via a standard continuous
diffusion model: FWHM(Q) = 2�DsQ

2, which is generally
appropriate for simple liquids in the hydrodynamic regime.
However, this model, as shown in the mentioned figure,
did not provide a good experimental data description since
reduced χ2 turned out to be 19.5 and 11.8 for samples
Nos. (4) and (5), respectively. On the other hand, the fitted

values of Ds , namely, 0.52(3) Å
2

ps−1 for sample No. (4)

and 0.59(2) Å
2

ps−1 for sample No. (5), compared fairly well
with the corresponding simulation results reported in Table II

[i.e., 0.439(1) Å
2

ps−1 and 0.535(1) Å
2

ps−1], especially if one
keeps in mind our preliminary considerations about IN4C.
Motivated by this partially successful result, we applied to
our FWHM data a slightly more advanced fitting function,
i.e., the well-known jump-diffusion model [1]: FWHM(Q) =
2�DsQ

2/(1 + l2
0Q

2), with l0 being the mean jump length.
Looking again at Fig. 9 one can see that this approach is
much more adequate to describe our data (reduced χ2 fell
to 1.27 and 1.91), but Ds came out almost identical for the

two cases: 0.86(6) Å
2

ps−1 and 0.81(5) Å
2

ps−1, with all the
differences between the two data sets now concentrated in the
l0 estimates: 0.38(3) and 0.28(3) Å for samples Nos. (4) and
No. (5), respectively. The large discrepancy between the new
Ds fitted values on one side and the simulation results on the
other, together with the experimental estimates by O’Reilly

and Peterson [39] [namely, Ds = 0.6(1) Å
2

ps−1 for c[H2] =
50% and T = 20 K], actually suggests a certain skepticism
about the capability of the jump-diffusion model to properly

describe our experimental data despite the good values of
the reduced χ2 obtained. However, in partial contradiction
with this remark, we have also to mention the existence of
two recent high-resolution neutron spectroscopic studies on
liquid [40] and solid [41] molecular hydrogen. In particular,
the former includes a measurement on bulk liquid n-H2 at

T = 15 K in the 0.45 Å
−1 � Q � 1.73 Å

−1
range, which

clearly detects the presence on a mild jump-diffusion behavior

[i.e., Ds = 0.43(1) Å 2 ps
−1

and l0 = 0.29(3) Å]. Thus, the
problem seems indeed quite puzzling, and we think that
only accurate quasielastic neutron scattering measurements
in a large Q range would be able to completely clarify
the diffusional behavior of H2 molecules in liquid isotopic
mixtures. However, given the present scenario, three different
hypotheses can be proposed: (1) the observed behavior of
the FWHM’s as a function of Q is indeed the mark of a
jump-diffusion mechanism; (2) it is an artifact caused by
the presence of a small inelastic background [1] (which, in
turn, is entailed by the relatively large Q values analyzed);
(3) it is still an artifact, but actually due to the intrinsic
inaccuracies of the deconvolution procedure applied to our
neutron scattering spectra. Since the first hypothesis is clearly
incompatible with the GA (because jump diffusion implies a
nonlinear dependence of FWHM on Q2), while the second is
well described in this framework (as we have seen in Sec. V A),
we can shed some light on this intriguing issue by applying
the same analytic procedure that we have just described to our
GA simulated spectra reported in Figs. 6 and 7. In addition, in
order to take into account the third hypothesis too, we decided
to work on resolution-free simulated data so to completely
circumvent the possible deconvolution problems. It turned
out that simulated-data FWHM’s were very well described
by the continuous diffusion model FWHM(Q) = 2�DsQ

2,

with Ds equal to 0.543(1) Å
2

ps−1 for sample No. (vi) and

0.457(2) Å
2

ps−1 for sample No. (x). These figures, although
slightly overestimated with respect to the values reported in
Table II, compare quite favorably with them, showing that the
possible presence of an inelastic background is not responsible
for large errors, and, moreover, cannot induce the observed
nonlinear behavior in the experimental-data FWHM’s. Thus,
while the second hypothesis is ruled out, one still does not
know whether the aforementioned nonlinear behavior has a
physical non-GA origin or is associated with the deconvolution
procedure.

As for the c.m. mean kinetic energy, it is generally
possible to estimate its value from the second moment [11] of
Ss,c.m.(Q,E) at any constant Q value. However, this procedure
becomes practically viable only when Q grows to such an
extent that the impulsive regime [20] is approached. This
happens because under these conditions the peak shape tends
to a simple Gaussian functional form (provided that the
single-particle momentum distribution is indeed a Gaussian)
and, in addition, the peak width gets progressively wider (so
that the energy resolution turns out to be almost insignificant).
This phenomenon is currently exploited by the so-called
deep inelastic neutron scattering (also known as neutron
Compton scattering) which has been successfully applied
to various systems [42], including molecular hydrogen in
condensed phases [43], providing accurate estimates of the H2
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center-of-mass mean kinetic energy. A simple method to verify
the inception of the impulsive regime is the application of the
so-called West y scaling [44], where Ss,c.m.(Q,E) is replaced
by the response function F (y,Q) according to the following
scaling equations:

y = 2mH

�2Q

(
E − �

2Q2

4mH

)
; F (y,Q) = �

2Q

2mH
Ss,c.m.(Q,E).

(7)

Now, it is possible to prove [44] that in most physical cases the
explicit dependence of F (y,Q) on Q gradually vanishes and
an asymptotic regime [i.e., J (y)] is progressively approached.
In the case of molecular liquid hydrogen, this surely happens

for Q > 4.9 Å
−1

[45], but in our case we see in Fig. 10 that

for 3.6 Å
−1 � Q � 4.6 Å

−1
the experimental West response

function Fe(y,Q) changes very weakly as a function of Q.
Nevertheless, the asymptotic regime is clearly not yet attained
as shown by the asymmetric peak shapes and by the fact
that the peak maximum does not coincide with y = 0. This
is the typical mark of the persistence of the so-called final
state effects [44] which are caused by the influence of the
intermolecular potential on the recoil of the H2 molecule hit by
the scattered neutron. By fitting the Fe(y,Q) data sets for both
samples Nos. (4) and (5) through a heuristic multi-Gaussian
model (i.e., four independent Gaussian peaks), it is possible
to extract the various second moment 〈y2〉 estimates, which,
once corrected for their average instrumental resolutions �E,
are independent of Q and are related to the c.m. mean kinetic
energy through the relationship [44]

〈y2〉 =
∫ ∞

−∞
y2Fe(y,Q)dy − 1

8 ln(2)

(
2mH

�2Q
�E

)2

= 4mH

3�2
〈Ek〉. (8)
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FIG. 10. (Color online) Experimental estimates of the West-
scaling response function Fe(y,Q) in the H2-D2 mixture sample
No. (5) (empty black circles), and their best multi-Gaussian fits
(full red lines). Only the highest momentum transfer values (i.e.,

3.6 Å
−1 � Q � 4.6 Å

−1
) have been considered for such an analysis.

Spectra, derived from data plotted in Fig. 3, have been vertically
shifted (0.1 Å) for graphic reasons.

It turned out that the values obtained were 〈Ek〉 = (61 ± 3)
K and (58 ± 3) K, respectively, for samples Nos. (4) and
(5). In Fig. 10, we have reported the y-scaled experimental

data for sample No. (5) for 3.6 Å
−1 � Q � 4.6 Å

−1
together

with their best multi-Gaussian fits. We can easily observe
that despite the good quality of the fit, the reconstruction
of the peak profile is only hypothetical since experimental
data do not cover all the y range needed for a full evaluation
of 〈y2〉. In particular, the peak tails, which contribute in a
substantial way to the 〈y2〉 evaluation, were not completely
probed by the present neutron measurements and had to
be extrapolated by the fitting procedure. For this reason,
we think that the moderate agreement between simulated
values, namely, 〈Ek〉 = (71.1 ± 0.7) K and (68.1 ± 0.7) K,
respectively, for samples Nos. (4) and (5) as from Table II, and
experimental ones is not to be regarded as a serious problem.

C. Studying the non-Gaussian components

The non-Gaussian contributions to the c.m. self-dynamics
structure factor, dubbed δnGASs,c.m.(Q,E), can be easily ob-
tained from

δnGASs,c.m.(Q,E) = Ss,c.m.(Q,E) − S(GA)
s,c.m.(Q,E), (9)

where both the experimental Ss,c.m.(Q,E) and the CMD-
simulated S(GA)

s,c.m.(Q,E) are meant to include the instrumental
energy resolution �E(E), which, as seen in Sec. III, is not
constant, but slowly varying with E. It is reasonable to
describe the resolution effect via a convolution with a Gaussian
function Gσ (E)(E), where the parametric dependence on σ (E)
is given by σ (E) ≈ 0.4246609�E(E + E0−1). Results for the
non-Gaussian contributions in samples Nos. (4) and (5) are
reported in Figs. 11 and 12, respectively, for some selected

Q values ranging from 1.4 to 4.2 Å
−1

. We immediately see
that the two δnGASs,c.m.(Q,E) spectral sets look very similar
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FIG. 11. (Color online) Non-Gaussian components of the self-
part of the para-hydrogen center-of-mass dynamic structure factor
δnGASs,c.m.(Q,E), in the H2-D2 mixture sample No. (4) (i.e. c[H2] =
24%, see Table I) shown for some selected Q values ranging from

1.4 Å
−1

(black full line, bottom) to 4.2 Å
−1

(full orange line, top).
Spectra have been vertically shifted (0.002 meV−1) for graphic
reasons.
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to each other, as far the overall shape is concerned, while,
dealing with the intensity, sample No. (4) (c[H2] = 24%)
exhibits non-Gaussian components which are substantially
more intense than those belonging to sample No. (5) (c[H2] =
50%). Focusing on a single data set, one can observe the Q

variation of these spectral components even though they are
slightly noisy: most of the intensity is localized in the (−5–5)
meV energy range, becoming first positive and then negative,
followed by other weaker oscillations at larger E values.

Spectra tend to grow from Q = 1.4 Å
−1

to a maximum around

2.2 Å
−1

, then they quickly lose intensity (at about 2.6 Å
−1

),

and finally decrease very slowly up to Q = 4.2 Å
−1

.
Following Refs. [46] and [47], it is possible to write the

non-Gaussian contributions as

δnGASs,c.m.(Q,E) =
∫ ∞

−∞
dE′Gσ (E)(E − E′)

Q4

4π�

×
∫ ∞

−∞
dt e−iE′

�
−1t−Q2γ1(t)γ 2

1 (t)α2(t)

= Q4

4π�

∫ ∞

−∞
dt exp

[
−iE�

−1t − σ 2(E)t2

2�2

]

× e−Q2γ1(t)γ 2
1 (t)α2(t), (10)

where α2(t) is the first correction term to the GA [46,47], which
is actually unknown. So, since Gσ (E)(E) is experimentally
known and γ1(t) can be derived from the quantum simulations,
the spectra reported in Figs. 11 and 12 provide useful
information on α2(t) for samples Nos. (4) and (5). Since
α2(t) is independent of Q there is no need to work on all
the spectra contained in each data set. It is enough to select a
Q value connected with the most intense δnGASs,c.m.(Q,E)

components (i.e., 2.2 Å
−1

), to evaluate the corresponding
exp[−Q2γ1(t)]Q4γ 2

1 (t)/2 data, and, finally, to approximately

-10 0 10 20 30

-0.005

0.000

0.005

0.010

0.015

0.020

Q:
4.2 Å -1

3.8 Å -1

3.4 Å -1

3.0 Å -1

2.6 Å -1

2.2 Å -1

1.8 Å -1

1.4 Å -1δ nG
A
S

s,
cm

(Q
,E

) 
(m

eV
-1
)

No. (5), T=20.26 K, c [H
2
]=50%

E (meV)

FIG. 12. (Color online) Non-Gaussian components of the self-
part of the para-hydrogen center-of-mass dynamic structure factor
δnGASs,c.m.(Q,E), in the H2-D2 mixture sample No. (5) (i.e., c[H2] =
50%, see Table I) shown for some selected Q values ranging from

1.4 Å
−1

(black full line, bottom) to 4.2 Å
−1

(full orange line, top).
Spectra have been vertically shifted (0.002 meV−1) for graphic
reasons.
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FIG. 13. (Color online) Main panel: non-Gaussian components
of the self-part of the para-hydrogen center-of-mass dynamic structure

factor δnGASs,c.m.(Q = 2.2 Å
−1

,E), in the H2-D2 mixture samples No.
(4) (thin blue histogram) and (5) (thick red histogram), together
with the corresponding Fourier transforms of exp[−σ 2(0)t2/(2�

2) −
Q2γ1(t)]Q4γ 2

1 (t)/2, plotted as thin black dashes and thick green
dashes, respectively. The latter two (simulated) spectra have been
scaled for graphic reasons. Inset: modulus (symbols plus line) of the
first non-Gaussian coefficient α2(t) for samples Nos. (4) (full blue
circles) and (5) (empty red circles). These two full lines are only a
guide for the eye, while the dotted black line represents |α2(t)| for
pure para-hydrogen elaborated from data in Ref. [7].

extract α2(t) through a Fourier antitransform:

α2(t) ≈
∫ ∞
−∞ dE exp

(
i Et

�

)
δnGASs,c.m.(Q,E)

1
2 exp

[− σ 2(E=0)t2

2�2 − Q2γ1(t)
]
Q4γ 2

1 (t)
, (11)

making use of a fixed energy resolution [namely, its value at
the j = 0 → j ′ = 1 rotational line of H2, �E(E0−1)] since
this quantity does not change too rapidly in the energy transfer
range where most of the signal intensity is located. However,

due to the fact that for Q = 2.2 Å
−1

one has �E(E0−1) =
2.54 meV, then time values larger than tM = 0.815 ps are
gradually less and less meaningful: unfortunately, the energy
resolving power of the spectrometer does not allow inferring
information on the long-time behavior of α2(t), but only on its
onset. It is worth noting that in Eq. (11) one always deals with
complex functions, so α2(t) comes out with two components:
Re[α2(t)] and Im[α2(t)]. In the main panel of Fig. 13, we have

plotted δnGASs,c.m.(Q = 2.2Å
−1

,E) together with the Fourier
transform of exp[−σ 2(0)t2/(2�

2) − Q2γ1(t)]Q4γ 2
1 (t)/2, still

for samples Nos. (4) and (5); while in the inset of Fig. 13,
we have reported the modulus of α2(t), |α2(t)| for both the
aforementioned samples. In addition, |α2(t)| for pure liquid
para-hydrogen at T = 15.7 K and n = 22.53 nm−3, derived
from data in Ref. [7], has been also plotted. The comparison of
the latter sample with the two mixtures makes sense, although
its temperature was rather lower than that of the mixtures,

because the H2 diffusion coefficient Ds = 0.495 Å 2ps
−1

[7],
lies between the two mixture values [see simulations Nos.
(vi) and (x) in Table II]. One can see that while the behavior
of |α2(t)| for the two mixtures is similar, even though the
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non-GA correction is clearly more intense in the higher density
(and lower H2 concentration) case, the same quantity in pure
liquid para-hydrogen looks rather different, starting close to
the corresponding curve for sample No. (4), but then getting
more intense and growing for a longer time. The physical
interpretation of these findings is not straightforward at the
moment, but it is not unrealistic to think that it is related to
the intensity of the cage effects on H2 molecules caused by the
presence of heavier D2 molecules, which are obviously absent
in the pure H2 sample. As for possible comparisons between
the non-Gaussian self-dynamics in H2 (and H2-D2 mixtures)
on one side, and that in other systems on the other, we will limit
ourselves to a few general comments: We have shown in a very
recent paper [47] that what might exhibit a strong mathematical
analogy reveals, on the other hand, deep physical differences
which practically prevent such comparisons. As a matter
of fact, the non-Gaussian components of the intermediate
self-scattering function Is(Q,t) can be classed in three broad
groups completely disconnected from one another: (i) strongly
quantum fluid (e.g., superfluid 4He) where the short-time
behavior of non-Gaussian components of the Is(Q,t) is
dominated by t4; (ii) semiquantum fluids (e.g., liquid H2, D2

and their mixtures) where the short-time behavior of these
physical quantities is dominated by t5; (iii) classical liquids,
where this short-time behavior is dominated by t8. It is evident
from this fact that the mechanisms which control the origin
of the non-Gaussian self-dynamics have to be completely
different in the three aforementioned groups.

However, despite these profound physical differences, we
think that a possible analogy between semiquantum liquids on
one side, and polymers and other soft-matter systems on the
other, could be established (as far as the breakdown of the GA
is concerned) in the light of the isomorphism (see Sec. IV)
between a single quantum delocalized particle and a fictitious
cyclic chain including a large number of classical particles
(the so-called “beads”). We have seen that this is the core of
the PIMC simulation procedure as well as various dynamic
techniques derived from it (e.g,. CMD and RPMD). By
taking into account the phenomenological description of the
classical non-Gaussian self-dynamics provided by Tsang [48],
we manage to draw an interesting picture of this fascinating
physical phenomenon. At the end of his paper, Tsang states
that the function Is(Q,t) deviates from a Gaussian function
of Q at time t because it can be expressed as a sum of
Gaussian functions Is(u1|Q,t) weighted by the probability
distribution p(u1). We remind that, according to Tsang, if “0”
is the tagged particle, then u1 is the velocity component for its
nearest neighbor particle “1” projected onto the position vector
(�r0 − �r1). This deviation from a Gaussian functional shape,
generally speaking, comes from the non-Gaussian nature of the
fluctuating random force �A10(t), acting on the tagged particle
“0” and originated from its nearest neighbor particle “1.” In
the case of a classical system, the non-Gaussian interparticle
forces can be associated with the strong and long-lasting
spatial correlations between a molecule and its surroundings
like, for example, in the well-known “caging effect.” In a
semiquantum system, on the other hand, monomers (i.e., the
fictitious “beads”) isomorphically represent a single quantum
particle coherently delocalized over a certain volume. Each

bead interacts with its two nearest neighbors (in the same chain
polymer) via the so-called “quantum harmonic potential”:
U (x) = mHP�

−2k2
BT 2x2 (x being the distance between two

adjacent beads), but also with the all the corresponding beads
belonging to the other fictitious cyclic chains through the
standard intermolecular potential P −1V (r) [49]. Thus, both
quantum coherence and intermolecular interactions have to be
considered in order to give rise to an analogous pseudocaging
effect. Needless to say, this comparison between soft matter
systems and semiquantum fluids has been just sketched and
surely deserves further attention.

VI. CONCLUSIONS

In conclusion, in this study we have measured the incoher-
ent inelastic neutron spectrum of liquid para-hydrogen mixed
with normal deuterium (T = 20 K) at two different H2 molar
concentrations (namely, 24% and 50%) using the time-of-
flight neutron spectrometer IN4C [14]. The recorded double-
differential cross sections have provided direct experimental
access to the self-part of the dynamic structure factor for
the H2 centers of mass in the two mixture samples under
observation. Experimental data were corrected for the typical
experimental effects, and then analyzed in the framework
of the generalized Young-Koppel model [10,24] to remove
the contributions from intramolecular (i.e., rotovibrational)
dynamics. In this way, one ended up with a complete mapping
of the H2 center-of-mass self-dynamics structure factor in

the momentum transfer interval (1.4–4.6) Å
−1

and in the
energy transfer interval (−10–40) meV, with an average energy
resolution of about 2–4 meV. The low-momentum transfer
part of the processed data was studied in order to extract
information of the H2 diffusional motion in the liquid mixtures,
despite the fact that IN4C is not the most suitable instrument
for quasielastic neutron scattering studies. However, after a
careful deconvolution procedure, we managed to work out
the spectral features related to the H2 diffusion. They turned
out to be in a reasonable agreement with the self-diffusion
coefficients simulated by quantum calculations or reported
in the literature [39], although our experimental estimates of
the self-diffusion coefficients exhibit a peculiar variation as a
function of the momentum transfer which seems compatible
with a jump-diffusion mechanism, similarly to what has been
observed in bulk liquid n-H2 at T = 15 K [40]. However, at
the present stage, no final conclusion on this subject can be
drawn. In addition, from the high-momentum transfer part of
the processed data the mean kinetic energy of the H2 centers
of mass was estimated making use of the West y scaling [44]
for the molecular translational dynamics in the liquid, and then
compared with accurate quantum calculations. The agreement
was found to be only fairly good because, for intrinsic
kinematic reasons, the y-transformed experimental data were
not complete and had to be extrapolated via a heuristic fitting
procedure. The aforementioned quantum calculations, the
so-called centroid molecular dynamics [3] to be more precise,
also provided estimates of the velocity autocorrelation function
for the H2 centers of mass. These estimates, in conjunction with
the well-known Gaussian approximation [11], were used to
simulate the H2 center-of-mass self-dynamics structure factor
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in the same range as the experimental one. This simulation was
particularly useful for the intermediate momentum transfer
spectra where the complex crossover regime from diffusion
to almost-free recoil was understood in a clear and sound
physical framework. However, the agreement between mea-
sured and calculated spectra was globally good, but some
discrepancies (particularly relevant in the momentum transfer

range (1.8–3.2) Å
−1

) proved the unquestionable breakdown
of the Gaussian approximation in these semiquantum systems
at a level slightly lower than that already observed in pure
liquid para-hydrogen [7,8], but clearly depending on the
molecular density of the sample. Thus, the present results
appear of great interest, confirming our old preliminary and
incomplete measurements [13], and suggesting the need to
apply some care in the use of the Gaussian approximation
with H2-containing semiquantum fluids. In addition, it is also
suggested that detailed quasielastic neutron scattering studies
on the H2 motion in the hydrogen-deuterium liquid mixtures
in order to clarify the nature of the diffusion mechanism are
greatly needed.
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APPENDIX A

The Egelstaff and Schofield (ES) model for the self-
dynamics structure factor S(ES)

s (Q,E) of a monatomic fluid has
been originally devised [50] in a classical framework. Despite
the existence of an analytical expression for S(ES)

s (Q,E)
provided by this model, it is much easier and physically
more meaningful to report its time Fourier transform, i.e., the
self-intermediate scattering function I (ES)

s (Q,t), which reads
as

I (ES)
s (Q,t) = exp

[− Q2Ds

(√
t2 + τ 2

0 − τ0
)]

, (A1)

where τ0 = DsM/(kBT ) with M being the atomic mass. So,
in the long-time limit (t → ±∞), where

√
t2 + τ 2

0 − τ0 ≈ |t |,
the ES model tends to the standard diffusional behavior [20]

I (ES)
s (Q,t) ≈ exp(−Q2Ds |t |). (A2)

On the contrary, for short values of time (t → 0±), where√
t2 + τ 2

0 − τ0 ≈ t2/(2τ0), the ES model converges to the
classical (i.e., without recoil) free gas behavior [20]

I (ES)
s (Q,t) ≈ exp

(
−Q2 kBT

2M
t2

)
. (A3)

The ES model can be surely interpreted in the framework of
the classical version of the GA [20]

Is(Q,t) = exp

{
−Q2kBT

M

∫ ∞

0

p(ω)

ω2
[1 − cos(ωt)]dω

}
,

(A4)

so to give, after a double differentiation and a cosine transform
inversion, a simple expression for the power spectrum of the
classical VACF, p(ω):

kBT

M

∫ ∞

0

pES(ω)

ω2
[1 − cos(ωt)]dω = Ds

(√
t2 + τ 2

0 − τ0
)
;

∫ ∞

0
pES(ω) cos(ωt)dω = τ 3

0

(
t2 + τ 2

0

)−3/2
; (A5)

pES(ω) = 2τ0

π
τ0ωK1(τ0ω),

with K1(x) being a modified Bessel function of the second
kind (first order). In this way, pES(0) = 2MDs/(πkBT ) as
expected. Various attempts have been accomplished in order
to extend the ES model to quantum fluids, all led by the idea to
keep a simple three-parameter (T , M , and Ds) expression. The
most common correction scheme (ES∗) yields the following
analytical expression for the quantum Is(Q,t) [25]:

I (ES∗)
s (Q,t) = exp

{
−Q2Ds

[√
t

(
t − i

�

kBT

)
+ τ ′2

0 − τ ′
0

]}
,

(A6)

where τ ′
0 =

√
τ 2

0 + �2/(2kBT )2. Here, we report a different
approach to devise a simple quantum Egelstaff and Schofield
(QES) model. The starting point is the correct quantum GA
[11]:

Is(Q,t) = exp[−Q2γ1(t)]

= exp

(
−�Q2

2M

∫ ∞

0

f (ω)

ω

{
coth

(
�ω

2kBT

)

× [1 − cos(ωt)] − i sin(ωt)

}
dω

)
, (A7)

where γ1(t) is one third of the time-dependent c.m. mean
square displacement, and f (ω) is defined in Eq. (2). However,
it is simpler to make use of a fully equivalent formalism:
the GA for the symmetrized intermediate scattering function
Ĩ (Q,t), which is a real function and reads as [11]

Ĩs(Q,t) = I

(
Q,t + i

�

2kBT

)
= exp[−Q2γ̃1(t)]

= exp

{
−�Q2

2M

∫ ∞

0

f (ω)

ω
coth

(
�ω

2kBT

)

×
[

1 − cos(ωt)sech

(
�ω

2kBT

)]
dω

}
. (A8)

We can see that in the classical limit (� → 0), Eq. (A8)
coincides with Eq. (A4) provided that f (ω) = pES(ω). Thus,
our version of the QES method is simply based on Eq. (A8)
itself together with the ansatz

fQES(ω) = 2τ0

π
τ0ωK1(τ0ω). (A9)
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Putting all the parts together, one finally writes

S(QES)
s (Q,E) = eE/(2kBT )

2π�

∫ ∞

−∞
e−i�−1Et

× exp

{
−�τ 2

0 Q2

πM

∫ ∞

0
K1(τ0ω) coth

(
�ω

2kBT

)

×
[

1 − cos(ωt)sech

(
�ω

2kBT

)]
dω

}
dt, (A10)

where the link between S̃s(Q,E) and Ss(Q,E) has been
also used. The QES model is correctly normalized (zeroth
moment), exhibits an exact recoil (first moment), complies
with the detailed balance, and shows a rigorous long-time
diffusional behavior. However, as far as the second moment
(and the following ones) are concerned, results are only
approximate. For example, the single-particle mean kinetic
energy 〈Ek〉 comes out to be given by

〈Ek〉 = 3�τ 2
0

2π

∫ ∞

0
ω2K1(τ0ω) coth

(
�ω

2kBT

)
dω, (A11)

which in general is not exact, even though its classical limit
(� → 0) is indeed correct: 〈Ek〉 = 3kBT /2. As an example, we
report the results from Eq. (A11) in conjunction with the dif-
fusion coefficients of the simulated sample (vi) (see Table II),

namely, Ds,H2 = 0.535 Å
2

ps−1 and Ds,D2 = 0.499 Å
2

ps−1.
CMD provides the following results for the mean kinetic
energy extracted from the VACF spectra: 〈Ek〉fH2

= 67.44 K

and 〈Ek〉fD2
= 52.09 K, while the QES model gives 〈Ek〉H2 =

117.40 K and 〈Ek〉D2 = 68.70 K, which are overestimated for
both isotopes. The latter pair of kinetic energy values can
be compared with the corresponding figures obtained in the
framework of the quantum corrected ES∗ model devised in
Ref. [25] and reported in Eq. (A6):

〈Ek〉 = 3

2
kBT

(
1 + �

2

4M2D2
s

)
, (A12)

namely, 〈Ek〉H2 = 290.07 K and 〈Ek〉D2 = 104.91 K, which
are even more largely overestimated. The reason of the worse
performance by the model in Eq. (A6) with respect to the
QES one is easily explained if one considers the functional
form of f (ω) in the two cases. As a matter of fact, it is
possible to show that Eq. (A6) is fully equivalent to the
quantum GA in Eq. (A7) once the following VACF spectrum is
assumed:

fES∗ (ω) = 4DsM

�π
sinh

(
�ω

2kBT

)
τ ′

0K1(τ ′
0ω). (A13)

In the classical limit (� → 0), fES∗ (ω) coincides with pES(ω)
[and thence with fQES(ω)], but if quantum effects become
important then fES∗ (ω) develops a long tail at large ω values
(caused by the hyperbolic sine) which makes 〈Ek〉 grow in an

excessive way. For this reason, we think that our version of the
ES model (made suitable for quantum systems) offers better
results than the approach reported in Ref. [25].

APPENDIX B

The spectrum f (ω) of the velocity autocorrelation function
[11] in the case of a liquid can be split in two parts:
a diffusional component fd (ω) plus a solidlike component
fsl(ω), where fd (0) = f (0) = 2MDs/(πkBT ), and fsl(0) =
0. For example, one could assume fd (ω) to have a functional
form similar to that of fQES(ω) in Eq. (A9), namely,

fd (ω) = f (0)ωτ1K1(ωτ1);
(B1)

fsl(ω) = f (ω) − f (0)ωτ1K1(ωτ1),

with τ1 being an adjustable parameter to be set in a way that the
solidlike behavior of the liquid is reasonably well described.
For example, a possible approach for the τ1 determination
could exploit the relationship between the low-ω trend of
fsl(ω) and the effective Debye temperature θD of the liquid
under investigation (e.g., derived from its sound velocity [51]).
Another approach could exploit the value of the solidlike mean
square displacement 〈�u2〉sl [related to fsl(ω) by a well-known
relationship [20]], which should approximately correspond
to the same physical quantity in a (hypothetical) polycrys-
talline solid 〈�u2〉pc, scaled to exhibit similar density and
temperature:

〈�u2〉sl ≈ Asl〈�u2〉pc, (B2)

where Asl is the total fsl(ω) normalization and is given by
1 − DsM/(τ1kBT ).

Operating this f (ω) separation in the GA definition, i.e., in
Eq. (A7), one can write

Is(Q,t) = exp

(
− �Q2

2M

∫ ∞

0

fd (ω)

ω

{
coth

(
�ω

2kBT

)

× [1 − cos(ωt)] − i sin(ωt)

}
dω

)

×
∞∑

n=0

1

n!

(−�Q2

2M

)n(∫ ∞

0

fsl(ε)

ε

{
coth

(
�ε

2kBT

)

× [1 − cos(εt)] − i sin(εt)

}
dε

)n

(B3)

or, equivalently,

Is(Q,t) = exp
[− Q2γ

(d)
1 (t)

] ∞∑
n=0

[− Q2γ
(sl)
1 (t)

]n

n!
, (B4)

as implemented in Eq. (5). Alternatively, one can factorize the
solidlike Debye-Waller factor too:

Is(Q,t) = exp
[− Q2γ

(d)
1 (t) − 2W (sl)(Q)

] ∞∑
n=0

[
Q2U

(sl)
1 (t)

]n

n!
, (B5)
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where

2W (sl)(Q) = 1

3
〈�u2〉slQ2 = �Q2

2M

∫ ∞

0

fsl(ε)

ε
coth

(
�ε

2kBT

)
dε;

U
(sl)
1 (t) = �

2M

∫ ∞

0

fsl(ε)

ε

[
coth

(
�ε

2kBT

)
cos(εt) + i sin(εt)

]
dε. (B6)

Performing the Fourier transform of Eq. (B5), one finally writes the so-called multiphonon expansion of the solidlike self-
scattering law:

Ss(Q,E) = S(d)
s (Q,E) ⊗

∞∑
n=0

S(sl,n)
s (Q,E) = S(d)

s (Q,E) ⊗
∞∑

n=0

e−2W (sl)(Q)
∫ ∞

−∞

dt

2�π
e−i�−1Et

[
Q2U

(sl)
1 (t)

]n

n!
, (B7)

where ⊗ stands for the convolution product and S(d)
s (Q,E) is simply given by

S(d)
s (Q,E) =

∫ ∞

−∞

dt

2�π
exp

[ − i�−1Et − Q2γ
(d)
1 (t)

]
. (B8)

The first two terms in the sum of Eq. (B7) can be written explicitly as

S(sl,0)
s (Q,E) = e−2W (sl)(Q)δ(E); S(sl,1)

s (Q,E) = �Q2

4M
e−2W (sl)(Q) fsl(�−1|E|)

E

[
coth

(
E

2kBT

)
+ 1

]
, (B9)

while the rest of the sum, dubbed S(sl,M)
s (Q,E), is given by

S(sl,M)
s (Q,E) = e−2W (sl)(Q)

∞∑
n=2

∫ ∞

−∞

dt

2�π
e−i�−1Et

[
Q2U

(sl)
1 (t)

]n

n!
. (B10)

[1] P. A. Egelstaff, An Introduction to the Liquid State (Clarendon
Press, Oxford, 1994).

[2] A. F. Andreev and Yu. A. Kosevich, Zh. Eksp. Teor. Fiz. 77,
2518 (1979) [,Sov. Phys.–JETP 50, 1218 (1979)].

[3] J. Cao and G. A. Voth, J. Chem. Phys. 100, 5106 (1994).
[4] I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368

(2004).
[5] J. A. Poulsen, G. Nyman, and P. J. Rossky, J. Chem. Phys. 119,

12179 (2003).
[6] K. K. G. Smith, J. A. Poulsen, A. Cunsolo, and P. J. Rossky,

J. Chem. Phys. 140, 034501 (2014).
[7] M. Celli, U. Bafile, D. Colognesi, A. De Francesco, F.

Formisano, E. Guarini, M. Neumann, and M. Zoppi, Phys. Rev.
B 84, 140510R (2011).

[8] U. Bafile, M. Celli, D. Colognesi, M. Zoppi, E. Guarini, A.
De Francesco, F. Formisano, and M. Neumann, J. Phys.: Conf.
Ser. 340, 012076 (2012).

[9] P. Clark Souers, Hydrogen Properties for Fusion Energy
(University of California Press, Berkeley, 1986).

[10] J. A. Young and J. U. Koppel, Phys. Rev. 135, A603 (1964);
V. F. Sears, Can. J. Phys. 44, 1279 (1979).

[11] A. Rahman, K. S. Singwi, and A. Sjölander, Phys. Rev. 126, 986
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