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The magnetoviscous effect, change in viscosity with change in magnetic field strength, and the anisotropy of
the magnetoviscous effect, change in viscosity with orientation of magnetic field, have been a focus of interest
for four decades. A satisfactory understanding of the microscopic origin of anisotropy of the magnetoviscous
effect in magnetic fluids is still a matter of debate and a field of intense research. Here, we present an extensive
simulation study to understand the relation between the anisotropy of the magnetoviscous effect and the underlying
change in microstructures of ferrofluids. Our results indicate that field-induced chainlike structures respond very
differently depending on their orientation relative to the direction of an externally applied shear flow, which
leads to a pronounced anisotropy of viscosity. In this work, we focus on three exemplary values of dipolar
interaction strengths which correspond to weak, intermediate, and strong interactions between dipolar colloidal
particles. We compare our simulation results with an experimental study on cobalt-based ferrofluids as well
as with an existing theoretical model called the chain model. A nonmonotonic behavior in the anisotropy of
the magnetoviscous effect is observed with increasing dipolar interaction strength and is explained in terms of
microstructure formation.
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I. INTRODUCTION

Magnetic fluids in general and ferrofluids in particular ex-
hibit interesting viscous properties in the absence and presence
of an external field. The viscous properties of ferrofluids have
been studied for decades due to the medical and technological
applications [1]. The strength of the magnetic field has a
major influence on the viscosity of ferrofluids which is known
as the magnetoviscous effect (MVE) [1–8]. In addition to
the strength of the applied field, its orientation with respect
to the flow geometry is found to have an influence on the
viscosity of the ferrofluids, which is known as the anisotropy
of the magnetoviscous effect. It was first observed in a classic
experiment on dilute ferrofluids by McTague in 1968 [9]. In
McTague’s experiment, an external magnetic field is applied
parallel and perpendicular to the capillary tube axis. He found
that the viscosity increases when the external magnetic field is
applied parallel to the flow direction compared to the change
in viscosity when the field is oriented perpendicular to the
flow direction. This is due to the occurrence of an additional
magnetic torque due to the misalignment of dipole moment
and the magnetic field direction. In 1972, Shliomis [10]
proposed a theoretical model (NI model) for noninteracting
ferrofluid systems to understand the anisotropy of the MVE.
The NI model successfully described the results of McTague’s
experiment. To observe the viscosity changes in the flow,
the gradient of the flow, and the vorticity directions, Grants
et al. [11] carried out experiments in a parallel plate geometry
for a weakly interacting system. From this experiment, it is
observed that the magnetic field that is applied along the
gradient of the flow direction causes larger viscosity than that
of the flow and vorticity directions. Later on, a number of
experiments were carried out in a capillary flow geometry
in dilute as well as in concentrated ferrofluids [12–14]. A
clear dependence of the MVE on shear rate has been observed
experimentally in ferrofluids with volume fractions greater

than 1% [15–17]. Since the NI model does not take the
shear dependence of the MVE into account, this model is
not sufficient qualitatively and quantitatively to explain the
viscosity changes in an interacting ferrofluid system. An
alternative approach to ferrofluid dynamics and their MVE
via the macroscopic thermodynamics was proposed by Müller
and Liu [18]. Since our aim here is to better understand
the relation between the MVE and underlying structural
changes, we focus on the kinetic chain model of Zubarev
and Iskakova [19]. Since dipolar interactions lead to chainlike
aggregates, the chain model assumes the aggregates to be
effectively rigid and noninteracting. A few numerical simu-
lations focused on the anisotropy of the magnetoviscous effect
in semidilute and moderately interacting ferrofluids [20,21].
The numerical results are successfully compared to the chain
model prediction for moderately interacting systems. The
anisotropy of the magnetoviscous effect by varying dipolar
interaction strengths including strong interactions is important
to study in order to obtain a clear picture of the rheology
of various ferrofluid systems. Here, we mainly focus on
this aspect, which has not been studied systematically in
experiments and in simulations so far. The interchain inter-
actions cannot be ignored with increasing dipolar interactions.
The chain model is not valid in such cases. We provide
structural information from simulations to incorporate in the
chain model to observe the possible influence of interchain
interactions.

We organize the paper as follows. In Sec. II, we describe
the model we use to study ferrofluids and the nonequilibrium
simulation details. In Sec. III, we provide a brief review
of existing theoretical models which relate the MVE to
mesoscopic structures. Our results and discussion on the
zero-field case are given in Sec. IV and on the applied-field
case are given in Sec. V. The comparison of our results with
experiments is shown in Sec. VI. The summary of the paper
and a short discussion are provided in Sec. VII.
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II. METHODS

We study ferrofluids that can be modeled as a system of N

magnetically hard point dipoles in a volume V and diameter σ

with short-range repulsive interaction and long-range dipole-
dipole interaction [22–24]. We choose truncated and shifted
Lennard-Jones potential ULJ

ij with a cutoff rc = 21/6σ such
that the potential is cut off in the minimum (known as the
Weeks-Chandler-Anderson potential [22]), which mimics the
steric repulsion of polymer-coated colloidal particles:

ULJ
ij = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6]
+ ε, (1)

where ε is the depth of the potential and rij is the distance be-
tween two particles. The long-range dipole-dipole interaction
is given by

U dd
ij = μ0m

2

4πr3
ij

[ui · uj − 3(ui · r̂ij )(uj · r̂ij )]. (2)

For a system of monodispersed particles, m is the magnetic
dipole moment, dm is the magnetic core diameter, ui is
the orientation of particle i, rij = ri − rj is the connector
vector of the two particles, rij = |rij |, r̂ij = rij

rij
, and μ0 =

4π × 10−7 H/m. The dipole interaction strength of two dipoles
with minimum distance dm is given by λm = μ0m

2/4πkBT d3
m,

where kB is the Boltzmann constant and T is the temperature.
Due to steric repulsion the minimum distance between two
dipolar particles is dh; thus the effective dipolar interaction
strength becomes λ = λm( dm

dh
)3. We take the long-range part

of dipolar interaction into account using the reaction field
method (RF) [25]. In this method, a cavity of radius rRF (here
rRF = 8.0σ ) is defined within which the interactions of dipolar
particles are treated explicitly. The particles outside this cavity
form a dielectric continuum, εs, which develops a reaction field
inside the cavity. The strength of the reaction field acting on
particle i is given by

HRF
i = 2(εs − 1)

2εs + 1

1

r3
RF

∑
j

mj ,

where the summation extends over molecules inside the
cavity. We consider rRF much greater than rc of short-range
interactions. We used the RF method with a metallic boundary
condition (εs → ∞) [22,25] so that the system is surrounded
by a uniform medium with infinite magnetic permeability;
thus the internal magnetic field coincides with the applied
homogeneous external field H. We have compared the results
obtained by the RF method with those of the Ewald summation
method, both with a metallic boundary condition. For the
present range of parameters, we find that both methods give
identical results within numerical uncertainties. Since we find
the RF method to be computationally more efficient than
the Ewald summation method, we choose to perform our
simulations with the RF method.

We parametrize our model for cobalt-based ferrofluids ac-
cording to the ferrofluids used in the work by Gerth-Noritzsch
et al. [26]. We choose the magnetic volume fraction φ =
0.0021 that corresponds to a hydrodynamic volume fraction
φh = φ(dh/dm)3 = 0.007, where magnetic core diameter dm =
10 nm and effective hydrodynamic particle diameter dh =
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FIG. 1. (Color online) The equilibrium magnetization curve (M)
as a function of applied magnetic field strength (H ).

σ = 15 nm. The individual magnetic moments mi = mui

give rise to a macroscopic magnetization M = Msū, where
ū = (1/N )

∑
i ui is the average orientation of the particles

and Ms = Nm/V is the saturation magnetization. We choose
the saturation magnetization value Ms = 3.2 × 103 A/m from
experiment [26]. For a dipolar interaction strength λ ≈ 4.6, the
magnetization curve obtained from simulations is comparable
to the experimental data as shown in Fig. 1.

We perform Langevin dynamics (LD) simulations in the
presence of a shear flow V(r) with vorticity �(r) = 1

2∇ ×
V(r). The translational and rotational Langevin equations of
motion of the system are given by

M v̇i = −ξT[vi(t) − V(r)] + fB
i (t) + Fi , (3)

I · ω̇i = −ξR[ωi(t) − �(r)] + τB
i (t) + τ i + mui × H, (4)

where M and I are the mass and inertia tensor of the particle
with linear and angular velocity vi and ωi , respectively, ξT is
the translational friction coefficient, and ξR is the rotational
friction coefficient. For a solvent of viscosity ηs, ξT = 3πηsσ

and ξR = πηsσ
3. fB

i (t) and τB
i (t) are Gaussian random forces

and torques. The potential forces are given by Fi = −∇ri
U

with U = 1
2

∑
ij (ULJ

ij + U dd
ij ) + ∑

i U
RF
i , where URF

i is the
potential energy from the reaction field approach. The potential
torques are given by Fi = −∇ri

U and τ i = −LiU with
rotational operator Li = ui × ∂

∂ui
. The external magnetic field

contributes an additional term UH
i = −mui · H to the potential

energy of the system. The torque exerted by the magnetic field
is −LiU

H
i = mui × H. We consider the free-draining limit in

Eqs. (3) and (4) since hydrodynamic interactions are not taken
into account.

In a planar shear flow along the xy plane V(r) = (γ̇ y,0,0)
with vorticity along the z axis, the effective shear viscosity
is defined as η = −Pyx/γ̇ , where Pyx is the yx component
of the pressure tensor and γ̇ = ∂v(x)

∂y
is the shear rate. In the

absence of an external torque, particles rotate with an angular
velocity equal to the vorticity (ω = �). A deviation in the
angular velocity from the vorticity of the particle causes an
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additional friction in the rotation of the particle, giving rise to
a rotational viscosity. In the presence of an external magnetic
field, dipole moments of particles prefer to orient in the field
direction. A viscous torque −ξR(ωi − �) tends to rotate the
particle causing a misalignment of moment and the field. A
magnetic torque mui × H develops to counteract the viscous
torque. From the magnetic and viscous torque balance, we
get M × H = NξR

V
(〈ω〉 − �) = 6ηsφh(〈ω〉 − �) [27], which

contributes to the antisymmetric part of viscous stress tensor.
The total viscous stress tensor σ can be decomposed into its
isotropic, symmetric traceless, and antisymmetric parts [4,6]:

σ = −pI + σ sym + 1
2ε · σ a, (5)

where the isotropic pressure p is one-third of the trace of the
total viscous pressure tensor. σ sym is the symmetric traceless
part of viscous stress tensor. The antisymmetric part of the
viscous stress tensor is due to the body coupling σ a = M × H.
ε is the total antisymmetric tensor of rank 3. By incorporating
the Irving-Kirkwood expression for the stress tensor, the
constitutive equation (the expression for viscous pressure
tensor) has a form given by [28]

σ = −pI + ηs[∇v + (∇v)T ]

− 1

2V

N∑
j<k

(rjkFjk)sym + 1

2
ε · (M × H). (6)

The rotational viscosity (ηrot) of the system is given by

ηrot = 1

2γ̇
ε · σ a = 1

2γ̇
ε · (M × H). (7)

The contribution of HRF
i to the rotational viscosity is negligible

for the range of state points we study and is not included in
the calculation of ηrot. Three Miesowicz viscosity coefficients
are defined in a planar shear flow according to the orientation
of an external magnetic field with respect to the flow, the
gradient of the flow, and the vorticity direction, denoted as η1,
η2, and η3, respectively [7,28]. The relative difference of each
viscosity coefficient with respect to the corresponding zero-
field viscosity determines the anisotropy of magnetoviscous
effect [1,21],

MVE,�η = η(H,γ̇ ) − η(H = 0,γ̇ )

η(H = 0,γ̇ )
. (8)

We perform Langevin dynamics simulations for systems
containing N = 1000 particles in a planar shear flow subject
to various orientations and strengths of an externally applied
magnetic field H. We use Lees-Edwards periodic boundary
conditions for nonequilibrium simulations [25]. The integra-
tion time step for equilibrium simulations is �t = 0.002 and
reduced to �t = 0.000 25 for high shear rates.

III. THEORETICAL MODELS

We briefly review the existing theoretical models developed
to understand the rheology of ferrofluids. The magnetoviscous
effect of noninteracting ferrofluids has been predicted with
the help of the NI model by Shliomis [10]. The rotational
viscosity of a noninteracting ferrofluid system predicted using
the NI model has the form ηrot = M⊥H/4, where M⊥ is the

nonequilibrium component of the magnetization perpendicular
to the magnetic field direction. For weak flows, M⊥ is small and
calculated from the phenomenological magnetization equation
in a linear approximation. The modified rotational viscosity is
predicted as [27]

ηrot = 3

2
ηsφhh

L1(h)

2 + hL1(h)
, (9)

where h = mH/kBT is the Langevin parameter and the
Langevin function L1(x) = coth(x) − 1/x. According to the
Shliomis model only rotational viscosity contributes to
the total viscosity, η1 = η2 and η3 = ηs. The maximum vis-
cosity increase predicted by the NI model is 3

2ηsφh. Thus, the
relative increase in viscosity is small for low volume fractions.
This is not true in the case of interacting particles. Weak
interparticle interactions have been incorporated into dynamic
mean-field models [29], but their range of validity is rather
limited [20]. Strong dipolar interactions have successfully
been included in the chain model [19] with the following
assumptions that (i) the chains are rigid and straight, (ii) the
dipole moment is frozen in the particle, and (iii) interchain
interactions are neglected. From the minimization of an ap-
proximated free energy expression, the chain model predicted
the cluster size distribution g(n). The cluster size distribution is
predicted to be an exponential function of chain size at strong
interaction strengths, g(n) ∝ exp(−n/a0), where a0 is related
to the average chain length 〈n〉 by 〈n〉 = [1 − exp(−1/a0)]−1.
In the case of a simple shear flow geometry, v = (vx(y),0,0)
with flow, gradient, and vorticity in the x, y, and z directions,
respectively; the shear viscosity predicted by the chain model
when the external magnetic field is oriented parallel and
perpendicular to the flow direction is given by [19]

ηp − ηs

ηs
=

∑
n

nvg(n)

(
αn + 1

2

[
(ζn + βnB)

(〈
e2
x

〉 + 〈
e2
y

〉)

+ (−1)pβn

(〈
e2
y

〉 − 〈
e2
x

〉) + 2(χn − 2Bβn)
〈
e2
xe

2
y

〉]

+ (−1)p
1

2v

αkBT

ηs

[
ax

2γ̇

〈
e2
x

〉 + bxy

γ̇

〈
e2
xey

〉])
, (10)

where p = 1 or 2 if the magnetic field is oriented along the flow
or the gradient of flow direction, respectively. ax and bxy are
calculated from equations for the first and second moments
of the orientation distribution function. All parameters are
explained in detail in [19]. Since the cluster size distribution
g(n) is input to the viscosity expression, Eq. (10), the shear
thinning behavior is not properly account for in the model. An
ad hoc solution was proposed in [1,30], where a maximum
chain size is associated with each shear rate via a simple
force balance. According to this a chain breaks when viscous
and magnetic forces become equal. The magnetic interaction
force is considered between the particles in the center of
the chain. The viscous force on the chain is estimated as
Fvis = ξeff γ̇ ȳ, where ξeff = n

2 ξT and ȳ = n
2 σ , which increases

with γ̇ . The magnetic force between particles is estimated
by Fm ∼ λkBT/σ and does not depend on the chain length.
Therefore, a chain disintegrates when γ̇c = 4λ

τBn2
max

where nmax

is the critical chain length for breakage and γ̇c is the critical
shear rate.
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FIG. 2. (Color online) The zero shear viscosity scaled by solvent
viscosity as a function of shear rate for different dipolar interaction
strengths (λ). A clear transition from Newtonian regime to shear
thinning regime with increasing shear rate is observed. The horizontal
continuous lines are equilibrium viscosities obtained from the Green-
Kubo (GK) method [24] and dashed lines are error bars of equilibrium
viscosities.

IV. RESULTS: ZERO APPLIED FIELD

The ferrofluid system subjected to a planar shear flow
exhibits interesting rheological properties both in the absence
and presence of an external magnetic field. With the aid of
structural properties, we interpret the changes in rheological
properties at various shear rates, strengths, and orientations of
an external magnetic field.

We show in Fig. 2 the zero-field shear viscosity as a function
of shear rate for the three chosen dipolar interaction strengths.
The shear rates vary by four orders of magnitude (10−3 � γ̇ �
10). At low shear rates, the system shows a clear Newtonian
regime. In this regime the viscosity is constant with shear rate
and shear viscosities for all three λ values match with their
respective equilibrium viscosities obtained from the Green-
Kubo (GK) method [24]. With increasing shear rate the system
shows a shear thinning behavior, where the onset decreases
to lower shear rates as dipolar interaction strength increases.
We discuss below these properties and associated structural
changes for each λ value.

A. Weak dipolar interaction strength

In the case of weak dipolar interactions (diamond symbols
in Fig. 2), we observe a well defined Newtonian regime for a
wide range of shear rates and a feeble shear thinning regime
beyond γ̇ > 1. The shear thinning regime is fitted with a
power law η−ηs

ηs
∝ γ̇ −q , where q is the power-law exponent.

We identify the onset of the shear thinning regime by the
intersection of equilibrium viscosity and the power-law fit
to the shear thinning regime. We want to relate viscosity
changes to the structural reorganization of particles from
their equilibrium microstructures. We compute the cluster size
distribution g(n) and the local connectivity C(nc) of our system
at different shear rates and compare with the equilibrium case,
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FIG. 3. (Color online) For weak dipolar interaction strength λ ≈
2.37: (a) the cluster size distribution g(n) as a function of chain size
n for various shear rates and the exponential fit is shown as dashed
line; (b) the connectivity C(nc) as a function of coordination number
nc for various shear rates; (c) average chain size 〈n〉 as a function of
shear rate. Explanation given in Sec. IV A.

shown in Figs. 3(a) and 3(b). The connectivity computes the
fraction of particles having nc number of neighbors. Two
particles are considered neighbors if they are separated by
a distance less than 1.5σ , i.e., in the middle between first and
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second coordination shells [24]. The same criteria are adopted
in the cluster size distribution to recognize particles in the same
cluster. From the local connectivity analysis [Fig. 3(b)], we
observe that for the weak interaction strength λ = 2.37, there
are no significant structural changes with shear rate (except for
a negligible increment in isolated particles at the cost of one-
coordinated particles). The cluster size distribution [Fig. 3(a)]
does not vary with shear rate, except for the highest shear rate
γ̇ = 6, where we find a small decrease in chain length. This
small change in the cluster size seems to be contributing to
the decrease in the viscosity at high shear rates. In the weak
interaction case, we observe no prominent structure formation
in the system; thus the chain model is invalid in this case.
Nevertheless, we attempt to fit g(n) obtained from simulations
with the above mentioned exponential function. We find that
g(n) shows an exponential decay but the average chain size 〈n〉
obtained from the exponential fit shows a deviation from the
〈n〉 computed from simulation [see Fig. 3(c)]. The deviation
is expected for weak interaction strengths since the chain
model is valid for those systems with straight and rigid
chains.

B. Intermediate dipolar interaction strength

In the case of intermediate dipolar interaction strengths
(circles in Fig. 2), the zero-field shear viscosities obtained as a
function of shear rate have higher values than those observed
for weakly interacting ferrofluids due to the microstructure
formation in the system. We observe a prominent shear
thinning regime. The onset of the shear thinning regime
shifts to lower shear rate value compared to that in the weak
interaction case. We understand this behavior in terms of
structural properties, the cluster size distribution [Fig. 4(a)]
and the connectivity [Fig. 4(b)].

For intermediate interaction strength λ ≈ 4.62, with in-
creasing shear rate, the connectivity analysis shows an in-
crement in isolated and one-neighbored particles at the cost of
two-neighbored particles [see Fig. 4(b)]. This indicates that
particles in longer chains tend to form shorter chains and
isolated particles with increasing shear rates. The disintegra-
tion (“rupture”) of long chains in the system is in agreement
with earlier simulation results [31]. With further increase
in shear rate (beyond γ̇ > 0.4), we observe a prominent
reduction in particles with one and two neighbors and an
increase in isolated particles. The cluster size distribution
shows a prominent deviation from its equilibrium structure
with increasing shear rate. The rupturing is more prominent
in this case compared to the weakly interacting ferrofluids
[see Fig. 4(a)]. The average chain size decays in a stretched
exponential form, 〈n〉 ∝ exp −(cγ̇ )β , β < 1, with the shear
rate [see Fig. 4(c)]. From this analysis we infer that a decrease
in one- and two-neighbored particles and shortening of chain
size correspond to a prominent decrease in viscosity with
increasing shear rate.

C. Strong dipolar interaction strength

In the case of strong dipolar interaction strengths (squares
in Fig. 2), we observe a Newtonian regime at shear rates,
γ̇ < 0.01, and the onset of shear thinning is shifted even
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FIG. 4. (Color online) For intermediate dipolar interaction
strength λ ≈ 4.62: (a) the cluster size distribution g(n) as a function
of chain size n for various shear rates and the exponential fit to the
data is shown as dashed line; (b) the connectivity C(nc) as a function
of coordination number nc for various shear rates; (c) average chain
size 〈n〉 as a function of shear rate. Explanation given in Sec. IV B.

more towards low shear rates compared to weak and inter-
mediate dipolar interaction strengths. The shear thinning is
prominent in this case. Interestingly, one can distinguish two
different shear thinning regimes (0.01 < γ̇ < 2 and 2 < γ̇ ),
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FIG. 5. (Color online) For strong dipolar interaction strength λ ≈
6.17: (a) the cluster size distribution g(n) as a function of chain size
n for various shear rates; (b) the connectivity C(nc) as a function of
coordination number nc for various shear rates; (c) average chain size
〈n〉 as a function of shear rate. Explanation given in Sec. IV C.

characterized by different slopes. The structural analyses are
shown in Fig. 5. In Figs. 5(a) and 5(b), we show the cluster
size distribution and the connectivity, respectively, for different
shear rates. In the Newtonian regime, the connectivity and

cluster size distribution do not deviate significantly from the
equilibrium case. The connectivity shows that the number of
particles having two neighbors is prominent and the cluster
size distribution shows the presence of large clusters as in
equilibrium. These microstructures contribute to the high value
of viscosity in the Newtonian regime. In the shear thinning
regime 0.01 < γ̇ � 2, we observe from the connectivity
analysis a gradual increase in the one-neighbored particles
at the cost of two-neighbored particles. It is clear from the
cluster size analysis that large clusters rupture into smaller ones
with increasing shear rate. At higher shear rate values, γ̇ > 2,
the microstructures disintegrate mostly into isolated (80%)
and one-neighbored particles. The cluster size distribution
in these regimes is in agreement with rupturing observed in
connectivity analysis.

The average chain size from simulations is comparable
to that obtained from the exponential fit to the cluster size
distribution as discussed in the chain model prediction. At the
lowest shear rate this simple exponential function fails due to
the presence of complex structures. The average chain size
decays with shear rate in a stretched exponential form with a
stretching exponent β < 1 [see Fig. 5(c)].

Here, we summarize our results pertaining to the zero-field
shearing. We have studied the shear viscosity at different shear
rates for varying dipolar interaction strengths. In the weak
dipolar interaction, we have observed a prominent Newtonian
regime for a wide range of shear rates, but with increasing
dipolar strength, the system shows a strong shear thinning
behavior. We have studied the structural changes as the system
goes from Newtonian to shear thinning regime. We have found
that the rupturing of structures plays an important role in the
decrease in viscosity at high shear rates. Snapshots of ferrofluid
systems at weak and strong dipolar interaction strengths in
Newtonian and shear thinning regimes are shown in Fig. 6.
Next we focus on rheology of ferrofluids in the presence of an
external magnetic field.

V. RESULTS: APPLIED MAGNETIC FIELD

The external magnetic field changes the total viscosity of
the system with varying field strength and orientation. We
study the effect of an applied field in the Newtonian and
shear thinning regime. The Miesowicz viscosity coefficients
η1, η2, and η3 are defined corresponding to the orientation
of an applied field in the flow, the gradient of the flow, and
the vorticity direction, respectively. Each viscosity coefficient
has contributions from the symmetric part (termed as con-
figurational viscosity ηconf) and from the antisymmetric part
of the stress tensor (termed as the rotational viscosity ηrot),
both of which we compute explicitly and the total viscosity is
ηtotal = ηconf + ηrot [see Eqs. (6) and (7)].

We organize our results in the same format as in Sec. IV. For
the chosen values of dipolar interaction strengths (λ ≈ 2.37,
4.62, and 6.17), we have applied an external magnetic field for
varying strength, 0.5 < |H| < 4. We first present the results
related to the effect of applied field on the shear viscosities in
the zero-field Newtonian regime.
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(a)

(b)

(c)

(d)

FIG. 6. (Color online) Snapshots (projection of all particles) of
model ferrofluid system in a shear flow in the absence of magnetic
field (H = 0). (a) λ = 2.37, Newtonian regime. (b) λ = 2.37, shear
thinning regime. (c) λ = 6.17, Newtonian regime. (d) λ = 6.17, shear
thinning regime.

A. Applied magnetic field: Newtonian regime

The Miesowicz viscosities in the Newtonian regime com-
puted at each dipolar interaction strength are shown in Fig. 7(a)
for (λ = 2.37,γ̇ = 0.04), Fig. 8(a) for (λ = 4.62,γ̇ = 0.004),
and Fig. 9(a) for (λ = 6.17,γ̇ = 0.008). The corresponding
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FIG. 7. (Color online) For λ ≈ 2.37 with applied field H in
Newtonian regime: (a) The configurational viscosity ηconf , the
rotational viscosity ηrot, and the total viscosity ηtot = ηconf + ηrot as
a function of strength of the magnetic field H are shown as circles,
squares, and diamond symbols, respectively. Top panel: Viscosities
when the field is oriented in the flow direction, middle panel: when
the field is oriented in the gradient of the flow direction, bottom
panel: when the field is oriented in the vorticity direction. (b) The
connectivity C(nc) as a function of nc for different orientations of
magnetic field. (c) Cluster size distribution g(n) as a function of n

at different orientations of magnetic field. Exponential fit to g(n) is
shown as dashed lines. All structural analysis is performed with a
fixed magnetic field strength of H = 2.0. Explanation is given in
Sec. V A 1.
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FIG. 8. (Color online) For λ ≈ 4.62 with applied field H in
Newtonian regime: (a) The configurational viscosity ηconf , the
rotational viscosity ηrot, and the total viscosity ηtot = ηconf + ηrot as
a function of strength of the magnetic field H are shown as circles,
squares, and diamond symbols, respectively. Top panel: Viscosities
when the field is oriented in the flow direction, middle panel: when
the field is oriented in the gradient of the flow direction, bottom
panel: when the field is oriented in the vorticity direction. (b) The
connectivity C(nc) as a function of nc for different orientations of
magnetic field. (c) Cluster size distribution g(n) as a function of n

at different orientations of magnetic field. Exponential fit to the data
is shown as dashed lines. All structural analysis is performed with
a fixed magnetic field strength of H = 2.0. Explanation is given in
Sec. V A 2.
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FIG. 9. (Color online) For λ ≈ 6.17 with applied field H in
Newtonian regime: (a) The configurational viscosity ηconf , the
rotational viscosity ηrot, and the total viscosity ηtot = ηconf + ηrot as
a function of strength of the magnetic field H are shown as circles,
squares, and diamond symbols, respectively. Top panel: Viscosities
when the field is oriented in the flow direction, middle panel: when
the field is oriented in the gradient of the flow direction, bottom
panel: when the field is oriented in the vorticity direction. (b) The
connectivity C(nc) as a function of nc for different orientations of
magnetic field. (c) Cluster size distribution g(n) as a function of n

at different orientations of magnetic field. Exponential fit to the data
is given as dashed line. All structural analysis is performed with a
fixed magnetic field strength of H = 2.0. Explanation is given in
Sec. V A 3.
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FIG. 10. (Color online) A schematic of MVE in Newtonian
regime for different dipolar interaction strengths. The MVE when
the field is oriented in (1) the flow direction is shown as circles,
(2) the gradient direction of flow is shown as squares, and (3) the
vorticity direction is denoted by diamonds.

structural changes are studied for an applied-field strength
Hx = Hy = Hz = 2 which corresponds to a Langevin param-
eter h ≈ 3, 4.3, 6 for λ ≈ 2.37, 4.62, and 6.17, respectively.

1. Weak dipolar interaction strength, λ ≈ 2.37

At λ = 2.37, the viscosity changes are rather well described
by the Shliomis prediction, Eq. (9), assuming particles are
noninteracting [see dashed lines in Fig. 7(a)]. The viscosity
is dominated by the rotational contribution leading to η1 ≈ η2

and η3 ≈ ηs. Deviations from the Shliomis prediction are due
to weak interparticle interactions leading to microstructure
formation. The viscosity change from the zero-field viscosity
(MVE), when the field is oriented (1) along flow direction,
shows a ten times increase in viscosity (contribution from ηrot);
(2) along the gradient direction of flow, shows a ten times
increase in viscosity (contribution from ηrot); (3) along the
vorticity direction, shows no change in viscosity (contribution
is only from ηconf). See Fig. 10.

Both the structural quantities (the connectivity and the
chain size distribution) show the same behavior in all three
directions [see Figs. 7(b) and 7(c)], which explains why the
configurational viscosity does not change with the direction.
Also the value of configurational viscosity is small due to the
absence of prominent structure formation (presence of short
chains only) in the system.

The rigidity of the chains is extracted from the radius of
gyration as 〈R2

g〉 ∝ n2ν , where n is the chain size and ν is the
rigidity exponent, which varies as 1/2 � ν � 1. The chains are
rigid when ν approaches 1. A fully flexible chain is described
by ν = 1/2. In the case of λ ≈ 2.37, we find that the rigidity
exponent is ν ≈ 0.7. Thus we infer that the chains present in the
system are semiflexible; hence the misalignment of magnetic
moment and the field causes the rotational viscosity which
contributes to the magnetoviscous effect. Note that a slightly
larger value of ν was observed in strong magnetic fields for a
more concentrated system [31].

2. Intermediate dipolar interaction, λ ≈ 4.62

For the case of intermediate dipolar interactions [Fig. 8(a)],
we observe that the total viscosity has contributions from both
configurational and rotational viscosities. When the applied
field is oriented in the flow and gradient directions, ηconf

and ηrot have almost equal contributions. When the field is

in the vorticity direction, the sole contribution to the total
viscosity is from the configurational viscosity. The increase in
configurational viscosity with applied magnetic field strength
when the field is oriented in the gradient direction can be
explained in terms of microstructural changes. In this case,
the connectivity [see Fig. 8(b)] shows a huge deviation
from equilibrium structures. The fraction of two-neighbored
particles is increased at the cost of isolated particles. The
cluster size distribution [see Fig. 8(c)] shows an increase in the
number of large clusters. Both quantities show the presence
of long chains in the system aligned along the field direction.
Due to the prominent chain formation we observe an increase
in configurational viscosity. The rotational viscosity increases
with the field, when the field is applied in the flow and gradient
direction and is zero in the vorticity direction. Qualitatively,
we find that this behavior of η1 and η2 is also well predicted
by the chain model for chains with an axis ratio of 2–3 [19].
The viscosity change from the zero-field viscosity (MVE),
when the field is oriented (1) along the flow direction, shows a
four times increase in viscosity (contribution from both ηconf

and ηrot); (2) along the gradient direction of the flow, shows
a 40 times increase in viscosity (contribution from both ηconf

and ηrot); (3) along the vorticity direction, shows no change
in viscosity (contribution is only from ηconf). See Fig. 10. We
find that chains are relatively rigid (rigidity exponent ν ∼ 0.8)
compared to those present in weakly interacting systems. The
misalignment of rigid chains from the magnetic field direction
causes an increase in rotational viscosity. Due to the long chain
formations in the system, the configurational viscosity also
contributes to MVE in the gradient of flow direction. Thus,
the contributions from both rotational and configurational
viscosities cause a huge increase in MVE.

3. Strong dipolar interaction, λ ≈ 6.17

In the case of strong dipolar interactions [Fig. 9(a)], the
main contribution to the total viscosity is from the configura-
tional part when the field is oriented along the flow and the
vorticity directions. A similar behavior of the configurational
viscosity is qualitatively predicted by the chain model for chain
lengths greater than 5 [6,19]. The connectivity analysis shows
a deviation from the equilibrium structure with an increase
in two-neighbored particles at the cost of decreasing three-
neighbored particles in the flow and vorticity directions. This
explains a decrease in viscosity from the zero-field viscosity
value. Along the gradient direction the connectivity shows
an increase in the one-neighbored particles and a decrease in
the three-neighbored particles. This observation is not enough
to interpret the increase in configurational viscosity along
the gradient direction. We computed cluster size distribution
and observed that in the gradient direction the number of
chains between lengths 10–40 has increased considerably
at the cost of isolated particles, which explains the increase
in configurational viscosity. The rotational viscosity shows a
negligible change with field oriented along the flow direction
and an increase along the gradient of flow direction. At the
vorticity direction the rotational viscosity value is zero. The
viscosity change from the zero-field viscosity (MVE), when
the field is oriented (1) along the flow direction, shows decrease
in viscosity (contribution from ηconf); (2) along gradient
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direction of the flow, shows a ten times increase in viscosity
(contribution from ηconf and ηrot); (3) along the vorticity
direction, shows a decrease in viscosity (contribution is only
from ηconf). See Fig. 10. In the flow and the vorticity directions,
viscosity decreases from the zero-field value due to the absence
of complex structures which are present in the zero-field
case. Also, the rigidity exponent calculated for λ ≈ 6.17 is
ν ∼ 0.9. Therefore, the chains are very rigid and are more or
less perfectly oriented in the field direction. So in the flow
and vorticity directions there is no contribution from change
in rotational viscosity. In the gradient direction a ten times
increment in viscosity is due to the misalignment of chains
from the field direction and due to the chain formation. Since
the zero-field viscosity has a huge value due to the complex
structure, the change in viscosity is not as prominent as in the
case of intermediate interaction strength. The magnetoviscous
effect in the Newtonian regime is summarized in the schematic
shown in Fig. 10.

B. Applied magnetic field: Shear thinning regime

We study the effect of an external magnetic field in the shear
thinning regime recognized in the zero-field case as shown
in Fig. 2. The chosen shear rate, corresponding to the shear
thinning regime, varies with the dipolar interaction strength.
For λ ≈ 2.37,4.62, and 6.17 we choose shear rates γ̇ = 2.0,
γ̇ = 0.8, and γ̇ = 0.4, respectively. We begin with the weak
dipolar interaction case.

1. Weak dipolar interaction strength, λ ≈ 2.37

In the case of weak dipolar interaction, the viscosity
changes are well described using the Shliomis model, as shown
in Fig. 11(a) with red dashed lines. With increasing shear rate,
the existing structure ruptures and the smaller fragments act
like a noninteracting system in a dilute regime. These features
are consistent with the structural analysis where we see an
increment in the population of isolated particles.

The change in viscosity from the zero-field viscosity, when
the field is oriented (1) along the flow direction, shows a ten
times increases in viscosity; (2) along the gradient direction of
the flow, shows a ten times increase in viscosity; (3) along
the vorticity direction, is negligible. See Fig. 17. We also
find that the rigidity exponent (which is around 0.7) shows
a negligible change with the shear rate [see Fig. 12(b)]. Thus
the only contribution to the magnetoviscous effect is from
the rotational viscosity. The change of the configurational
viscosity is negligible due to the lack of prominent structural
changes.

We have also looked at the shear rate dependency on the
viscosity at a fixed applied magnetic field strength (H = 2.0),
which is shown in Fig. 12(a). We find that at this interaction
strength and fixed magnetic field, the viscosity is fairly
constant with shear rate. We notice that the chain model is
invalid in this case due to lack of chains in the system. In the
chain model calculation we have used the g(n) values from the
simulation.
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FIG. 11. (Color online) For λ ≈ 2.37 with applied field H in
shear thinning regime: (a) The configurational viscosity ηconf , the
rotational viscosity ηrot, and the total viscosity ηtot = ηconf + ηrot as
a function of strength of the magnetic field H are shown as circles,
squares, and diamond symbols, respectively. Top panel: Viscosities
when the field is oriented in the flow direction, middle panel: when
the field is oriented in the gradient of the flow direction, bottom
panel: when the field is oriented in the vorticity direction. (b) The
connectivity C(nc) as a function of nc for different orientations of
magnetic field. (c) Cluster size distribution g(n) as a function of n

at different orientations of magnetic field. Exponential fit to the data
is given as dashed line. All structural analysis is performed with a
fixed magnetic field strength of H = 2.0. Explanation is given in
Sec. V B 1.
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FIG. 12. (Color online) For λ ≈ 2.37: (a) The total viscosities
in the flow (circles) and gradient direction of flow (squares) from
simulation (solid symbols) and the chain model prediction (open
symbols computed by inputting value for chain size distribution from
simulations) as a function of shear rate. (b) Top panel: Average cluster
size as a function of shear rate. Bottom panel: The rigidity exponent
ν is shown for different orientation of magnetic field as a function of
shear rate for the magnetic field strength H = 2.0.

2. Intermediate dipolar interaction strength, λ ≈ 4.62

In the case of intermediate dipolar interactions [Fig. 13(a)],
the total viscosity has contributions from both configurational
and rotational viscosity. But the absolute values of viscosities
are drastically reduced compared to the Newtonian regime.
The structural quantities show that the fraction of isolated
particles increases from 20% (in the Newtonian regime) to 50%
and the fraction of particles having two neighbors decreases
to 10% in the gradient direction from 50%. This shows clearly
that rupturing of the structures is prominent in the gradient
direction [see Fig. 13(b)]. The cluster size distribution also
confirms this observation [Fig. 13(c)]. The rigidity exponent
shows a decrease in its value with shear rate from ν ∼ 0.85 to
ν ∼ 0.65. The rigidity of the chains is affected by the shear rate
[Fig. 14(b)]. The MVE is less prominent in this case compared
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FIG. 13. (Color online) For λ ≈ 4.62 with applied field H in
shear thinning regime: (a) The configurational viscosity ηconf , the
rotational viscosity ηrot, and the total viscosity ηtot = ηconf + ηrot as
a function of strength of the magnetic field H are shown as circles,
squares, and diamond symbols, respectively. Top panel: Viscosities
when the field is oriented in the flow direction, middle panel: when
the field is oriented in the gradient of the flow direction, bottom
panel: when the field is oriented in the vorticity direction. (b) The
connectivity C(nc) as a function of nc for different orientations of
magnetic field. (c) Cluster size distribution g(n) as a function of n

at different orientations of magnetic field. Exponential fit to the data
is denoted by dashed line. All structural analysis is performed with
a fixed magnetic field strength of H = 2.0. Explanation is given in
Sec. V B 2.
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FIG. 14. (Color online) For λ ≈ 4.62: (a) The total viscosities
in the flow (circles) and gradient direction of the flow (squares)
from simulations (solid symbols) and the chain model prediction
(open symbols computed by inputting the values of the chain size
distribution from simulations) as a function of shear rate. (b) Top
panel: Average cluster size as a function of shear rate. The stretched
exponential fit is shown as dashed lines. Bottom panel: The rigidity
exponent ν is shown for different orientation of magnetic field as a
function of shear rate for the magnetic field strength H = 2.0.

to the weakly interacting regime due to the strong rupturing of
structures; see Fig. 17.

Now we discuss the shear rate dependence of the viscosity
at a fixed magnetic field strength (H = 2.0), which is shown
in Fig. 14(a). We find that at this interaction strength and
fixed magnetic field strength we observe a prominent decrease
in viscosity with the shear rate in the gradient direction of
the flow and there is no significant viscosity change observed
in the flow direction. We compare it with the chain model
prediction [Fig. 14(a)] by inputting the g(n) from simulations.
We observe that the average chain size 〈n〉 decays in a stretched
exponential manner with shear rate.
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FIG. 15. (Color online) For λ ≈ 6.17 with applied field H in
shear thinning regime: (a) The configurational viscosity ηconf , the
rotational viscosity ηrot, and the total viscosity ηtot = ηconf + ηrot as
a function of strength of the magnetic field H are shown as circles,
squares, and diamond symbols, respectively. Top panel: Viscosities
when the field is oriented in the flow direction, middle panel: when
the field is oriented in the gradient of the flow direction, bottom
panel: when the field is oriented in the vorticity direction. (b) The
connectivity C(nc) as a function of nc for different orientations of
magnetic field. (c) Cluster size distribution g(n) as a function of n

at different orientations of magnetic field. Exponential fit to the data
is given as dashed line. All structural analysis is performed with a
fixed magnetic field strength of H = 2.0. Explanation is given in
Sec. V B 3.
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FIG. 16. (Color online) For λ ≈ 6.17: (a) The total viscosities
in the flow (circles) and gradient direction of flow (squares) from
simulation (solid symbols) and the chain model prediction (open sym-
bols computed by inputting value for chain size distribution from
simulations) as a function of shear rate. (b) Top panel: Average cluster
size as a function of shear rate. The exponential fit is shown as
dashed lines. Bottom panel: The rigidity exponent ν is shown for
different orientation of magnetic field as a function of shear rate for
the magnetic field strength H = 2.0.

FIG. 17. (Color online) A schematic of MVE in shear thinning
regime for different dipolar interaction strengths. The MVE when the
field is oriented in (1) the flow direction is shown as circles, (2) the
gradient direction of the flow is shown as squares, (3) the vorticity
direction is denoted by diamonds.

3. Strong dipolar interaction strength, λ ≈ 6.17

In the case of strong dipolar interactions [Fig. 15(a)], the
total viscosity has a nonmonotonic behavior with increasing
magnetic field strength when the field is oriented in the flow
direction. The total viscosity increases with field strength when
the field is oriented in the gradient direction and decreases
when the field is oriented in the vorticity direction. The config-
urational viscosity decreases with H in the flow and vorticity
direction and increases with H in the gradient direction. The
explanation to this behavior is similar to that given for the
viscosity change in strong dipolar interaction strength in the
Newtonian regime. The rotational viscosity increases with H

both in the flow and gradient directions of the flow and it is zero
in the vorticity direction [Fig. 15(a)]. The structural quantities
show a drastic rupturing of microstructures in the gradient
direction of the flow and we observe an increase in the number
of chains with short chain length and a decrease in number
of chains with large chain length. The rigidity component of
chains in the flow and gradient directions shows a change in
values from ν ∼ 0.95 to ν ∼ 0.65. In the vorticity direction it
ranges from ν ∼ 0.95 to ν ∼ 0.8. The MVE is similar to that
of intermediate interaction strength due to the strong rupturing
in the system; see Fig. 17.

Fixing the applied magnetic field strength, we show the
change in viscosities as a function of shear rate in Fig. 16(a).
Viscosities in flow and gradient direction show a prominent
decrease with shear rate. The chain model fails to predict the
viscosity at low shear rates in the flow direction.

To summarize this section, we have computed Miesowicz
viscosities in the shear thinning regime. We have studied
the corresponding structural changes and explained the vis-
cosity changes in terms of rupturing of chains. Rupturing is
significant in the intermediate and strong dipolar interaction
regime, leading to pronounced shear thinning behavior. Even
though the field-induced viscosity is larger for stronger dipolar
interactions [compare Figs. 12(a), 14(a), and 16(a)], the
relative viscosity increase measured by �η is the largest in
the weakly interacting regime due to the low value of the
zero-field viscosity. The magnetoviscous effect in the shear
thinning regime is summarized in the schematic shown in
Fig. 17.

VI. MAGNETOVISCOUS EFFECT:
COMPARISON WITH EXPERIMENTS

According to the classic experiment by McTague [9], the
viscosity of magnetic fluids is anisotropic and depends on
the relative orientation of the magnetic field with respect
to the flow. It is observed that the viscosity is larger when
the magnetic field is oriented parallel to the flow direction
compared to the case when the field is perpendicular to the
flow. Here, we consider the Miesowicz viscosities in terms
of coefficients parallel and perpendicular to a pipe flow.
According to our procedure, the Miesowicz viscosity η1 is
parallel to the flow direction; thus η‖ = η1. The other two
Miesowicz viscosities η2 in the gradient direction of the flow
and η3 in the vorticity direction are perpendicular to the flow;
thus η⊥ = η2+η3

2 [6]. Thus the relative viscosity change is
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FIG. 18. (Color online) The magnetoviscous effect �η for a range of dimensionless shear rates as a function of magnetic field strength (in
real units) is computed from simulations (solid symbols) and compared with experiments (open symbols). �η‖ (circles) is the magnetoviscous
effect when the field is parallel to the flow and �η⊥ (squares) is the magnetoviscous effect when the field is perpendicular to the flow direction
[see Eq. (11)].

defined as

�η‖/⊥ = η‖/⊥ − η(H=0,γ̇ )

η(H=0,γ̇ )
. (11)

We compare our simulation results with the experiment on
the anisotropy of magnetoviscous effects in cobalt ferrofluids
conducted by the group of Odenbach and co-workers [26]. As
discussed in Sec. II, we parametrize our model by the magnetic
volume fraction φm = 0.0021 and dipolar interaction strength
λ = 4.62, which allows us to reproduce the magnetization
curve rather well (see Fig. 1). We use the same dipolar
interaction strength to study the MVE in the system. In addition
to φ and σ , we need to fix a reference time scale in order to map
the experimental shear rates to those in our simulations. The
experimental data lack the information of clear transition from
the Newtonian regime to the shear thinning regime (in fact
there are no data available corresponding to the Newtonian
regime). Thus, it is difficult to define a critical shear rate
in experiments. But in our simulations, the transition from

Newtonian regime to the shear thinning regime is well defined
(see Fig. 2). Therefore, we define a characteristic time scale
τshear which corresponds to the onset of shear thinning. Thus,
the dimensionless shear rate can be defined in terms of τshear

as De = γ̇ τshear. For dipolar interaction strength λ = 4.62,
the characteristic time scale corresponding to the onset of
shear thinning is τshear ≈ 12τB. The shear thinning regime
belongs to 1 < De < 12 and the first Newtonian regime is
when De < 1. From our simulations we identify the regime
where the experiments have been carried out. We find a range
of shear rates where the simulations give comparable results
to the experiments (see Fig. 18). Using these details we find
an approximate value of experimental relaxation time for the
onset of shear thinning which is approximately 7(±1) seconds.
To check whether this value is reasonable, we matched
the simulation and experimental shear rates for zero-field
viscosity values and found that the onset of shear thinning
overlaps approximately around 0.14 ± 0.02 s−1. Available
experimental data are in the shear thinning regime which is
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FIG. 19. (Color online) The ratio R of �η‖ and �η⊥ as a function
of dimensionless shear rate for different magnetic field strengths
(solid and open symbols correspond to simulation and experiment,
respectively).

between 0.9–14 s−1 [26]. The dimensionless field H used in the
simulations is related to the experimentally applied field Hexpt

by Hexpt = H√
4πμ0σ 3/(kBT )

= H
1.1×10−4 A/m. We compare our

simulation results for the same values of applied magnetic field
strengths used in experiments, namely 10, 15, and 20 kA/m.

We also compare the ratio of parallel and perpendicular
MVE, given by R = �η‖

�η⊥
. For a single particle rotation the

ratio R = 2 [32]. In Fig. 19, we show R for a range of shear
rates. All solid symbols correspond to the simulation data and
open symbols to experimental data.

Overall, we find that our simulation results are in semi-
quantitative agreement with experiments over a certain range
of shear rates, but deviate for higher shear rates.

VII. SUMMARY AND DISCUSSION

We have performed extensive nonequilibrium Langevin dy-
namics simulations to study the rheology of ferrofluids and the
influence of microstructure formation on rheology. We present
here a concise summary of important results. We consider
three values of dipolar interaction strengths corresponding
to the weakly, moderately, and strongly interacting regimes,
respectively. There is hardly any chain formation in the weakly
interacting regime and a massive structure formation is found
in the strongly interacting regime. The intermediate case of
moderate dipolar interaction corresponds most closely to the
experimental situation [26]. There, we do find a certain degree
of structure formation, as shown by the cluster analysis in
Fig. 4.

In the zero-field case, we observe a well defined Newtonian
regime and a shear thinning regime in all dipolar interaction
strengths. A prominent shear thinning is observed with
increasing dipolar interaction strength. The onset of shear
thinning shifts towards lower shear rate values with increasing
λ. From the analysis of structural quantities, we find that with

the increase in shear rate the microstructures begin to rupture
and form short chains, which can be directly correlated to the
decrease in viscosity with increasing shear rates.

With the presence of an applied field, we have analyzed
changes in rheology in both Newtonian and shear thinning
regimes. The change in viscosity over the zero-field value
(MVE) is found to have an interesting dependency on the
orientation of the applied field and dipolar interaction strength.
The MVE is larger in the case of intermediate interaction
strength compared to weak and strong interaction strength
cases when the field is applied along the gradient of the flow
direction. This is due to the prominent chain formation in
intermediate interaction strength in the presence of an external
field, which increases the contribution of both configurational
and rotational viscosity. Even though there is an increase in
absolute value of viscosity in the strong dipolar interaction
strength, the relative change in viscosity from the zero-field
viscosity is not as prominent as in the case of intermediate
interaction strength. This is mainly due to the large value
of zero-field viscosity that results from the presence of
complex structures. The MVE in both Newtonian and shear
thinning regime is influenced by the chain formation and
chain rupturing. The analysis of cluster size distribution,
connectivity, and rigidity shows drastic structural changes
(increase in the number of short chains and isolated particles)
as the system moves from the Newtonian to shear thinning
regime. This clearly explains the reduction in viscosity in the
shear thinning regime.

The important point is that shear flow destroys the mi-
crostructures in the field-free case, but the combined action of
a magnetic field and shear flow leads to the formation of larger
structures (see Fig. 8) and corresponding viscosity changes.

We have compared viscosity changes obtained from simu-
lations with the chain model (computed by inputting the cluster
size distribution from simulations which is a pivotal quantity to
the theoretical model) [19]. For weak dipolar interactions, we
find discrepancies with the theoretical model prediction. Such
discrepancies are to be expected since the theory is based on
the formation of chains in the system, wherein no prominent
structural formation occurs in the weakly interacting regime.
In the intermediate and strong interaction regimes, the chain
model predictions matched well with most of the simulation
data. Exceptions occur at high dipolar interaction strength for
the viscosity change when the field is oriented in the gradient
direction of the flow, which needs to be understood better. We
have also observed a stretched exponential decay behavior of
average cluster size with shear rate in the cases of intermediate
and strong interaction strengths, which has not been reported
in previous studies.

Another contribution to the magnetoviscous effect results
from the shear-induced perturbation of short-range correlation.
The anisotropic pair correlations have been studied extensively
in theory and in simulations [7,20,29,33,34]. The high-field
anisotropy of pair correlation is observed in the study of
Elfimova et al. [34]. In the weakly interacting case, the
influence of short-range correlations on the magnetoviscous
effect has been studied theoretically and compared with
simulations [20,29]. For the moderately interacting case,
the theoretical estimate leads only to a small contribution
to the viscosity changes. In the simulations, the viscosity
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contributions of perturbed short-range correlations and small
cluster formation are not easily distinguishable.

Finally we compare our results with the experiments
on cobalt-based ferrofluids [26]. We parametrize our model
in such a way that the simulations reproduce the equilib-
rium magnetization curve measured experimentally. With
the corresponding value of the dimensionless dipolar inter-
action strength λ, we mimic the experimental ferrofluids
and perform nonequilibrium simulations to investigate the
rheological properties. For a range of shear rates, we get
comparable results. Since our simulations are performed at
similar concentrations and dipolar interaction strengths as
the experiments [26], we suggest that the same structural
mechanisms are also relevant for the experimentally observed
viscosity changes. For high shear rates, however, we observe

that our simulation results deviate from the experimental data.
To further investigate these deviations, it would be interesting
to incorporate polydispersity effects, employ a more detailed
modeling of repulsive interactions, and include hydrodynamic
interactions in the model.
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