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Transition from hydrodynamic to viscoelastic propagation of sound in molten RbBr
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Inelastic neutron scattering was applied to measure the acoustic-type excitations in the molten alkali halide
rubidium bromide. For molten RbBr neutron scattering is mainly sensitive to the number density fluctuation
spectrum and is not influenced by charge fluctuations. Utilizing a dedicated Brillouin scattering spectrometer,
we focused on the small-wave-vector range. From inelastic excitations in the spectra a dispersion relation was
obtained, which shows a large positive dispersion effect. This frequency enhancement is related to a viscoelastic
response of the liquid at high frequencies. Towards small wave vectors we identify the transition to hydrodynamic
behavior. This observation is supported by a transition of the sound velocity from a viscoelastic enhanced value
to the adiabatic speed of sound for the acoustic-type excitations. Furthermore, the spectrum transforms into a
line shape compatible with a prediction from hydrodynamics.
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I. INTRODUCTION

Liquids are characterized by disorder and strong correla-
tions between the particles, which separates a liquid from the
crystal and the gas. These strong correlations combined with
disorder hamper the progress for a comprehensive theoretical
description. In particular, a precise understanding of the single-
particle and collective dynamics in such strongly correlated
systems is a challenge for statistical mechanics. To guide and
support this endeavor input from experiment is mandatory.
The fruitful exchange during the past decades provided
good progress in the understanding of liquid dynamics in
some fields. In particular, the liquid dynamics of monatomic
systems benefited with some remarkable successes, like the
experimental verification of the long time-tail in the decay
of correlation functions [1] or the enhancement of the sound
velocity of acoustic-type modes above the adiabatic sound
velocity, the so-called positive dispersion [2]. The detected
excitations can be understood as high-frequency propagating
sound modes, due to their linear dispersion at small values of
the exchanged momentum Q. The advent of the inelastic x-ray
scattering technique provided new insight into the relaxation
dynamics of density fluctuations and gave evidence for a
further decay process of the acoustic-type excitations (for a
recent review, see Ref. [3]).

For binary liquids the most remarkable predictions have
been the existence of optic-type modes and the prediction of
fast sound. In both cases there is a scarcity of experimental
work to support these predictions from molecular dynamics
(MD) simulations. For example, evidence for optic-type modes
has been reported for liquid deuterium fluoride [4] and molten
NaI [5]. More recently, the coexistence of a low-energy
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acoustic mode and a high-energy opticlike excitation has
been reported by investigating a liquid alloy (Li30Bi70) [6]
and evidence for two collective modes in binary alloys with
competing interactions has been reported [7]. The fast sound
prediction [8], an excitation of the light element on the
background of the heavy component in a disparate mass fluid,
ignited a frantic search in particular in water dynamics [9–11],
despite the fact that early on the sound velocity enhancement
has been explained by a viscoelastic reaction of the liquid
[12]. For rare-gas mixtures evidence exists for fast sound from
experiment [13]. However, even the less-spectacular acoustic-
type excitations have not been studied experimentally in such
detail in binary systems as is the case in monatomic liquids.
One reason for this might be the wealth of information one
gets in a single scattering experiment, which is often difficult
or even impossible to separate into the individual components
of interest. One of the model binary systems are molten alkali
halides due to their simple Coulomb interaction, which renders
molten salts one of the most simulated binary liquids. The
study of binary ionic liquids and, as their prototypes, molten
alkali halides, has a long tradition in theory, experiment, as
well as in simulation [14–16].

Besides the interest in understanding the fundamental
principles in the dynamics of a binary Coulomb liquid,
molten salts have gained attractiveness as useful materials,
for example, in energy research because of their potential use
as heat storage in modern solar power plants or as coolant
in next-generation nuclear reactors. One of the questions that
link application-oriented research with fundamental physics
is how the bulk properties of these systems are related to the
particle behavior on microscopic time and length scales. For
this, however, detailed knowledge of the microscopic structural
and dynamic properties is indispensable.

From a structural point of view, Coulomb liquids exhibit
short-range order due to the electrical charge, which shows
an alternation in charge of the successive coordination shells
around a central ion. Neutron-scattering experiments, applying
isotopic substitution, measured the partial structure factors
[17] and the derived pair distribution functions show maxima
at alternating distances up to a radius of about 12 Å [18].
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This solidlike structural arrangement is probably responsible
for the peculiar dynamic response, which resembles the solid
state, too.

One prominent feature in the dynamics is the prediction of
optic-type modes as was shown in the pioneering computer
simulation of a simple molten salt by Hansen and McDonald
about four decades ago [19]. On the other hand, their data
gave no hints for propagating acoustic modes in the spectra, a
result which was attained later several times in MD simulations
[20,21]. With inclusion of ion polarization, as was shown
for NaI, indications for propagating density fluctuations were
found as shoulders at the smallest Q vectors [22]. The fact
that polarization might play a fundamental role in alkali
halide dynamics was already recognized after the first phonon
measurements with neutrons on alkali halide crystals [23].
Later MD simulations with modified rigid ion potentials iden-
tified acoustic-type excitation shoulders in the mass density
correlation function spectra, modeling molten NaI [24]. At
the smallest simulated wave vector Q = 0.175 Å−1 a sound
velocity similar to the adiabatic sound velocity was reported.

Neutron-scattering groups have intensively investigated the
ion dynamics in molten salts and searched for the expected
optic modes [25]. However, inelastic neutron-scattering ex-
periments are always restricted in the kinematic accessible
range. Therefore most of the available experimental data on
dispersing excitations were obtained at momentum transfers
beyond 1 Å−1 [18,25,26]. In addition, no evidence of propa-
gating acoustic-like modes could be observed in the spectra
directly, because at these relatively large Q values the lifetime
of an acoustic mode might be already too short. However,
Brillouin light scattering demonstrated propagating acoustic
modes in the GHz regime in molten KCl [27]. The measured
sound velocity is nearly unchanged compared to the results of
ultrasound methods [28].

Finally, the new technique of high-resolution inelastic
x-ray scattering demonstrated acoustic-type modes in molten
alkali halides beyond the hydrodynamic regime [29–32].
Surprisingly, the acoustic-type dispersion in molten NaCl and
KCl resembled very well the dispersions of the respective
metal cations. It was suggested that at high frequencies a
decoupling of the cation from the anion subsystem may
occur. At large Q vectors, when short-distance correlations are
investigated, the dynamics of the different modes mirrors the
partial dynamics of the individual elements. However, how the
collective dynamics evolves in the intermediate wave-vector
range is still under scrutiny, in particular for ionic liquids,
where, in addition, optic-type excitations emerge.

Here we present an investigation on the acoustic modes
of molten rubidium bromide with an emphasis on the small-
wave-vector range studied by inelastic neutron scattering. Four
decades ago molten RbBr was measured by use of inelastic
neutron scattering [26]. At that time no data were reported
for wave vectors Q < 1 Å−1. A similar wave-vector range
was explored on a Rb-RbBr mixture demonstrating dispersion
relations from current correlation functions [33]. A classical
MD simulation on a rigid ion model of molten RbBr gave
evidence for an enhanced sound velocity and hence for a
departure from hydrodynamics [34]. The masses of both
ions are very similar and therefore no potential transition
to a fast-sound-type excitation will occur in this system. In

TABLE I. Neutron coherent scattering lengths, cross sections,
and absorption cross sections of Rb and Br are presented.

Ion b (fm) σcoh (barn) σinc (barn) σabs (barn)

Rb 7.09 6.3 0.04 0.38
Br 6.795 5.8 0.1 6.9

fact, the transition from the viscoelastic microscopic response
to the hydrodynamic regime in a molten salt is the focus
of this investigation. In noble gases the departure from the
hydrodynamic behavior has been examined experimentally
[35,36] and numerically [37].

II. FORMAL FRAMEWORK

The neutron interaction with nuclei in nonmagnetic ma-
terials can be decomposed in the sum of a coherent and an
incoherent contribution. The measured total double differential
cross section can therefore be written as:

d2σ

d�dω
= d2σ coh

d�dω
+ d2σ inc

d�dω
. (1)

The incoherent cross section connects with the self-
correlations of a single particle and the coherent cross section
provides information on correlations between the particles. In
a multicomponent system the double differential cross sections
per atom can be written in the following form [26]:

d2σ coh

d�dω
= kf

ki

∑
a

∑
b

babb(cacb)1/2Sab(Q,ω) (2)

and

d2σ inc

d�dω
= kf

ki

∑
a

σ inc

4π
caS

s
a(Q,ω), (3)

where kf and ki are the scattered and incident neutron wave
vectors, ba denote the scattering lengths, and ca = Na/N the
respective atomic concentrations. The total differential cross
section is then given by a cross-section-weighted sum of
these two scattering functions Sab(Q,ω) and Ss

a(Q,ω). This
definition follows the Ashcroft-Langreth description of partial
structure factors, which ensures that a = b structure factors
converge to 1 for large Q vectors [38].

In a binary system the measured intensity will consist of
five different contributions: two incoherent dynamic structure
factors and three partial dynamic structure factors from the
correlations of the particles. The incoherent cross sections of
Rb and Br are practically negligible (see Table I) [39,40].
Hence we can write the double differential cross section for
RbBr as a sum over the three partial dynamic scattering
functions taking into account the concentrations ca,b = 0.5:

d2σ

d�dω
= kf

ki

1

2

[
b2

RbSRbRb(Q,ω) + 2bRbbBrSRbBr(Q,ω)

+ b2
BrSBrBr(Q,ω)

]
. (4)

The dynamic structure factors are weighted by the scattering
lengths b (note the subscript b is used to denote the scattering
length and an atomic species). The partial dynamic structure
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factors Sab(Q,ω), a,b = Rb,Br are the spectral densities of
the fluctuations of the microscopic particle densities ρa(r,t) =
�iaδ[r-ria(t)], whose components in the reciprocal space are

ρa(Q,t) =
Na∑

ia=1

exp[−iQ · ria(t)], (5)

where a can be either + or − and ria(t) is the position at time t

of the ion ia of species a. Their time correlations are the partial
intermediate scattering functions

Fab(Q,t) = 1

N

〈ρa(Q,t)ρb(−Q,0)〉√
cacb

, (6)

where N = N+ + N−, ca = Na/N and the brackets denote the
ensemble average over equilibrium configurations.

The partial number density is not the only suitable variable
to describe a dynamic system. Other dynamical variables like
total number density N (r,t), mass density M(r,t), or charge
density Z(r,t) can be defined and provide a more direct link to
physical quantities, like, e.g., acoustic and optic modes. For a
two particle system with equal charges ±1 e the microscopic
charge density can be written as:

Z(r,t) = 1

e
[Zaρa(r,t) + Zbρb(r,t)] = ρa(r,t) − ρb(r,t) (7)

and ρN (r,t) = ρa(r,t) + ρb(r,t). Then number density
SNN (Q,ω) and charge density dynamic structure factor
SZZ(Q,ω) and their cross correlation SNZ(Q,ω) can be
obtained as linear combinations from the partial dynamic
structure factors:

SNN (Q,ω) = 1
2 [Saa(Q,ω) + 2Sab(Q,ω) + Sbb(Q,ω)], (8)

SZZ(Q,ω) = 1
2 [Saa(Q,ω) − 2Sab(Q,ω) + Sbb(Q,ω)], (9)

and

SNZ(Q,ω) = 1
2 [Saa(Q,ω) − Sbb(Q,ω)]. (10)

Mass correlation functions can be defined, too. However, with
similar masses, as is the case for Rb and Br, there is practically
no difference to the number density dynamic structure factor.
Finally, we obtain the measured double differential cross
section Eq. (4) as a sum over number density, charge density,
and their cross correlation functions, taking into account the
scattering lengths:

d2σ

d�dω
= kf

ki

1

4

[
(bRb + bBr)

2SNN (Q,ω) + 2
(
b2

Rb − b2
Br

)

× SNZ(Q,ω) + (bRb − bBr)
2SZZ(Q,ω)

]
. (11)

The number density fluctuations are related to acoustic-type
excitations and charge fluctuations to optic-type modes. This
choice of dynamic variables thus allows us to make direct
contact with acoustic and optic modes in the molten salt.
The scattering lengths of rubidium and bromine are nearly
equal (see Table I), which leaves us only with one term,
the number density dynamic scattering function SNN (Q,ω).
Hence a neutron-scattering experiment on molten RbBr will
mainly be sensitive to the acoustic-type excitations. At large
momentum transfer the dynamics of the individual ions will
dominate the signal and a suitable characterization might

be given by Eq. (4). With similar masses of the ions the
two predicted modes should coincide for RbBr, hence we
expect to observe one acoustic-type mode with a transition
from hydrodynamic to microscopic propagation of sound. In
the scattering experiment on RbBr the neutrons are uniquely
sensitive to one dynamical quantity, namely the number
density fluctuations. As a consequence, the data modeling
can be based on functional forms as in the monatomic
case.

Another important dynamic quantity is the current. Sim-
ilarly to the partial local number densities the partial local
velocities are defined as

va(r,t) =
Na∑
i=1

vai(t)δ[r − rai(t)]. (12)

The product with the corresponding partial local number
density yields the partial local current ja(r,t) = va(r,t)ρ(r,t),
whose space Fourier transform is

ja(Q,t) =
Na∑
i=1

vai(t)e
−iQ·rai (t). (13)

The partial local current is related to the partial local number
density by the continuity equation. Hence, the partial longitu-
dinal current correlation function is directly related to S(Q,ω),

J (Q,ω) = ω2

Q2
S(Q,ω). (14)

This direct relation implies that both the dynamic structure
factor and the current spectra contain the same amount of
information on the inelastic dynamics. However, the ω2

behavior imposes the presence of a peak in the spectra of the
current correlation function and inelastic peaks which are well
visible for any wave vector even appear when no excitation
is obvious in the S(Q,ω) spectra. For well-defined inelastic
excitations both descriptions deliver the same dispersion.
We have applied both approaches to investigate the dynamic
behavior of molten RbBr.

At times longer than typical atomic collision times and
wavelengths much longer than typical interparticle distances,
hydrodynamics predicts a triplet structure for the dynamic
structure factor of a monatomic liquid [41]. The solution of
the linearized Navier-Stokes equations yields two Brillouin
lines dispersing with the sound velocity and one quasielastic
Rayleigh line. The solution for a binary liquid is more complex,
in particular for the Rayleigh line. If thermal relaxation
and interdiffusion are independent, the spectrum of a binary
liquid might be written as a sum over four Lorentzian lines
[41]. In diluted systems such an approach is justified, but it
is not known whether in a dense binary liquid with equal
concentrations of the two types of particles this ansatz is still
useful. Furthermore, a fit of a single Rayleigh line with two
Lorentzians of similar width tends to be ambiguous.

The Mori-Zwanzig formalism provides a powerful frame-
work to define the dynamics of dense liquids [42]. Herein
the dynamics is defined within a generalized Langevin
equation for the time-dependent correlation function which,
Laplace transformed, can be presented in a continued fraction
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representation:

F (Q,z) = S(Q)

z + ω2
0

z+K(Q,z)

, (15)

where ω2
0 is the normalized second frequency moment of

S(Q,ω) and K(Q,z) is the Laplace transform of the memory
function K(Q,t). Theoretically the normalized second fre-
quency moment is given by the expression ω2

0 = kBT
mS(Q)Q

2 [42].
The dynamic structure factor is then related to F (Q,z = iω)
through:

S(Q,ω)

S(Q)
= 1

π
Re

[
F (Q,z)

S(Q)

]
. (16)

The generalized Langevin equation with memory is an exact
equation, which can be derived within the projection operator
formalism from the Liouville equation. All the unknowns in
the dynamics is packed into the memory function. Now we
closely follow the representation by Balucani and Zoppi [42]
to present, at the end, the final functional fit forms for the
viscoelastic and the hydrodynamic cases derived from the
memory function approach, which are rarely documented.

A simple approach uses an exponential decaying
memory function K(Q,t) = K(Q,0)exp[−t/τ (Q)] = (ω2

l −
ω2

0)exp[−t/τ (Q)], where the relaxation time τ is known as
the Maxwell relaxation time. ω2

l (Q) is the ratio of the fourth to
the second frequency moment of the dynamic structure factor.
This single exponential decay in the memory function is the
so-called viscoelastic model. That ansatz can be solved and
one obtains eventually:

S(Q,ω) = S(Q)

π

(
ω2

l − ω2
0

)
τω2

0

ω2τ 2
(
ω2 − ω2

l

)2 + (
ω2 − ω2

0

)2 . (17)

This result was already obtained by Lovesey some time ago
[43]. Besides the structure factor S(Q) and the relaxation time
τ (Q) there appear two further parameters: ω2

0(Q) and ω2
l (Q).

A helpful approximation for ω2
l (Q), which we will apply, was

provided by Hubbard and Beeby [44]:

ω2
l = ω2

E

[
1 − 3

sin(Qσ )

Qσ
− 6

cos(Qσ )

(Qσ )2
+ 6

sin(Qσ )

(Qσ )3

]
(18)

with ωE as the Einstein frequency and σ a hard sphere
parameter of the particles. From Eq. (17) one can consider two
limiting cases: In the high-frequency case ωτ >> 1 the poles
of Eq. (17) are determined by the ωl values. At high frequencies
the instantaneous response of the system is probed and a
high-frequency phase velocity can be defined: c∞(Q) = ωl

Q
.

The liquid responds as it is a frozen solidlike system with an
enhanced sound velocity for the acoustic-type excitations. For
small frequencies ωτ << 1 the sound propagation is defined
by the isothermal sound velocity c(Q) = ω0

Q
. This transition in

the dynamics from viscous to elastic behavior lies at the heart
of this viscoelastic model.

This single-exponential ansatz was successfully applied to
describe the collective dynamics of liquid alkali metals, for
example, liquid cesium and rubidium [2,45,46]. For alkali
metals the contribution of thermal relaxations, related to the
ratio of the specific heats cp/cv = 1.1, is quite small and
therefore can be neglected. However, even for the monatomic
case it was argued that a two-exponential relaxation process
in the second-order memory function K(Q,t) improves the
data fit [3]. In MD simulations on a Lennard-Jones fluid,
Levesque et al. reported the need for a second relaxation time
in the memory function to describe the spectra of transverse
excitations [47]. In a simulation on a molten salt, mimicking
NaCl, it was noted that the modeling of some dynamical
quantities needed a two-times model within the memory
function [20].

For binary salts the ratio of specific heats γ = cp/cv is no
longer negligible. For molten KBr γ = 1.42 and for CsBr γ =
1.63 were reported [48], so we estimate that γ = cp/cv ≈ 1.5
for the intermediate case of molten RbBr. Hence we add a
second relaxation channel to the memory function:

K(Q,t) = (
ω2

l − γω2
0

)
exp[−t/τ (Q)]

+ (γ − 1)ω2
0exp(−DT Q2t). (19)

DT is the thermal diffusion coefficient which is related to
the thermal conductivity λ: DT = λ/ncp and n is the particle
density. After a Laplace transform we obtain:

F (Q,z)

S(Q)
= 1

z + ω2
0

z+ �1
z+
1

+ �2
z+
2

, (20)

with �1 = ω2
l − γω2

0, �2 = (γ − 1)ω2
0, 
1 = 1/τ (Q), and


2 = DT Q2. Here τ (Q) is the structural, viscoelastic relax-
ation time and τT = 1/
2 is the thermal relaxation time.

After some simplifying we arrive at the following expres-
sion for the two-time viscoelastic model:

F (Q,z)

S(Q)
= z3 + z2f1 + zf2 + f3

z4 + z3f1 + z2g2 + zg3 + g4
, (21)

with f1 = 
1 + 
2, f2 = 
1
2 + �1 + �2, f3 = �1
2 +
�2
1, g2 = 
1
2 + �1 + �2 + ω2

0, g3 = �1
2 + �2
1 +
ω2

0(
1 + 
2), and g4 = ω2
0
1
2.

A similar derivation can be found in Ref. [49] with
the difference that these authors then write the fraction
of two polynomials as a sum of partial fractions of real
and complex roots, which represent exponentially decaying
intermediate scattering functions in the time domain. That
approach, resulting in a sum of Lorentzians in the frequency
space, leads then to the so-called generalized hydrodynamics
representation. After more algebra we arrive at (more details
are presented in the Appendix):

S(Q,ω)

S(Q)
= 1

π

ω4(f1g2 + f3 − g3 − f1f2) + ω2(f2g3 − f1g4 − f3g2) + f3g4

ω8 + ω6
(
f 2

1 − 2g2
) + ω4

(
g2

2 + 2g4 − 2f1g3
) + ω2

(
g2

3 − 2g2g4
) + g2

4

. (22)

This fit model has five parameters: S(Q), ω2
0, ω2

l , 
1, and 
2, which are all Q dependent.
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Towards long wavelengths the relaxation time for the
density fluctuations becomes much larger than the micro-
scopic relaxation time of the memory function. Consequently,
that relaxation time can be replaced by a δ function and
the memory function becomes K(Q,t) = 2ηL/(nm)Q2δ(t) +
(γ − 1)ω2

0exp(−DT Q2t) with the longitudinal viscosity ηL =
4
3ηS + ηB and m the mass of the particle. ηS is the shear
viscosity and ηB is the bulk viscosity. A similar algebraic
derivation delivers eventually:

S(Q,ω)

S(Q)
= 1

π

ω2(f1g2 − f2g1 − g3) + f2g3

ω6 + ω4
(
g2

1 − 2g2
) + ω2

(
g2

2 − 2g1g3
) + g2

3

,

(23)

with 
L = ηL/nm, f1 = 2
LQ2 + DT Q2, f2 =
2
LDT Q4 + (γ − 1)ω2

0, g2 = 2
LDT Q4 + γω2
0, and

g3 = ω2
0DT Q2. It has been shown [49] that this spectrum

consists of a central Rayleigh line and two Brillouin
lines which disperse with the adiabatic velocity of sound.
In hydrodynamics density fluctuations are decaying
macroscopically slow so they can be described using
linearized Navier-Stokes equations from hydrodynamics,
which was the first method to derive the time correlation
function [50]. That model has four fit parameters: S(Q), ω2

0,
DT , and 
L. Here cad = γ ω0

Q
defines the propagation velocity

of the acoustic modes and 
L characterizes their damping.
Note that fits with Eq. (23) have been performed but not with
a three-Lorentzian model. We did not use the specific-heat
ratio as an additional fit parameter. A constant γ = 1.5 was
used throughout the data analysis.

III. EXPERIMENTAL DETAILS

An inelastic neutron-scattering experiment on molten RbBr
was performed at the BRISP spectrometer of the Institut
Laue-Langevin (Grenoble, France). That spectrometer was
specifically designed for small-angle spectroscopy with ther-
mal neutrons [51] and its performance in this field recently
has been demonstrated [52]. An incoming energy of Ei =
51.9 meV was used by exploiting the copper (111) reflection
of the crystal monochromator. The sample-detector distance
was 4 m with a maximum 2θ scattering angle of 14◦. With
an efficient collimation in place (honeycomb collimator [53])
spectra down to a scattering angle of 1◦ can be measured.
The sample was contained in a niobium cylindrical can and
enclosed by electron beam welding. The can has a diameter
of 28 mm and a height of 10 mm and was placed with its axis
parallel to the neutron beam. The niobium windows of the can
in-beam direction are only 200 μm thick. A boron nitride mask
shielded the outer parts of the cell from scattering. The can was
installed in a standard furnace with niobium shields. Several
scans on molten RbBr, empty cell at high temperature, and a
vanadium plate were performed. The total measurement time
was about 50 h for the sample and the same amount was used
for the empty can. The measurement temperature was 993 K.
The melting temperature of RbBr is 955 K. The first peak of
the partial structure factor is at about Q = 1.5 Å−1 [54] and
hence outside the accessible wave-vector range, which was
limited to 0.2 Å−1 < Q < 1.1 Å−1.

The data reduction included monitor normalization, sub-
traction of a time-of-flight background, angular integration and
averaging, background subtraction, and conversion to energy
space. A conversion to constant Q spectra was then carried
out. All of these analysis steps were performed using the lamp
data reduction framework [55]. The vanadium scan delivered
a Gaussian line shape with a full width at half maximum
(FWHM) of 1.6 meV. In addition, the vanadium run was
utilized to achieve a normalization in absolute units.

In scattering experiments higher-order scattering processes
can spoil the measured signal. This is particularly important
at small momentum vectors. Multiple scattering has been
treated with a calculation of the twice-scattered neutrons
in an efficient way for a prescribed single scattering law.
This is performed by numerical evaluation of the analytically
exact secondary scattering integral, taking into regard the
proper kinematic restrictions. The same approach was used
successfully for liquid rubidium [45]. The most important step
in multiple scattering evaluation is to define the scattering
law over the whole allowed kinematic range of higher-order
scattering events, which prohibits the use of the parametrized
measured signal. As input for the scattering function we
use the coherent Lovesey model according to Eq. (17). The
structure factor and the fourth frequency moment are necessary
as input parameters. The structure factor is calculated using
the hard-sphere Percus-Yevick approximation. For the hard-
sphere parameter σ we use the arithmetic average of the
ion diameters σ = 3.4 Å. For the normalized fourth moment
ω2

l the approximation from Hubbard and Beeby is applied
according to Eq. (18). In order to determine the relaxation
time τ we apply the recipe from Lovesey [43]:

1

τ
= 2√

π

√
ω2

l − ω2
0, (24)

with the normalized second frequency moment ω2
0. We fitted

the nonmultiple scattering corrected spectra with the Lovesey
model according to Eq. (17). The resulting dispersion was
used as input to fit the dispersion relation according to the
approximation by Hubbard and Beeby and hence to derive
the Einstein frequency. The Einstein frequency we obtained
is ωE = 12 × 1012 ps−1. Then an input scattering function
could be calculated over the whole accessible kinematic space
in Q and ω. Only with a definition of the input S(Q,ω)
over energies of twice the measured energy transfer and
twice the maximum wave vector a reasonable description of
two scattering events can be expected. Finally, the absolute
value for the two-times scattering neutron signal is calibrated
through a comparison between the single scattered calculated
signal with the measured intensities (Fig. 1).

After subtracting the multiple scattering contribution we
obtain fully corrected S(Q,ω) spectra. The spectra have
been corrected for detailed balance by multiplication with
exp(−�ω/2kBT ). At that high temperature (T = 993 K)
the correction is only a small effect and did not deliver
symmetrical spectra. Therefore a sloping background was
taken into account by adding a line to the fit model. This
residual background probably stems from a not fully subtracted
underlying background contribution in the time-of-flight sig-
nal. The sloping background increases towards smaller wave
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FIG. 1. (Color online) The multiple scattering noncorrected sam-
ple spectrum and a vanadium spectrum are plotted. Included is also
the calculated two-times scattering neutron signal.

vectors from a slope of 1 × 10−4 to 9 × 10−4 at the smallest
Q vector Q = 0.2 Å−1. The resulting spectra have been fitted
with models as described in Sec. II. The fit model was
convoluted with the resolution of the instrument represented
by a Gaussian with FWHM = 1.6 meV.

Further information about the collective excitations can be
obtained from the current correlation functions. These have
been calculated according to Eq. (14) and are plotted in
Fig. 2. Two inelastic excitation ridges are dispersing linearly
and denoting the acoustic excitations. At the largest wave
vector the spectrum broadens and indicates further relaxation
processes.

FIG. 2. (Color online) The longitudinal current spectra J (Q,ω)
are plotted. Color coding defines the intensity scale: red (bright) to
blue (dark) corresponds to high to low intensity.

FIG. 3. (Color online) The spectrum for the wave vector Q =
0.6 Å−1 is plotted (dots). The results of three fit models are included:
the hydrodynamic model (dashed), the single time viscoelastic model
(dash-dot), and the two-relaxation-times model (line).

IV. RESULTS AND DISCUSSION

In Fig. 3 we show the spectrum as measured with the
spectrometer at Q = 0.6 Å−1. Included are the results of
the three fit models. Obviously, the hydrodynamic model
Eq. (23) is not able to fit the data at this microscopic
momentum transfer. However, both viscoelastic models deliver
a good account of the data. The fit with two relaxations
times for the memory functions has a smaller χ2 (reduced
χ2 = 1.2 × 10−6) compared to the single relaxation time
model (reduced χ2 = 1.28 × 10−6). However, the fitted ωl

value is not strongly influenced. It changes from ωl = 8 ±
0.5 meV with the two-times model to ωl = 7.3 ± 0.4 meV.
This behavior is expected because the additional relaxation
time provides an additional degree of freedom for the fit
of the strong Rayleigh line and hence fewer constraints for
the excitation frequency fit parameter. From the fit results
we conclude that the two-relaxation-times model delivers a
satisfactorily good fit to the data. An inclusion of another
relaxation term in the memory function is not justified due to
the energy range and the statistical quality of our data.

Figure 4 shows a selection of spectra. Included is the fit
result with the two-times viscoelastic model. In Fig. 4(a)
we added the sloping background contribution separately.
The insets emphasize the inelastic region with the respective
inelastic excitations. The absolute values show a fair agreement
with the corresponding intensities from Price and Copley [26].
At Q = 0.8 Å−1 we get a peak value at zero energy transfer
of S(Q,ω = 0) = 0.7 ps, which compares fairly well with the

previous data which show S(Q = 0.8 Å
−1

,ω = 0) ≈ 0.6 ps.
The inelastic contributions are small in comparison with the
dominant Rayleigh line. However, the insets demonstrate quite
clearly that propagating excitations exist, which are broadened
due to damping.

First we will discuss the inelastic peak positions before
we go into detail about the whole line shape. A fit with the
two-times relaxation model Eq. (22) allowed us to determine
the dispersion curve ωl(Q). For the smallest Q vectors
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FIG. 4. (Color online) The fully corrected spectra are shown
for three Q vectors. Included are fits (lines) with the two-times
viscoelastic model according to Eq. (22). The insets focus on the
inelastic range of energies. Note the different abscissae. In plot (a)
the sloping background contribution is shown.

Q = 0.2 Å−1 and Q = 0.3 Å−1, it was necessary to fix the
thermal relaxation rate 
2 = 0 meV for a converging fit.
Otherwise, all five fit parameters of that model were varied.
The fit results for ωl are plotted in Fig. 5. We observe the
typical dispersive behavior of acoustic-type excitations. The

FIG. 5. (Color online) Dispersion relations for molten RbBr.
Triangles are the ωl values from the two-times fit, and circles are
the peak values from the current spectra J (Q,ω). The line with dots
is the result for the ωcalc(Q) calculation according to Eq. (18) and the
full line indicates the adiabatic sound velocity.

peak positions of the longitudinal current spectra J (Q,ω),
obtained through a simple fit to the inelastic peak positions,
are included into the figure. They agree quite well with the
fit results from the two-times viscoelastic model fit. The line
with dots is the calculated result for ωl(Q) using Eq. (18). An
Einstein frequency ωE = 12 × 1012 ps−1 was used and for the
relaxation time τ the Lovesey recipe Eq. (24) was applied. The
overall good agreement between calculated and experimental
data shows that the single-relaxation-time model is a good
description for the dispersion of the inelastic excitations.
At Q < 0.4 Å−1, the excitation values obtained from both
S(Q,ω) and J (Q,ω) deviate from the viscoelastic behavior
and the transition to a hydrodynamics (adiabatic) region is
fully completed at Q = 0.2 Å−1. In previous experiments on
molten NaCl and CsCl using inelastic x-ray scattering the
derived excitations approached the hydrodynamic values at
the smallest resolvable wave vector around Q ≈ 0.2 Å−1 [29].
At that time the excitation frequencies were determined with
a damped harmonic oscillator model and we refer the reader
to Ref. [49] for a formal comparison of fit parameters from
different model functions. Our results on RbBr confirm these
previous results for a transition to hydrodynamics.

In Fig. 6 the phase velocities c = ω
Q

of the excitations are
plotted. The phase velocity exceeds the adiabatic value (cad =
1100 m/s [56]) by nearly a factor 2 at Q � 0.4 Å−1. The
phase velocity c approaches the hydrodynamic value at Q =
0.2 Å−1. The calculated values ccalc = ωcalc/Q describe quite
well the fitted phase velocities, except at wave vectors Q <

0.4 Å−1.
An increase of the sound velocity above the adiabatic

value has been observed in nearly all liquids and is called
positive dispersion, even if an increase of up to 90%, as
found for RbBr, is not common. For example, in liquid
alkali metals a positive dispersion of about 15–20% has
been observed [2,45,57], whereas for more complex liquid
metals like aluminum and mercury enhancements of up to
50% have been reported [58,59], although the method to
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FIG. 6. (Color online) Phase velocity of molten RbBr. The line
depicts the adiabatic sound velocity. Included are calculated ccalc =
ωcalc/Q values using Eq. (18) as an approximation for the mode
frequency.

determine the excitation frequency influences the outcome to
some extent. This enhancement in frequency has been related
to a viscoelastic reaction of the liquid when at high frequencies
(ωτ >> 1) the liquid reacts more solidlike than at low
frequencies [42]. In molten salts a much larger enhancement of
the phase velocity above the adiabatic sound velocity has been
observed. For example, in molten NaCl, KCl, CsCl, and NaI
the observed sound velocities exceeded the adiabatic ones by
about 50–70% [29–32]. Early evidence from MD simulation
for this frequency enhancement was obtained for molten
RbBr, where a sound velocity c = 2000 m/s from calculated
current spectra was reported [34]. An enhancement of the
sound velocity for the longitudinal acoustic-type excitations
of 60% was reported by Ciccotti et al. in a simulation on
molten NaCl [21]. Later simulations confirmed the large
enhancements for the velocity of the propagation of sound
with c = 3294 m/s for molten NaCl and c = 1930 m/s for NaI
compared to the adiabatic sound velocities of cad = 1750 m/s
and cad = 1150 m/s for NaCl and NaI, respectively [60]. To
summarize, simulation results are consistent with the large
positive dispersion in molten salts observed in scattering
experiments. On a theoretical ground, the importance of
obtaining an experimental determination of the dispersion
curves relies on the need to measure the enhancement of the
sound velocity and its relation with the value of the Einstein
frequency [61], which itself is determined by the curvature
of the potential at next-neighbor distance. In a Coulomb fluid
that curvature is much stronger than in alkali metals with their
quite harmonic potentials.

However, there are not many MD simulations covering the
wave-number range towards hydrodynamics, because of the
large box size necessary for these simulations. Interestingly, a
simulation on molten NaI by Alcaraz and Trullas reports for
one of the tested potentials a sound velocity at Q = 0.175 Å−1,
only 10% larger than the adiabatic sound velocity [24] and
hence an indication for a transition to hydrodynamics at the
same wave-number range.

From the two-relaxation-times fit we obtain the structural
relaxation time τL(Q) = 1/
1(Q) and the thermal relaxation

FIG. 7. (Color online) Relaxation times τL and τT of the fit with
the two-times viscoelastic model is presented on a logarithmic scale.
The arrow indicates the hydrodynamic limit. Included is also the
calculated relaxation time τLovesey for the viscoelastic model according
to Eq. (24).

time τT (Q) = 1/
2(Q). These values are plotted in Fig. 7 on a
logarithmic scale. The relaxation time for the thermal process
is about an order of magnitude slower than the viscoelastic
relaxation time τL(Q). Note that the thermal relaxation rate

2(Q) is, for all Q vectors, much smaller than the energy
resolution. Such a slow process will improve the fit of the
quasielastic line shape as it already became obvious in Fig. 3.
A similar large separation in the relaxation times was observed
with a two-relaxation-times fit to the data of liquid lithium [62].
Towards small Q vectors the relaxation time τL(Q) increases
strongly. Included in the figure is the prediction from Lovesey’s
recipe for the relaxation time [43]. The arrow in the figure
indicates the Q → 0 limit of the viscoelastic prediction [42]:

τQ→0 = ηL/nm

c2
L − c2

ad

. (25)

With ηL = 1.2610−3 Pa s and a mass density ρ = 2.68 g/cm3

[28] we obtain τQ→0 = 0.17 ps.
At the smallest wave vector Q = 0.2 Å−1 the fitted τL

increases dramatically and differs from the τLovesey calculated
value and from the Q → 0 prediction. This deviation in
combination with a nonconverging fit is evidence that the
spectral line shape of the viscoelastic model is no more
suitable.

To support our supposition that hydrodynamics is still
valid at the smallest Q vector, we observe (see Fig. 8)
that the fit with a hydrodynamics description according to
Eq. (23) is indistinguishable from a viscoelastic two-times
representation at Q = 0.2 Å−1. For the latter, 
2 = 0 meV
was fixed for a stable converging fit. This contrasts to what
was found at Q = 0.6 Å−1 (see Fig. 3). The fit delivers a ω2

0 =
1.6 ± 0.3 meV2, 
L = 0 and a thermal diffusion constant
DT = 2.5 ± 0.37 meV/Å−2 = 3.8 ± 0.6 × 10−4 cm2/s. The
Brillouin frequency ω0 corresponds to a sound velocity of
c = 960 ± 80 m/s, in good agreement with the adiabatic
sound velocity of cad = 1100 m/s. The relaxation rate 
L =
0 indicates that the damping of the excitation cannot be

012307-8



TRANSITION FROM HYDRODYNAMIC TO VISCOELASTIC . . . PHYSICAL REVIEW E 92, 012307 (2015)

FIG. 8. (Color online) The spectrum at Q = 0.2 Å−1 is plotted
(dots). Included are fits with the hydrodynamics model and with the
two-relaxation-times model, which are practically indistinguishable.

resolved by our spectral resolution. With forced Rayleigh
scattering Nakazawa et al. determined experimentally thermal
diffusivities of molten alkali halides [63]. For molten RbBr at
1031 K they report that DT = 1.76 × 10−3 cm2/s. That value
is about a factor 4 larger than our fit value. At larger Q values
the damping coefficient 
L increases substantially to deliver
an overdamped excitation (see Fig. 3).

The collective dynamics of molten alumina was studied by
use of inelastic x-ray scattering [64]. For molten alumina the
data analysis, based on a generalized hydrodynamics model of
a sum of three Lorentzians, revealed for the small-wave-vector
range a thermal diffusivity DT which was about 2 to 3 orders of
magnitude smaller than the macroscopic expected value DT ,
derived from the thermal conductivity λ. It seems that in the
case of liquid alumina, the transition from a hydrodynamic to
viscoelastic response occurs at much smaller wave vectors and
that the oxide melts show herein a difference to molten alkali
halides [65]. For molten RbBr the hydrodynamic 
 = DT Q2

law deviates by only a factor 4 at the smallest Q vector. A
perfect agreement is not expected since Q = 0.2 Å−1 is not
yet the hydrodynamic limit and another uncertain parameter
is the Q dependence of the specific heat ratio γ = 1.5, which
was kept constant during our analysis.

The transition from hydrodynamics to microscopic dynam-
ics was studied previously on argon gas [35]. That study
concluded that the collective dynamics of the gas at room
temperature can be described by a hydrodynamics approach
based on kinetic theory up to wave vectors of Q ≈ 0.1 Å−1.
The wave-vector dependence of the fit parameters follow the
hydrodynamics predictions in this Q range. At higher densities
deviations from the linearized hydrodynamics prediction have
been observed. Simulations of a rare gas mixture concluded
that the collective dynamics followed hydrodynamics up to a
wave vector of Q = 0.2 Å−1 [37], which agrees very well with
our observations in molten RbBr.

Within the viscoelastic model the transition to high-
frequency sound propagation occurs when ωτ ≈ 1 is valid.
Deviations from the viscoelastic description appear at a

wave vector Q ≈ 0.3 Å−1 in our data. At that Q vector
we obtain an excitation frequency of ω ≈ 4.5 ps−1, which
delivers a corresponding relaxation time τ = 0.22 ps, in good
agreement with τQ→0 = 0.17 ps, the calculated limit value
for the hydrodynamic regime. That estimate supports our
supposition that at the smallest observed excitation frequency
at Q = 0.2 Å−1 the transition to hydrodynamics has occurred.

V. CONCLUSIONS

An inelastic neutron-scattering experiment was performed
on molten RbBr using the dedicated Brillouin spectrometer
BRISP. The choice of a binary liquid composed of components
having similar scattering lengths allowed us to focus on the col-
lective acoustic-like dynamics at small wave vectors in order
to study the departure from the hydrodynamics regime. Raw
data were carefully corrected and a refined subtraction of the
multiple-scattering contribution was performed. The spectra
then reveal the presence of dispersing acoustic modes around
a dominating quasielastic line. A two-times viscoelastic model
fits the spectra sufficiently well and delivers an acoustic
dispersion with a large positive dispersion of about 100%
above the values expected from the adiabatic sound velocity.
This frequency analysis was supported by the inspection of the
longitudinal current spectra. However, at the smallest wave
vector the dispersion approaches the hydrodynamic values.
Furthermore, the derived structural relaxation time increases
strongly beyond the limit value for long wavelengths in this
wave-vector range. A fit with a purely hydrodynamic model
works well at Q ≈ 0.2 Å−1 and underlines the conclusion
that at that wave vector the transition to hydrodynamics
occurs in molten RbBr. Within the viscoelastic picture the
transition from viscoelastic propagation of acoustic modes
to hydrodynamic adiabatic velocity of sound will happen
when the excitation frequency is similar to the inverse time
of structural relaxations. We derive a relaxation time at the
transition in good agreement with the hydrodynamic limit of
the viscoelastic model supporting the conclusion that we are
observing the transition to ordinary hydrodynamics in molten
RbBr. Revealing more details of the transition would need
a larger kinematic range in combination with better energy
resolution, demands which are mutual contradictory. It might
be interesting to study the transition region from GHz to THz
dynamics in the more complex counterparts of the molten
salts, the ionic liquids. These organic Coulomb liquids have
internal degrees of freedom and it has been suggested by MD
simulations that stiff and soft domains exist [66], which may
provide a spatial origin for a viscoelastic response.
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APPENDIX

In this Appendix we will provide more details in the derivation of Eq. (22). We start with the continued fraction representation:

F (Q,z)

S(Q)
= 1

z + ω2
0

z+K(Q,z)

, (A1)

where ω2
0 is the normalized second frequency moment of S(Q,ω) and K(Q,z) is the Laplace transform of the memory function

K(Q,t). With two relaxation channels to the memory function:

K(Q,t) = (
ω2

l − γω2
0

)
exp[−t/τ (Q)] + (γ − 1)ω2

0exp(−DT Q2t) (A2)

and after a Laplace transform we obtain:

F (Q,z)

S(Q)
= 1

z + ω2
0

z+ �1
z+
1

+ �2
z+
2

, (A3)

with �1 = ω2
l − γω2

0, �2 = (γ − 1)ω2
0, 
1 = 1/τ (Q), and 
2 = DT Q2. Here τ (Q) is the structural, viscoelastic relaxation time

and τT = 1/
2 is the thermal relaxation time. This fraction can be simplified:

F (Q,z)

S(Q)
= 1

z + ω2
0(z+
1)(z+
2)

z(z+
1)(z+
2)+�1(z+
2)+�2(z+
1)

= z(z + 
1)(z + 
2) + �1(z +
2) + �2(z + 
1)

z2(z + 
1)(z + 
2) + z�1(z + 
2) + z�2(z +
1) + ω2
0(z + 
1)(z + 
2)

. (A4)

The numerator can now be written as

z3 + z2(
1 + 
2) + z(
1
2 + �1 + �2) + (�1
2 + �2
1) = z3 + z2f1 + zf2 + f3 (A5)

and the denominator as

z4 + z3(
1 + 
2) + z2
(

1
2 + �1 + �1 + ω2

0

) + z
(
�1
2 + �2
1 + ω2

0
1 + ω2
0
2

) + (
ω2

0
2
1
)

= z4 + z3g1 + z2g2 + zg3 + g4. (A6)

Note that f1 = g1. Then we arrive at the following expression for the two-times viscoelastic model:

F (Q,z)

S(Q)
= z3 + z2f1 + zf2 + f3

z4 + z3f1 + z2g2 + zg3 + g4
. (A7)

To get S(Q,ω) we need to obtain the real part of F (Q,z):

S(Q,ω)

S(Q)
= 1

π
Re

[
F (Q,z = iω)

S(Q)

]
= 1

π

−ω2f1 + f3 − i(ω3 − ωf2)

ω4 − ω2g2 + g4 − i(ω3f1 − ωg3)
. (A8)

Multiplying with the complex conjugate of the denominator we get for the denominator:

(ω4 − ω2g2 + g4)2 + (ω3f1 − ωg3)2 = ω8 + ω6
(
f 2

1 − 2g2
) + ω4

(
g2

2 + 2g4 − 2f1g3
) + ω2

(
g2

3 − 2g2g4
) + g2

4 (A9)

and for the real part of the numerator:

(−ω2f1 + f3)(ω4 − ω2g2 + g4) + (ω3 − ωf2)(ω3f1 − ωg3) = ω4(f1g2 + f3 − g3 − f1f2) + ω2(f2g3 − f1g4 − f3g2) + f3g4.

(A10)

The fraction of both terms is the end result given in Eq. (22) and a similar derivation leads us to Eq. (23).
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