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Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids
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Jamming is a geometric phase transition occurring in dense particle systems in the absence of temperature.
We use computer simulations to analyze the effect of thermal fluctuations on several signatures of the transition.
We show that scaling laws for bulk and shear moduli only become relevant when thermal fluctuations are
extremely small, and propose their relative ratio as a quantitative signature of jamming criticality. Despite the
nonequilibrium nature of the transition, we find that thermally induced fluctuations and mechanical responses obey
equilibrium fluctuation-dissipation relations near jamming, provided the appropriate fluctuating component of
the particle displacements is analyzed. This shows that mechanical moduli can be directly measured from particle
positions in mechanically unperturbed packings, and suggests that the definition of a “nonequilibrium index” is
unnecessary for amorphous materials. We find that fluctuations of particle displacements are spatially correlated,
and define a transverse and a longitudinal correlation length scale which both diverge as the jamming transition
is approached. We analyze the frozen component of density fluctuations and find that it displays signatures of
nearly hyperuniform behavior at large length scales. This demonstrates that hyperuniformity in jammed packings
is unrelated to a vanishing compressibility and explains why it appears remarkably robust against temperature and
density variations. Differently from jamming criticality, obstacles preventing the observation of hyperuniformity
in colloidal systems do not originate from thermal fluctuations.
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I. INTRODUCTION

A jamming transition [1–3] occurs when it becomes too dif-
ficult to compress any further a dense assembly of hard objects,
whose compressibility then vanishes. Remarkably, the same
transition also controls the loss of mechanical rigidity observed
when soft particles are decompressed in the absence of thermal
fluctuations, such as foams or emulsion droplets, whose
bulk modulus then vanishes. In both cases, the key variable
controlling the physics is the particle connectivity, the jamming
transition corresponding to the isostatic situation where just
enough contacts are present to ensure mechanical stability
[4–7]. The distance to isostaticity controls the divergence of
mechanical moduli observed when compressing hard particles
and their vanishing when decompressing soft particles [7,8].
The deep connection between geometry and mechanical
responses shows that the criticality observed in the vicinity
of the transition follows from the unambiguous identification
of particle contacts. Therefore, when thermal fluctuations are
present, for instance when considering colloidal particles (such
as microgels, emulsions, PMMA colloids), the contacts can be
“blurred” by thermal agitation and cannot be resolved, which
challenges the possibility to observe jamming criticality in
experiments. In other words, a thermal system cannot know
how far it is from isostaticity, and the associated criticality is
easily destroyed by temperature [11].

In previous work, the role of thermal fluctuations near
jamming has been explored to understand the influence of
finite temperatures on various physical quantities such as
microscopic dynamics, microstructure, contact number, and
mechanical properties [9–20]. In particular, a computer study
of the single particle dynamics revealed the existence of a very
narrow region in the (density, temperature) phase diagram
where jamming criticality can be observed, which excludes
most colloidal studies to date [11]. More recent experiments

have concentrated on collective static properties, such as
mechanical shear and bulk moduli and structure factors, and
the results were analyzed using power laws that are valid,
strictly speaking, for fully athermal systems [21]. To assess the
validity of this description, one needs to extend the analysis
of Ref. [11] to mechanical moduli to understand whether their
critical behavior is robust against thermal fluctuations. The first
goal of our work is to analyze the effect of thermal fluctuations
on mechanical moduli near jamming.

Another property characterizing jammed packings is their
hyperuniformity, which was revealed by analyzing the large-
distance scaling of volume fraction fluctuations [22]. For
monodisperse spherical particles of diameter σ , this reduces
to studying the ordinary static structure factor S(k), whose
low-wave-vector behavior obeys a nontrivial, characteristic
linear behavior S(kσ � 1) ∼ k, which shows that density fluc-
tuations are suppressed at large scale [22,23]. This behavior
has been observed numerically in particle packings prepared
exactly at the jamming transition [22–26], and experimentally
in athermal granular materials [25]. Experiments performed
with colloidal particles appear challenging and report only very
weak signs of hyperuniformity [27–29]. A possible explana-
tion could be that hyperuniform behavior is blurred by thermal
fluctuations, as are other signatures of the jamming transition.
However, hyperuniformity is a property of the packings at large
length scale and the above argument regarding the resolution
of particle contacts is not obviously relevant. Therefore, if
hyperuniformity were affected by thermal fluctuations acting
at the (vanishingly small) contact length scale, it would
directly establish that hyperuniformity is another critical
property associated to the jamming transition. The second
goal of our work is to test whether hyperuniformity is
robust against thermal fluctuations, and, more fundamentally,
whether hyperuniformity is deeply related to the jamming
transition, or is instead a distinct phenomenon.
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Thermal fluctuations in jammed packings not only raise
practical issues about experimental observations, they also
pose fundamental challenges related to the nonequilibrium
nature of the jamming transition. As mentioned above,
mechanical moduli display power-law behavior near jamming
at zero temperature. However, for materials at thermal equi-
librium, mechanical response functions are directly related to
mechanical fluctuations induced by thermal motion and thus
to equilibrium structure factors through fluctuation-dissipation
relations [30,31]. Near the nonequilibrium jamming transition
at finite temperatures, two behaviors are then possible:

(1) Fluctuations and responses do not obey equilibrium
relations, so that mechanical moduli and structure factors
have independent density and temperature dependencies. This
hypothesis suggests that it could be useful to introduce
novel variables to quantify deviations from equilibrium re-
lations, such as nonequilibrium index [32,33] or effective
temperatures [34,35], generically defined as ratios between
fluctuations and responses. In that case, structure factors live
an independent life from mechanical responses, and they
may display an independent set of critical properties, but
they may also have unremarkable behavior near jamming.
This general hypothesis has been advocated in particular in
Refs. [32,33], where a diverging nonequilibrium index and
a diverging nonequilibrium length scale were defined from
fluctuations and responses of hard sphere systems approaching
jamming [32], and later extended to generic amorphous
solids [33].

(2) Fluctuations and responses obey equilibrium relations,
and the critical behavior of mechanical moduli should have a
counterpart in fluctuations of particle positions and structure
factors. In that case, if thermal fluctuations are finite (but
still sufficiently small that they do not blur the jamming
criticality!), interesting critical behavior should be observed in
density fluctuations of mechanically unperturbed packings. In
particular, one may expect the emergence of diverging length
scales in collective structure factors of jammed materials.

The third goal of our work is to decide which of the two
above scenarios is valid, and whether interesting length scales
and nonequilibrium indicators emerge from the analysis of
structure factors.

To achieve our three main goals, we use computer simu-
lations of a simple model of soft harmonic particles [36] to
analyze the influence of thermal fluctuations on mechanical
responses and structure factors in the vicinity of the jamming
transition. Harmonic spheres are convenient because they
allow studies of multiple, experimentally relevant, routes
to jamming in the (density, temperature) phase diagram
[7,14,36–39]. Therefore, a single model provides us with
decisive answers to the three sets of questions mentioned
above, that can be summarized as follows. (i) We find that
mechanical moduli are as sensitive to thermal fluctuations as
single particle dynamics and their associated power-law behav-
ior is not a good starting point to theoretically describe existing
colloidal experiments. (ii) By contrast, hyperuniformity is
extremely robust to the addition of thermal perturbations,
and even to changes in packing fraction, suggesting that
it should in fact be far easier to observe in experiments
than the jamming criticality, even though the present state
of the literature suggests the opposite. We also conclude

that hyperuniformity bears no deep relation to the jamming
transition, and in particular we show that it is fully unrelated
to the critical behavior of the mechanical compressibility.
(iii) Equilibrium fluctuation-dissipation relations are perfectly
obeyed near jamming, suggesting it is unnecessary to define
quantitative indicators for the degree of “nonequilibriumness”
near jamming. It also implies that structure factors display
critical properties and reveal diverging length scales, that we
define, analyze, and compare to previously studied critical
length scales.

This article is organized as follows. In Sec. II, we define
the model and our numerical strategy. In Sec. III, we analyze
the behavior of mechanical moduli. In Sec. IV, we define and
analyze the behavior of structure factors and their associated
length scales. In Sec. V, we discuss the hyperuniformity of
jammed packings. In Sec. VI, we summarize and discuss our
results.

II. MODEL AND SIMULATION

We consider a system of monodisperse harmonic spheres,
interacting through a pairwise potential [36]

v(rij ) = ε

2
(1 − rij /σ )2�(σ − rij ), (1)

where �(x) is the Heaviside function, rij is the distance
between particles i and j , and σ is the particle diameter.
Throughout this work, length, energy, temperature, and me-
chanical moduli are measured in units of σ , ε, ε/kB , and
ε/σ 3, respectively.

We use molecular dynamics simulations [40] to compute the
mechanical moduli and static structure factors of the system at
finite temperature. The setting of the calculations is essentially
similar to our previous work [11]. We first generate a random
configuration of N = 64 000 particles in a simulation box with
periodic boundary conditions. The linear dimension of the
box L is adjusted to realize the packing fraction ϕ = 0.80,
where ϕ = πσ 3N/(6L3). Starting from this configuration, we
perform molecular dynamics simulations at T = 10−5, where
we integrate Newton’s equations of motion using velocity
rescaling to control the temperature. This can be seen as an
extensive aging of the system starting from T = ∞ down
to T = 10−5. We find that temperature is low enough that
aging dynamics eventually stops and the energy and average
particle positions reach well-defined values that do not depend
on waiting time any longer. After this long annealing of
the system, we change the density and temperature to the
desired values smoothly, letting the system relax at each state
point before taking any measurement. This protocol allows
us to study essentially the same particle packing at different
densities and temperatures. We do not study temperatures
larger than T = 10−5, and in the studied regime particle
diffusion and rearrangements can be safely neglected.

At each state point, we then perform molecular dynamics
simulations to calculate the mechanical moduli and static struc-
ture factors, where we integrate Newton’s equations of motion
in the NVE ensemble, i.e., without thermostat. We denote the
long-time average in these calculations with brackets 〈. . .〉.
For the particular configuration which is analyzed extensively
in this work, the jamming density is ϕJ � 0.648.
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For the specific purposes of Sec. V, we also calculate
the static structure factor of jammed harmonic spheres with
a larger number of particles N = 512 000, at strictly zero
temperature. To this end, we generate a random configuration
of particles in a simulation box with ϕ = 0.80, and then
apply the FIRE algorithm to minimize the potential energy of
the system at this density [41]. Starting from this jammed
configuration, we decrease the density by small steps and
minimize the potential energy after each step to obtain a series
of jammed particle configurations over a range of densities [7].
To increase the statistics of the results obtained for these zero-
temperature packings, we followed this procedure starting
from eight independent random configurations, and finally
averaged the results over these independent runs. For this
series of simulations, we find that ϕJ � 0.64571 ± 0.00012,
where the error bar indicates the standard deviation among
independent packings. Averaging over those configurations
is therefore accurate as long as the distance to the jamming
density is larger than |ϕ − ϕJ | ≈ 0.0001.

III. MECHANICAL MODULI
AND JAMMING CRITICALITY

In this section, we analyze the temperature and density de-
pendencies of bulk and shear moduli of harmonic spheres in the
vicinity of the jamming transition occurring at (T = 0,ϕ = ϕJ ).

A. Bulk modulus

We start our analysis with the calculation of the bulk
modulus. The isothermal bulk modulus B quantifies the
resistance of the system to compression. Its definition then
naturally involves the pressure (noted P ) derivative of the
volume (noted V )

B = −V

(
∂P

∂V

)
T

. (2)

We first calculate B through the response formula (2), where
the pressure P is calculated from the virial formula

P = ρT + 〈W 〉
V

, (3)

where W = ∑
ij rij v

′(rij )/3 is the virial [31]. The bulk
modulus is of course inversely proportional to the isothermal
compressibility B = 1/χT . In practice, we measure the pres-
sure for various densities, and estimate the derivative in Eq. (2)
using finite differences, which suggests that compressions or
decompressions yield the same results. The numerical results
are shown with open symbols and dashed lines in Fig. 1.

The density dependence of the bulk modulus strongly
depends on the temperature. At lower temperature, e.g., T =
10−8, the bulk modulus increases very sharply with density
when ϕ < ϕJ , and becomes essentially density independent
when ϕ > ϕJ . This behavior can be understood as a smooth
crossover between the jamming of Brownian hard spheres
and the unjamming of non-Brownian soft spheres. For ϕ <

ϕJ and T → 0, the particles have vanishing overlaps and
essentially explore hard sphere configurations. The pres-
sure of hard spheres diverges at the jamming transition as
P ∼ T (ϕJ − ϕ)−1, and as a result the bulk modulus behaves

(a)

(b)

(c)

FIG. 1. (Color online) Density dependence of various quantities
for different temperatures indicated in the label. (a) Bulk modulus.
Results from the pressure derivative [Eq. (2)] are shown with open
symbols and dashed lines, results from the fluctuation formula
[Eq. (6)] are shown with filled symbols and solid lines. (b) Shear
modulus obtained from Eq. (7). Open diamonds indicate data for
T = 0 obtained from response functions [7]. (c) Ratio of the bulk to
shear modulus. The vertical dashed line indicates the location of the
T = 0 jamming transition at ϕJ � 0.648.

as [42]

B ∼ T (ϕJ − ϕ)−2, (4)

which underlies both the critical nature of the transition and
the entropic origin of solidity in hard particle systems. Our
numerical results for ϕ < ϕJ can be well fitted with this
power-law divergence. Equivalently, Eq. (4) implies that the
isothermal compressibility χT vanishes quadratically with
(ϕJ − ϕ) in this regime.
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On the other hand, for ϕ > ϕJ at lower temperatures,
particles may have finite overlaps, and thermal fluctuations
play a small role. Thus, the system corresponds to non-
Brownian soft spheres. For this system, the pressure emerges
continuously at the jamming transition P ∼ (ϕ − ϕJ ), and thus
the bulk modulus is expected to be [7]

B ∼ const. (5)

Again, this behavior is in good agreement with the results
shown in Fig. 1.

When temperature is increased above T = 10−8, the dif-
ference of behavior observed on both sides of the transitions
becomes smaller, and for the largest studied temperature T =
10−5, the bulk modulus is a smooth function of density across
ϕJ . This shows that systems characterized by T = 10−5 (in
units of the particle softness ε [15]) are unable to reveal signs
of the underlying jamming transition at T = 0. In particular,
the solid behavior of these systems is better interpreted as
resulting from hitting a glass transition line Tg(ϕ) [43]. This
qualitative behavior is consistent with our previous discussion
of the single particle dynamics [11].

We now use a different approach to compute the bulk
modulus which does not involve a response function, but stems
instead from studying thermal fluctuations in a mechanically
unperturbed material. Within the framework of equilibrium
statistical mechanics, the bulk modulus can be directly related
to the fluctuations of the pressure. In the NVE ensemble that
we use to compute the pressure fluctuations, the formula for
the isothermal bulk modulus reads as [40]

B = P + 〈W2〉
V

− 〈P 2〉 − 〈P 〉2

T
V + 2

3
ρT − T γ 2

V

ρcV

, (6)

where W2 = ∑
ij [rij v

′(rij ) + r2
ij v

′′(rij )]/9 is the hyper-virial,
cV is the specific heat per particle, and γV is the thermal
pressure coefficient [40]. The last term in Eq. (6) arises because
we work in the microcanonical ensemble where the energy is
conserved.

We have calculated the bulk modulus through Eq. (6),
and report the results as filled symbols in Fig. 1. Clearly,
the results are in excellent agreement with those obtained
from the response formula (2). Therefore, we conclude that
fluctuations and response functions yield identical results
for repulsive colloidal particles near jamming over a broad
range of densities and temperatures. The natural interpretation
is that equilibrium relations appear satisfied because deeply
jammed solids dynamically explore a restricted portion of
the configurational space located near a metastable amor-
phous configuration. In other words, the system is locally
in equilibrium, even though ergodicity is globally broken.
Using the language of the two-temperature scenario for aging
glasses [34], the thermal fluctuations that are probed in the
present system correspond to the fast degrees of freedom that
appear locally equilibrated at the temperature of the thermal
bath. This physical perspective justifies why it is unnecessary
to introduce an effective temperature for the slow degrees of
freedom because these are completely frozen in the type of
analysis that we perform. In other words, vibrational motion
does not reveal the nonequilibrium nature of the glass.

Our results seem to contradict previous work [32] intro-
ducing a nonequilibrium index X to quantify deviation from
equilibrium behavior between the bulk modulus B (measured
as a response function) and the small-wave-vector limit of
the static structure factor S(k → 0), which reduces to the
isothermal compressibility ρT χT for equilibrium fluids. In
Sec. IV, we clarify the relation between structure factors,
pressure fluctuations, and compressibility, and show that the
physical content of the “nonequilibrium” index introduced in
Ref. [32] can in fact be fully understood in terms of equilibrium
fluctuation-dissipation relations.

B. Shear modulus

We now turn to the analysis of the shear modulus G.
There are several ways to compute the shear modulus in
numerical simulations [40]. The first option is to use global
fluctuations. Just as the bulk modulus can be determined
from the fluctuations of the pressure, the shear modulus can
be obtained from the fluctuations of the shear stress. We
have first tried to use this approach to calculate the shear
modulus, but found that an accurate determination of G is
not easy because the fluctuation formula requires to take the
difference between large numbers which largely cancel and
have important statistical fluctuations.

To overcome this problem, we use the alternative method
introduced in Ref. [44]. In this approach, the shear modulus is
calculated as the k → 0 limit of the the correlation function of
the transverse displacement ST (k):

G = lim
k→0

ρT

ST (k)
. (7)

The precise definition and detailed analysis of ST (k) will
be given in Sec. IV [see Eq. (21)]. For the moment, we
simply notice that the determination of G from Eq. (7)
clearly stems from spontaneous fluctuations, and this approach
thus differs from earlier determinations based on response
functions [7]. Here, we concentrate on the temperature and
density dependencies of the shear modulus G, and report our
results in Fig. 1. Note that this definition of the shear modulus
does not require testing the validity of linear response, and
does not depend either on the chosen direction for shearing.
Although the shear modulus measured as a response function
may depend on the direction of shear [45], all the directions
of the shear modes are averaged out in the definition of ST (k)
that we use in Eq. (21).

First, we check the validity of the fluctuation formula (7).
To this end, we compare our results to the shear modulus
obtained from the response function in Fig. 1. Although the
available data are limited to the density above ϕJ at T = 0 [7],
our results at lower temperature are quantitatively the same as
the data from the response function at T = 0. This confirms
that fluctuations and response functions yield identical results
for the shear modulus as well. A similar agreement between re-
sponse and correlations for the shear modulus was reported in
other glassy systems [44,46], which appears as a robust result.

The overall behavior of the shear modulus is qualitatively
similar to the one of the bulk modulus. At lower temperature,
the shear modulus also increases very sharply with ϕ below the
jamming density, and has a more modest density dependence
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above jamming. A closer look to the numerical data indicates
that the density dependence of G is more pronounced above
jamming than the one of B. Similarly to B, the sharp features
of the shear modulus disappear rapidly when temperature is
increased above T = 10−8, and again the density dependence
is very smooth when T � 10−6. This indicates that the
characteristic critical laws associated to the shear modulus
near the jamming transition are easily smeared out by thermal
fluctuations as well.

The low-temperature crossover behavior observed for G

is again the signature of the zero-temperature criticality
associated to the jamming transition. For ϕ < ϕJ and T → 0,
the system explores the divergence of the shear modulus of
Brownian hard spheres approaching jamming, which follows

G ∼ T (ϕJ − ϕ)−κ , (8)

where κ ≈ 1.41 is a nontrivial critical exponent [16,47,48].
On the other side of the jamming transition, jammed har-
monic spheres lose shear rigidity as the jamming density is
approached from above [17]:

G ∼ (ϕ − ϕJ )1/2. (9)

Although our numerical results are consistent with Eqs. (8)
and (9), they are not precise enough to confirm that the
exponent κ is different from a previous estimate κ = 3

2 [9],
which is only marginally different from its recently predicted
value κ ≈ 1.41.

C. Ratio B/G of bulk to shear modulus: A signature
of jamming criticality

Whereas we noted that both B and G show qualitatively
similar sharp features in the vicinity of the jamming transition,
we also stated that the precise values of the exponents
characterizing their power-law behavior are different. These
differences stem from the fact that the behavior of the bulk
modulus B can be understood from the evolution of the
pressure, whereas the behavior of G is ruled by the evolution
of the response of the system to a shear deformation. It is
a specific signature of the jamming transition that responses
to shear and to compression differ maximally for isostatic
packings [1,2,7,49,50].

Therefore, to clearly detect a quantitative sign of the
jamming criticality, it is useful to analyze the behavior of
the ratio B/G, which becomes infinite at the critical point.
We combine our finite temperature data for B and G to follow
the density dependence of B/G for various temperatures in
Fig. 1. For our lowest temperature T = 10−8, we find that
B/G is of order 5–10 far from the jamming density, but
has a sharp maximum of order B/G ≈ 100 when ϕ ≈ ϕJ .
This behavior should be interpreted as a smooth version of
the zero-temperature density dependence, which follows from
Eqs. (4), (5), (8), and (9):

B/G ∼ (ϕJ − ϕ)κ−2, ϕ < ϕJ (10)

∼ (ϕ − ϕJ )−1/2, ϕ > ϕJ (11)

where κ − 2 ≈ −0.59. Notice that the behavior of B/G is
now more symmetric around the jamming transition as the
temperature prefactor disappears from the ratio B/G, but

the critical exponents slightly differ on both sides of the
transition (the divergence should be sharper for ϕ < ϕJ ). Note
also that the behavior of B/G is quantitatively analogous to
the behavior of the adimensional mean-squared displacement
defined in Ref. [11]. Therefore, this figure demonstrates that
the impact of thermal fluctuations on mechanical moduli
and on single particle dynamics is actually identical, and
mechanical moduli are in fact equally fragile against Brownian
motion.

We interpret the smoothened version of the symmetric
divergence described by Eq. (11) observed for T = 10−8 in
Fig. 1 as a “thermal vestige” of the jamming transition [18],
which is equivalent to the adimensional mean-squared dis-
placement defined in Ref. [11]. These two quantities are both
direct signatures of jamming criticality and should therefore
be contrasted with a nonmonotonic behavior of the pair
correlation functions [12,18] which is instead a more general
consequence of the particle softness and, as such, survives
arbitrarily far from the critical point [51]. Therefore we suggest
that the observation of a large B/G ratio is a genuine sign that
a particular material lies in the critical regime of the jamming
transition, whereas a density maximum in the pair correlation
function is not.

When the temperature is increased, the nonmonotonic
density dependence of B/G is rapidly erased by thermal
fluctuations. For T = 10−5, we observe that B/G is nearly
independent of the density and has a value of order 5–10 at all
ϕ. These findings directly confirm that the jamming criticality
is rapidly smeared out by thermal fluctuations. We also notice
that even for very low temperatures, the range of densities
where anomalous behavior associated to jamming can be
observed is extremely narrow. These conclusions, obtained
from the analysis of mechanical moduli, are in full agreement
with previous conclusions drawn from the analysis of the
mean-squared displacements [11].

In Ref. [21], the bulk and shear moduli of a two-dimensional
assembly of soft microgels were analyzed, and their density
evolution interpreted in terms of the power laws associ-
ated to the zero-temperature jamming criticality. Previous
analysis of similar microgel systems has shown that these
particles are quite soft, so that thermal fluctuations are of
order T ≈ 10−6–10−4, depending on the precise experimental
system [15,52]. The data reported in Ref. [21] show that the
ratio B/G is B/G ≈ 3 with a very weak density dependence.
This is very much consistent with the physical interpretation
that this system is far from being critical, which reinforces
the general conclusion that very soft microgel systems are
not good experimental systems to reveal thermal vestiges
of the jamming transition. In Ref. [15], we suggested that
emulsion droplets might be better suited for this task, as
recently confirmed experimentally [53].

IV. STATIC STRUCTURE FACTORS AND DIVERGING
LENGTH SCALES

In this section, we define and study a number of static
structure factors that can be probed in kinetically arrested
colloidal materials in the presence of thermal fluctuations.
From their low-wave-vector analysis, we define length scales
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that diverge as the T = 0 jamming transition is approached in
the (T ,ϕ) plane.

A. Definitions of structure factors

Because we know the position of each particle in each
configuration, we can define a number of static structure factors
from our particle packings at finite temperatures. The standard
definition of the static structure factor is given by

S(k) = 1

N
〈ρ�kρ−�k〉, (12)

where we have defined the Fourier transform of the density
field as

ρ�k =
∑

j

exp(−i�k · �Rj ), (13)

with �Rj the position of particle j . We assume that all our
packings are isotropic so that structure factors only depend
upon wave vectors through their moduli k = |�k|.

For a simple fluid at thermal equilibrium, the zero wave-
vector limit of S(k) is directly related to the bulk modulus, and
we have

lim
k→0

S(k) = ρT

B
(fluid). (14)

This relation is only correct for liquid states [31]. We shall see
in the following that a different analysis is needed for jammed
solids.

We consider systems that are lacking crystalline order
but are nevertheless kinetically arrested. This implies that
translational invariance is actually broken, and that we consider
instead materials with long-range “amorphous order” to use
the language of glass theories [43,54]. In practice, this means
that the particle positions, and therefore, density fluctuations,
can be naturally decomposed into two different contributions,
from which two distinct structure factors can be defined:

Sδ(k) = 1

N
〈δρ�kδρ−�k〉, (15)

S0(k) = 1

N
〈ρ�k〉〈ρ−�k〉, (16)

with δρ�k = ρ�k − 〈ρ�k〉. From the definitions (12), (15), and (16),
it is obvious that

S(k) = Sδ(k) + S0(k), (17)

showing that we have obtained a decomposition of the structure
factor in terms of a fluctuating part Sδ(k), and a configurational
part S0(k). Physically, S0(k) represents the structure factor
associated to the averaged position of the particles and is
essentially independent of temperature and weakly dependent
of density; it is an “inherent” property of the amorphous
packing [55]. By contrast, Sδ(k) represents the structure factor
associated to the fluctuations of the particles away from their
average positions, and a strong temperature dependence is
expected for this contribution, which should for instance
vanish as T → 0 for ϕ > ϕJ , when particles stop moving
completely.

When translational invariance is broken, as in crystals
and glasses, the bulk modulus of the system is no longer

related to S(k) as in Eq. (14), but to the fluctuation part
Sδ(k) [30]. Within a conventional elasticity theory where the
elastic moduli are assumed to be independent of wave vector,
an elastic body is characterized by longitudinal plane waves
with the dispersion relation ω = k

√
(B + 4

3G)/ρ. These plane
waves are thermally excited and follow the equipartition law,
so that the fluctuating part of the density fluctuations is given
by1

Sδ(k) = ρT

B + 4
3G

(continuum solid). (18)

This is the fluctuation formula appropriate for connecting a
static structure factor to the bulk modulus in a solid state. It is
obviously distinct from the formula valid for fluids [Eq. (18)].
Notice that the distinction between the two formulas stems
from the fact that translational invariance is broken (in solids)
or not (in fluids), but both formulas rely on the fact that
the system (fluid or solid) obeys the rules of equilibrium
thermodynamics.

It is also useful to provide a dynamic interpretation of the
decomposition in Eq. (17). Because the dynamics is arrested
and the system only probes thermal fluctuations near a given
metastable state, the dynamic structure factor does not decay
to zero at long times. The intermediate scattering function is
F (k,t) = 〈ρ�k(0)ρ−�k(t)〉/N , so that F (k,t = 0) = S(k). In the
long-time limit, density fluctuations are uncorrelated, and we
directly find that F (k,t → ∞) = S0(k), which is nothing but
the collective Debye-Waller factor. Therefore, the fluctuation
part of the static structure can be written as Sδ(k) = S(k) −
F (k,t → ∞), which quantifies the relaxing part of the density
fluctuations.

In addition, we define two more structure factors associated
to the particle positions, which rely on the vectorial character
of the displacement field. In solid states, each particle vibrates
around its average position. We can then define the displace-
ment of each particle as �ui = �Ri − 〈 �Ri〉, and the associated
displacement field, expressed in the Fourier domain as

�u�k =
∑

j

�uj exp(−i�k · 〈 �Rj 〉). (19)

In the Fourier space, we can then decompose the displacement
field into its longitudinal and transverse parts:

�u�k = k̂uL,�k + �uT,�k, (20)

where uL,�k = k̂ · �u�k , and k̂ = �k/|�k| is the unit vector in the

direction of �k. Using these fields, we can finally define the
longitudinal and transverse correlation functions

SL(k) = k2

N
〈uL,�kuL,−�k〉,

ST (k) = k2

N
〈�uT,�k · �uT,−�k〉. (21)

1To arrive to this expression, we first evaluate SL(k) using the
dispersion relation, and used Eq. (24) to estimate Sδ(k). Details of
the evaluation of SL(k) can be found in pp. 321 and 322 of Ref. [30].
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Following again the approach of conventional elasticity theory,
we now have the following expressions [30]:

SL(k) = ρT

B + 4
3G

,

ST (k) = ρT

G
(continuum solid). (22)

These expressions directly show that we can calculate the shear
modulus G from the low-wave-vector limit of ST (k) [44]. It is
the approach that has been employed to obtain the data shown
in Fig. 1 in Sec. III.

Before using these definitions, we wish to comment that
the various structure factors defined in this section correspond
to different mathematical ways of decomposing the particle
positions into an average and a fluctuating contribution. In
the first approach, we performed the decomposition in the
Fourier domain, whereas the second approach deals with
position space. It should therefore come as no surprise that
the longitudinal part SL(k) can be related to the fluctuating
part of the static structure factor Sδ(k). In terms of the particle
displacements �ui , the fluctuating part of the density field can
be expressed as

δρ�k =
∑

j

[−i�k · �uj + O(k2)] exp(−i�k · 〈 �Rj 〉). (23)

Comparing this expression to Eq. (19), we get δρ�k ≈ −ikuL,�k
at the lowest order in k. Therefore, we conclude that at this
order

SL(k) ≈ Sδ(k), (24)

and both approaches actually carry equivalent physical con-
tent, as they should. By a similar reasoning, we find that

〈ρ�k〉 =
∑

j

exp(−i�k · 〈 �Rj 〉)[1 − k2〈(k̂ · �uj )2〉/2 + . . .], (25)

which shows that an accurate estimate of the configurational
part S0(k) can be obtained by computing the structure factor
of the average particle positions, a method that could prove
convenient for experiments using particle imaging.

B. Longitudinal fluctuations

We first discuss the behavior of Sδ(k) in connection with
the bulk modulus. In practice, we have calculated Sδ(k) in the
following way. We first calculate the density field ρ�k for each
instantaneous configuration of particles, at the lattice points
of the first Brillouin zone �k = (kx,ky,kz) in k space where
kα = nαπ/L for α = x,y,z and nα an integer. We then perform
a time average to obtain 〈ρ�k〉 for each Fourier component.
Using ρ�k and 〈ρ�k〉 we calculate δρ�k and obtain Sδ(�k) in a
straightforward manner. We finally perform a circular average
to obtain the desired Sδ(k).

We plot the numerical results for Sδ(k) at T = 10−8 and
various densities in Fig. 2. The overall amplitude of Sδ(k)
strongly decreases when the system is compressed. This is
expected because particles move less and less when density is
increased [11], and the overall amplitude of the fluctuations
gets smaller. At all densities, we also find that Sδ(k) has a
well-defined k → 0 limit, and that it increases strongly with

k2 k2

φ > φJφ < φJ
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0.635
0.620

(a)

(b)
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FIG. 2. (Color online) (a) Fluctuation part of the static structure
factor Sδ(k) at T = 10−8 for various densities. (b) Same data with
vertical axis scaled with the factor (B + 4

3 G)/(ρT ) expected from the
usual plane-wave behavior. (c) The horizontal axis is also rescaled to
obtain the best data collapse and extract the longitudinal length scale
ξL [Eq. (27)].

k, with a well-defined first diffraction peak corresponding to
the interparticle distance at k ≈ k0 ≡ 2π/σ , which reflects the
liquidlike structure of amorphous packings at the particle scale.

Two useful informations are contained in these structure
factors. We first concentrate on the k → 0 limits, where the
relation (18) derived from continuum theory is expected to
become valid:

lim
k→0

Sδ(k) = ρT

B + 4
3G

. (26)
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To verify this fluctuation formula, we use this expression
and replot the same data in a scaled form, observing the k

dependence of the quantity Sδ(k)(B + 4
3G)/(ρT ), as shown

in Fig. 2 (middle). The bulk and shear moduli are obtained
from independent measurements, shown in Fig. 1. Note that
since our systems are characterized by large B/G ratio, as
discussed in Sec. III, it means that the bulk modulus gives
the major contribution to the (B + 4

3G) factors in all these
expressions, and the term G is almost always negligible.

The numerical results show that the quantity Sδ(k)(B +
4
3G)/(ρT ) clearly approaches unity as k → 0, as it should.
This observation implies that standard equilibrium relations
between the mechanical moduli and static structure factors are
valid at large length scales for jammed packings, provided the
appropriate fluctuating part of the density fields are analyzed
instead of the total S(k).

The rescaled plot shows moreover that Sδ(k) not only
contains useful information at k → 0, but that its finite k be-
havior is also relevant. The conventional elasticity expression
in Eq. (18) does not provide any useful k dependence. In
other words, when all the longitudinal waves are the plane
waves predicted by conventional elasticity theory, the quantity
Sδ(k)(B + 4

3G)/(ρT ) should be unity. Thus, deviations from
unity can be interpreted as an indicator for the breakdown
of the description by the usual plane wave with the above
dispersion relation. Interestingly, we find that the rescaled
data in Fig. 2 (middle) show finite-k deviations that depend
strongly on the density, and are maximal at the jamming
density, so that the deviations from conventional elasticity have
a remarkable nonmonotonic density dependence. Interestingly,
near the jamming density ϕ ≈ ϕJ , we observe a very clear
power-law behavior Sδ(k) ∝ k2.

To characterize quantitatively these deviations and their
apparent relation with the jamming criticality, we propose the
following scaling analysis of these data. The above description
suggests the existence of a nontrivial correlation length
scale ξL, separating two distinct behaviors: Sδ(kξL � 1)(B +
4
3G)/(ρT ) ≈ 1 and Sδ(1 � kξL � k0ξL)(B + 4

3G)/(ρT ) ∝
k2. Therefore, we determined numerically the longitudinal
correlation length scale ξL assuming the scaling form

Sδ(k) ≈ ρT

B + 4
3G

F (kξL), (27)

where F (x) is a scaling function of the form F (x � 1) = 1 and
F (x � 1) ∝ x2. Physically, this expression implies that ξL is a
characteristic length scale below which the conventional elas-
ticity description of longitudinal particle displacements breaks
down. A diverging correlation length ξL implies that the usual
plane-wave description does not apply at any length scale.

The results of this scaling analysis are shown in Fig. 2
(bottom). The data collapse is acceptable, but it is difficult to
confirm its validity because the obtained length scale ξL is
quite large, and a larger system size would be required for a
more accurate determination of this quantity, especially close
to ϕJ at very low temperatures. The evolution of the obtained
longitudinal length scale ξL with ϕ and T is discussed in
Sec. IV D.

k2 k2
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FIG. 3. (Color online) (a) Transverse part of the displacement
structure factor ST (k) at T = 10−8 for various densities. (b) Same
data with vertical axis scaled with the factor G/(ρT ) expected from
the usual plane-wave behavior. (c) The horizontal axis is also rescaled
to obtain the best data collapse and extract the transverse length scale
ξT [Eq. (29)].

C. Transverse fluctuations

We now repeat the analysis of Sec. IV B for the evolution of
ST (k) in connection with the shear modulus. We plot ST (k) at
T = 10−8 and various densities in Fig. 3 (top). As for Sδ(k), we
find that the overall amplitude of ST (k) decreases rapidly with
the density, with an overall wave-vector dependence similar to
the one of Sδ(k).
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We now use the fluctuation formula for the transverse
fluctuations [44]

lim
k→0

ST (k) = ρT

G
, (28)

which is the method we have employed to measure the shear
modulus presented in Fig. 1. Therefore, by construction, when
we replot the quantity ST (k)(G/ρT ) in Fig. 2 (middle), the
data extrapolate to unity when k → 0.

This figure shows again that the deviations from con-
ventional elasticity have a striking nonmonotonic density
dependence, and that deviations are maximal when ϕ is close
to ϕJ . Following the analysis of longitudinal fluctuations, we
again hypothesize a scaling behavior for ST (k):

ST (k) ≈ ρT

G
H (kξT ), (29)

where H (x) is a scaling function of the form H (x � 1) = 1
and H (x � 1) ∝ x2. We show in Fig. 3 (bottom) a collapse
of the numerical data according to Eq. (29) which allows us
to determine numerically a length scale ξT which delimits
the validity of the usual plane-wave description of transverse
fluctuations of the particle displacements. This critical scaling
law implies again that the usual plane-wave description does
not apply at any length scale when ξT diverges, which is
expected exactly at the jamming transition.

D. Transverse and longitudinal length scales

We have performed the scaling analysis outlined in
Secs. IV B and IV C for different temperatures and have been
able to extract the density and temperature dependencies of the
characteristic length scales ξL and ξT . The results are presented
in Fig. 4.

Both length scales behave qualitatively similarly. At T =
10−8, they strongly depend on the density: they have a clear
maximum for ϕ ≈ ϕJ and become of order unity far away
from the jamming transition. In particular, we observe that
ξL becomes comparable to the system size (L = 36.2) for
T = 10−8, which explains why its numerical determination
is difficult. By contrast, the maximum value reached by ξT

is more modest (or order ξT ≈ 10), explaining why the data
collapse for ST (k) is more convincing than the one for Sδ(k).

When the temperature is increased, the density maximum
observed for the correlation length scales is much less
pronounced, and nearly disappears when T = 10−5 where ξL

and ξT have uninteresting density dependencies and remain
microscopic, ξL,T ≈ 2–5. The conclusion is that in this regime,
which is relevant for a number of experimental situations for
colloidal systems, continuum mechanics actually represents an
excellent approximation down to microscopic length scales. In
other words, “anomalous” or “soft” modes, which exist over
arbitrary length and frequency scales at the jamming transition
where correlation length scales and time scales are infinite, are
strongly suppressed by moving away from jamming criticality.

We now compare our measurements of the length scales
ξL and ξT to similar length scales measured earlier in the
literature. A first relevant comparison is with the results in
Refs. [56,57] where a characteristic length scale for longitu-
dinal and transverse plane waves at a specific frequency ω∗ =
ω∗(ϕ) for ϕ > ϕJ and T = 0 were measured. In this approach,

(a)

(b)

FIG. 4. (Color online) Density dependence of ξL (a) and ξT (b)
for various temperatures. The near-critical nonmonotonic density
dependence observed for T = 10−8 becomes a smooth variation
for T = 10−5 when jamming criticality is smeared by thermal
fluctuations. The usual plane-wave description of vibrational motion
is therefore excellent away from criticality T � 10−6 and/or |ϕ −
ϕJ | � 0.02.

ω∗ is a characteristic frequency where the vibrational density
of state exhibits anomalous (nearly frequency-independent)
behavior [7,8]. The obtained longitudinal and transverse length
scales ξ ∗

L and ξ ∗
T measured from this protocol are predicted

to diverge as ξ ∗
L ∝ (ϕ − ϕJ )−0.5 and ξ ∗

T ∝ (ϕ − ϕJ )−0.25 [56],
and the latter behavior is directly confirmed by numerical
measurements (data for ξ ∗

L were not shown).
Although it is tempting to assume that ξL and ξT have

similar physical content as ξ ∗
L and ξ ∗

T , power-law fits to our
measurements yield exponents that are not consistent with
the predicted 0.5 and 0.25 (we find that 0.7 and 0.5 fit
our data better). However, the length scales observed in our
measurement are so large that their precise determination is
challenging. Much larger systems are needed to fully settle this
issue. Furthermore, our lack of knowledge about the precise
form of the scaling functions F (x) and H (x) may also affect the
quality of our estimates for these length scales. We wish to raise
the possibility that the two sets of length scales are not fully
equivalent because we directly defined characteristic length
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scales where the usual plane-wave descriptions stop working,
whereas Silbert et al. focused on a specific, density-dependent
frequency ω∗ [56,57].

In a more recent work, Wang et al. [58] have determined
numerically the so-called Ioffe-Regel frequencies and length
scales. These are, respectively, defined as the time scales
and length scales characterizing the disappearance of plane
waves in the collective dynamic structure factors. We may
expect that the length scales ξL and ξT that we have defined
above carry a similar physical content to the Ioffe-Regel length
scales lL and lT analyzed in Ref. [58]. Although some of the
numerical results of Wang et al. are consistent with ours, their
final conclusions differ qualitatively from ours. In particular,
their analysis suggests that in the low-temperature limit lT
diverges at ϕ = ϕJ and transverse plane waves do not exist
in the hard sphere regime ϕ < ϕJ and T → 0. Instead, we
observe that ξT becomes finite on both sides of the jamming
transition. We suspect that their interpretation is incorrect and
stems from extrapolating numerical measurements performed
at ϕ > ϕJ to the hard sphere glass. Our results show instead
that longitudinal and transverse vibrations do exist in the
hard sphere regime, and the associated length scales and time
scales actually become microscopic as the density is decreased
away from ϕJ . Contrary to the claim in Ref. [58], the hard
sphere glass is not qualitatively different from other amorphous
materials.

V. HYPERUNIFORMITY OF THE CONFIGURATIONAL
STRUCTURE FACTOR

In this section, we analyze the structure factor associated to
averaged particle positions and show that this configurational
part S0(k) reveals a nearly hyperuniform behavior at large
length scales. We also show how the analysis of S0(k) allows us
to elucidate the physical content of the related nonequilibrium
index and nonequilibrium length scale measured in amorphous
materials.

A. Hyperuniformity is unrelated to jamming criticality

In Sec. IV A, we decomposed the structure factor S(k) into
a fluctuating part, analyzed in Sec. IV B, and a configurational
part S0(k), which is the subject of this section.

The first question we ask is whether the configurational
part S0(k) is sensitive to the temperature. In Fig. 5, we show
numerical results for S0(k) at a constant density ϕ = 0.652
(slightly above ϕJ ) at several temperatures from T = 10−8 up
to T = 10−5. The inset shows that S0(k) has the usual wave-
vector dependence of a liquid structure factor, with a broad
first diffraction peak near k ≈ k0. Clearly, the temperature
dependence appears negligible in this representation.

In the main panel, we zoom on the low-wave-vector
behavior in order to reveal a possible effect of the thermal
fluctuations. Within the accuracy of these computations, we
find again no visible temperature dependence for S0(k). This
clearly confirms that thermal fluctuations mainly contribute
to the fluctuating part of the density fluctuations, whereas
the averaged component of density fluctuations is essentially
unaffected by the temperature, at least for the range of wave
vectors shown in Fig. 5. We expect more changes to occur

FIG. 5. (Color online) Configurational part of the static structure
factor S0(k) at ϕ = 0.652 > ϕJ and several temperatures. Circles,
squares, and upper and lower triangles represent the data obtained at
finite temperatures for N = 64 000, diamonds indicate data obtained
at T = 0 for N = 512 000. Solid line indicates the hyperuniform
behavior of density fluctuations at large scale S0(k) ∝ k. The
hyperuniformity appears essentially independent of temperature. The
inset is the zoom out of the main panel.

at very large wave vectors k � k0, where the sharp features
associated to the pair correlation function at contact produce
long-ranged oscillations [59].

An interesting behavior is observed for the low-k behavior
of S0(k) in Fig. 5. In the linear scale chosen for representing
these numerical measurements, we observe that S0(k) ∝ k,
for k � 2. This “anomalous” linear behavior with an appar-
ent vanishing of S0(k → 0) has been termed hyperunifor-
mity [22,23]. Hyperuniform density fluctuations have been
reported in simulations of sphere packings at the jamming
transition both numerically [22,24–26] and in experimentally
constructed granular packings [25]. In colloidal systems, signs
of hyperuniformity are much weaker [27–29].

The important conclusion that we can draw from the
absence of temperature dependence in the data shown in
Fig. 5 is that hyperuniformity appears extremely robust against
thermal fluctuations, and can in fact easily be observed even for
our highest studied temperature T = 10−5. This observation
is in striking contrast with all other observations reported
earlier in this paper related to the jamming criticality. Whereas
quantities such as mechanical moduli and correlation length
scales are rapidly smeared out by thermal fluctuations, hy-
peruniformity appears rather insensitive to temperature. This
strongly suggests that jamming criticality and hyperuniformity
are unrelated concepts and have distinct physical origins.

We emphasize that the decomposition of the structure factor
S(k) as the sum of two terms S0(k) and Sδ(k) indicates that the
total structure factor is related to the isothermal compressibility
only through Sδ(k) whose wave-vector dependence shows no
anomalous dependence (see Fig. 2). On the other hand, we find
that S0(k) is characterized by a hyperuniform linear behavior
at low wave vector, but this configurational contribution is
unrelated to the compressibility. Thus, we conclude that hype-
runiformity (related to S0) cannot be a logical consequence of
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a vanishing compressibility (related to Sδ) of the packing. Of
course, to observe hyperuniformity in the total structure factor
S(k) rather than in the configurational part S0(k), it is necessary
that Sδ(k) � S0(k), which happens when the compressibility
becomes very small. Working close to the jamming transition
is therefore a practical rather than a fundamental issue, which
is no longer needed when working directly with S0(k). In that
sense, the discovery that some amorphous materials become
hyperuniform very close to the jamming transition may appear
coincidental [22].

These findings are experimentally relevant because they
mean that hyperuniformity, unlike jamming criticality, can
actually be observed across a large region of the (T ,ϕ) phase
diagram for soft colloids. Quite surprisingly, the experimental
literature seems to suggest exactly the opposite since a number
of experiments have reported signatures of jamming criticality
in soft colloids [18,21] (which, we argue, are actually taken far
from criticality), whereas only weak signs of hyperuniformity
have been reported [27–29] (which, we argue, should be easily
observable). This might be due to the difficult experimental
constraint that measuring S0(k) at low k requires detecting the
position of a large number of particles with a large precision.

B. Density dependence and deviations from strict
hyperuniformity

Having established that temperature does not affect much
the observation of hyperuniformity, we then discuss the effect
of the density by analyzing data obtained directly at T = 0.
This approach is useful because it allows us to disentangle
temperature and density effects. In addition, we can study
at T = 0 much larger systems in order to analyze whether
hyperuniform behavior can be observed over arbitrarily large
length scales. To this end, we employ a distinct measurement
technique of S0(k) at T = 0 with a larger number of particles,
N = 512 000, and use eight independent packings to reduce
the statistical error. Our numerical methodology was described
in Sec. II.

Using this larger system at T = 0, we confirm in Fig. 5
that S0(k) for this density is in excellent agreement with the
finite temperature results obtained with the smaller packings,
although of course the statistical error is greatly reduced.
The agreement between these two independent sets of data
confirms that S0(k) is largely independent of temperature.

Having shown that temperature plays no role, we can
now analyze the density dependence of these observations.
In Fig. 6, we plot S0(k) measured at T = 0 at various densities
between ϕ = 0.80 much above jamming, down to ϕ = 0.652
just above ϕJ . We now use a log-log representation of the
results. At ϕ = 0.80, S0(k) is almost constant over a large
range of wave vectors S0(k) ≈ 4 × 10−3 for k � 1, and a
hyperuniform behavior cannot be observed. This behavior of
overcompressed packings is consistent with observations made
in other glass-forming materials, such as simple Lennard-Jones
glasses, where hyperuniformity is not observed either [26].

For ϕ = 0.7, a linear behavior S0(k) ≈ 0.004k already
appears in wide k region, even though |ϕ − ϕJ | ≈ 0.055 is
still quite large. More surprising is the observation that the data
for ϕ = 0.652, 0.66, and 0.68 (respectively corresponding to
|ϕ − ϕJ | ≈ 0.0063, 0.015, and 0.034) are essentially the same,

FIG. 6. (Color online) Evolution of S0(k) with the density above
the jamming transition in a log-log representation. These data are
obtained by averaging over eight independent packings with N =
512 000 particles. A clear hyperuniform linear k dependence (shown
as a full line) is obtained over a broad range of wave vectors when
ϕ � 0.7 with only weak density dependence, but the data saturate to
a finite value as k → 0.

and are characterized by a broad range of wave vectors with
linear dependence S0(k) ≈ 0.004k, although the data saturate
at very low k to a finite value S0(k → 0) ≈ 1.4 × 10−3. These
results indicate that hyperuniformity is a robust feature of
S0(k), in the sense that it is weakly dependent on the density
and does not require fine tuning the volume fraction to the
jamming density ϕJ , confirming that the two concepts are
distinct.

However, it should also be noted that a strict hyperunifor-
mity S(k) ∝ k can not be observed down to arbitrarily small
wave vectors, and deviations appear below k ≈ 0.4, which
corresponds to a large length scale ≈15σ . This surprising
saturation effect has not been reported before, although
we notice that previous literature [22,26] indicates that the
smallest S0(k → 0) values achieved in computer simulations
are always of the order 10−3 or more, which is consistent with
our own results. This saturation would not be observed if the
data in Fig. 6 were plotted in a linear scale.

Our analysis shows that this saturation effect is clearly not
due to thermal fluctuations (we work at T = 0). This does
not stem from sample-to-sample fluctuations either because
all eight samples show a saturation of similar amplitude.
Finally, the saturation does not seem to depend on density,
at least for ϕ > ϕJ . We cannot access the regime ϕ < ϕJ

using energy minimization, but we note that a marked
density dependence was reported for the structure factor of
hard spheres approaching the jamming density from below
in Ref. [22]. However, the total structure factor S(k) was
measured in that study, which contains a density-dependent
contribution associated to the fluctuating part Sδ(k), which
vanishes as ϕJ is approached. It would therefore be very
interesting to measure directly S0(k) in the hard sphere glass
for very large system sizes. We have performed exploratory
simulations with moderate system sizes in this regime and find
a weak density dependence of S0(k) when ϕ > 0.62, but larger
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systems are needed to analyze more finely the behavior at very
small k.

Finally, we remark that it is difficult to provide a physical
explanation for the existence of the observed deviations
from strict hyperuniformity, mainly because there is no deep
physical reason to expect perfect hyperuniformity in these
systems in the first place. Among possible factors that could
be investigated are the role of a finite density of rattlers in the
packings and the role of the specific protocol that is used to
prepare the particle packings, which both could influence the
measured value of S0(k → 0). Such studies are beyond the
scope of this work.

C. Analysis of the “nonequilibrium index”

We showed in Sec. IV B that the isothermal compressibility
is directly related, for solids at thermal equilibrium, to the
fluctuating part of the structure factor via Eq. (18). A direct
consequence is that the compressibility is thus not related to the
total structure factor S(k) via the relation valid for equilibrium
fluids [Eq. (14)]. To quantify the difference between fluid and
solid states, the concept of a “nonequilibrium index” X was
introduced and studied both for hard sphere glasses [32] and
for other types of amorphous materials [33].

We now show that the decomposition provided above
for the structure factor allows us to elucidate the physical
content of X. Using the notations introduced in this work, the
nonequilibrium index X is defined as [32]

X ≡ lim
k→0

S(k)B

ρT
− 1. (30)

By construction, X = 0 for a fluid at thermal equibrium [see
Eq. (14)]. Since X is defined as the ratio between fluctuations
and response functions, its functional form is also reminiscent
of the effective temperature and fluctuation-dissipation ratio
that characterize the nonequilibrium of aging and driven
glasses [34]. The main difference between the two types of
quantities is that X refers to static fluctuations, whereas effec-
tive temperatures are defined from time-dependent correlation
and response functions. The nonzero value measured for X

in hard sphere glasses was interpreted as a demonstration that
the “jammed glassy state is fundamentally nonequilibrium in
nature” [32]. The simulations indicate that X grows rapidly
when hard sphere glasses are compressed towards ϕJ , or
when the temperature is decreased below the glass transition
temperature Tg of model glass-forming systems, such as
Lennard-Jones and Dzugutov glasses [33].

The decomposition of the structure factor proposed in
Eq. (17) provides us with two important informations. First,
we have shown that equilibrium fluctuation relations are
perfectly obeyed in the solid phase for static quantities.
This result implies that the nonequilibrium nature of the
glass cannot be revealed by a fluctuation formula based
on static density fluctuations and suggests, in fact, that the
introduction of a “nonequilibrium” index to characterize
static density fluctuations is unnecessary. This conclusion is
in qualitative agreement with the two-temperature scenario
for the nonequilibrium dynamics of glasses, where short-
time fluctuations and response are typically found to obey
equilibrium fluctuation-dissipation relations [34,35].

FIG. 7. (Color online) Temperature dependence of the nonequi-
librium index X measured in two model glasses (symbols). Full
lines are from Eq. (31), the prediction obtained by assuming that
equilibrium fluctuation relations are satisfied for the glass.

Second, the combination of Eqs. (17) and (18) provides
predictions for the leading behavior of the nonequilibrium
index in various systems. For glass-forming models with
continuous interactions, we can assume that S0(k → 0) and
the bulk modulus are weakly temperature dependent deep in
the glass phase [59], so that in the low-temperature limit, one
gets

X(T � Tg) ≈ S0(k → 0)B

ρT
∝ 1

T
. (31)

In Fig. 7, we confirm that the low-temperature behavior of
the nonequilibrium index measured numerically in Ref. [33] is
consistent with our prediction in Eq. (31) that it should diverge
as 1/T as T → 0. This leading temperature behavior stems
from the fact that S(k) in the definition of X in Eq. (30) contains
a “frozen” contribution S0, which does not vanish at T = 0.

For hard sphere glasses, the leading asymptotic behavior of
the nonequilibrium index depends strongly on the hypothesis
made regarding the behavior of S0(k) very close to ϕJ .
Assuming that hyperuniformity is only approximate, as we
report in Fig. 6, one would then predict that X in Eq. (30) is
dominated by the divergence of the bulk modulus, yielding
X ≈ (ϕJ − ϕ)−2. In Ref. [32], a linear decrease S0(k → 0) ∼
(ϕ − ϕJ ) was assumed for S0, which turns into a different
divergent behavior X ∼ (ϕJ − ϕ)−1 for the nonequilibrium
index. Numerically, we expect that X exhibits a crossover
between these two power-law regimes as ϕJ is approached,
which could be difficult to analyze.

D. Analysis of the “nonequilibrium length scale”

We finally discuss the concept of a nonequilibrium length
scale ξneq, defined again for amorphous materials from the
behavior of the static structure structure. The nonequilibrium
length scale is defined as [33]

ξneq ≡ [−c(k → 0)]1/d ≈ [ρS(k → 0)]−1/d , (32)
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(a)

(b)

FIG. 8. (Color online) Temperature dependence of the nonequi-
librium length scale ξneq measured in two model glasses (symbols).
Full lines are from Eq. (34), the prediction obtained by assuming the
equilibrium fluctuation relations are satisfied for the glass.

where c(k) is the direct correlation function [31] and d is the
dimensionality of the system. In the final part of Eq. (32), we
have assumed that S(k → 0) � 1. In computer simulations,
it is found that ξneq grows as temperature is decreased below
Tg in model glasses [33] and saturates to a finite value as
T → 0, whereas it is predicted to diverge as ϕ → ϕJ in hard
sphere glasses [32]. As such, it is interpreted as a growing
static length scale that is potentially relevant to characterize the
structure of the glassy state. In this view, hard sphere glasses
would therefore be somewhat “special” since they would have
a diverging static length scale, whereas glasses with continuous
interactions would exhibit a nondiverging static length scale.

Because this length scale directly follows from the low-k
behavior of the structure factor, our decomposition (17) into
two distinct contributions is again relevant to understand the
physical content of the nonequilibrium length scale, which we
can rewrite

ξneq =
[
ρS0(k → 0) + ρ2

B + 4
3G

T

]−1/d

. (33)

For Lennard-Jones and Dzugutov models, we again expect that
S0(k → 0) and the mechanical moduli are weakly dependent
on temperature far below Tg , so that the leading temperature
dependence of the nonequilibrium length scale is transparent
in Eq. (33), and should be of the form

ξneq ≈ (a + bT )−1/d , (34)

where a and b are some constants. In Fig. 8, we confirm that
this prediction describes the numerical data very well for two
glass formers, showing that the growth of the nonequilibrium
length scale with decreasing temperature can in fact be fully

understood by assuming that density fluctuations obey equilib-
rium fluctuation formula. In essence, therefore, the growth of
the nonequilibrium length scale in the glass phase reflects the
competition between the configurational and fluctuating parts
of the static structure factor, which have different temperature
dependencies: the former is essentially constant and reflects
the “inherent” structure of the glass, the latter stemming from
vibrational motion and is thus proportional to temperature, as
captured in Eq. (34).

For hard sphere glasses, the behavior of the nonequilibrium
length would again depend sensitively on the behavior of S0(k)
near ϕJ . Assuming that hyperuniformity is only approximate,
the nonequilibrium length scale would grow strongly as the
glass phase is entered and the compressibility decreases, but its
growth would saturate to a value ξneq ≈ [ρS0(k → 0)]−1/d ≈
8.2, using numerical values from Fig. 6. Interestingly, this
saturation value is close to the value ξneq(T → 0) ≈ 7.5 found
for the three-dimensional Dzugutov glass former in Fig. 8,
which could support the idea that hard sphere glasses are not a
“special” type of glass former. For a strictly hyperuniform hard
sphere system, on the other hand, the nonequilibrium length
scale would diverge as ϕ → ϕJ , as predicted in Ref. [32].

VI. CONCLUSION

In this work, we have analyzed the density and temperature
dependencies of mechanical moduli and several types of
structure factors in a model system of soft harmonic spheres
in the vicinity of the jamming transition.

We have shown that thermal fluctuations very quickly erase
several signatures of the criticality associated to jamming,
in agreement with earlier work related to single particle
dynamics [11]. We showed that the bulk modulus, the shear
modulus, the longitudinal and transverse length scales rapidly
acquire a “normal” behavior typical of ordinary solids, whereas
the large length scales and time scales associated to the
isostatic jamming critical point are only observed in a narrow
region of the (T ,ϕ) phase diagram. We conclude that most
colloidal experiments to date have hardly been able to probe
the jamming criticality, nor have the thermal vestiges of
the jamming transition that result from the existence of
nonmicroscopic length scales and time scales been observed.
These conclusions suggest that the soft and hard sphere glasses
that are commonly studied experimentally essentially behave
as ordinary solids where the usual plane-wave description
holds down to small length scales, as concluded from a very
recent experimental study [60]. Therefore, we hope that our
results will encourage further experimental investigations of
these issues, for instance using emulsion droplets [53] or
core-shell microgel particles [61].

A second major finding in our study is that density
fluctuations for jammed colloidal systems follow the laws of
equilibrium thermodynamics and their study does not reveal
the nonequilibrium nature of glasses. Our analysis is based
on a decomposition of density fluctuations in configurational
and fluctuating parts. Whereas the fluctuating part is directly
related to mechanical moduli via equilibrium fluctuation
formula, we found that the configurational part is essentially
independent of both density and temperature in a rather
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broad range of parameters. The decomposition into these
two components allows us to elucidate the behavior reported
in earlier numerical studies for the nonequilibrium index
and nonequilibrium length scales characterizing amorphous
materials. Based on these observations, we have suggested
that hyperuniformity observed in the configurational structure
factor is unrelated to the compressibility, and therefore to the
jamming criticality.

These results raise some interesting questions. It has been
established numerically that the same jamming criticality
is observed for packings with very different preparation
protocols [62]. Our observation that a strict hyperuniformity
is not observed in our packings suggests that the value of
S0(k → 0) could very well be affected by the nonequilibrium
protocol used to prepare packings. One could, for instance,
hypothesize that a packing prepared with a slower annealing
could be more hyperuniform than one produced via brutal
compression. This raises the appealing possibility that the
nonequilibrium length scale ξneq measured either at T = 0 (for

continuous potentials) or at infinite pressure (for hard spheres)
truly encodes some nontrivial information about the glassy
state [32]. If correct, it would mean that it is not really the
temperature or density dependencies of ξneq which truly matter,
but rather its evolution for different preparation histories.
Therefore, we believe that it would be interesting to understand
better the physical content of this quantity in various glassy
materials prepared using various thermal histories.
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