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Universal rescaling of flow curves for yield-stress fluids close to jamming
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The experimental flow curves of four different yield-stress fluids with different interparticle interactions are
studied near the jamming concentration. By appropriate scaling with the distance to jamming all rheology data
can be collapsed onto master curves below and above jamming that meet in the shear-thinning regime and satisfy
the Herschel-Bulkley and Cross equations, respectively. In spite of differing interactions in the different systems,
master curves characterized by universal scaling exponents are found for the four systems. A two-state microscopic
theory of heterogeneous dynamics is presented to rationalize the observed transition from Herschel-Bulkley to
Cross behavior and to connect the rheological exponents to microscopic exponents for the divergence of the
length and time scales of the heterogeneous dynamics. The experimental data and the microscopic theory are
compared with much of the available literature data for yield-stress systems.
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I. INTRODUCTION

Understanding and predicting the flow behavior of complex
fluids is a subject of considerable industrial and fundamental
interest [1]. Yield-stress fluids are an important class of
complex fluids, and their flow behavior remains incompletely
understood [2,3]. Most often, yield-stress fluids are a disper-
sion of one material in a continuous phase, e.g., suspensions
of (soft) particles or polymers, foams, or emulsions. When
sufficiently concentrated, these systems show a transition from
mechanically solidlike to fluidlike states when the stress is
increased above some critical value, the yield stress. The yield
stress emerges in general when the volume fraction ϕ of the
dispersed phase is higher than some critical value ϕc. This
so-called jamming transition is currently a very popular subject
in the fluid-dynamics and statistical-mechanics community
and has received a lot of attention [4–12]. However it is not
completely clear how generic the jamming description is, and
whether, for instance, the mechanical behavior of jammed
systems as a function of the volume fraction can be fully
described or even predicted by considering the jamming tran-
sition to be analogous to an equilibrium critical phase transition
[9,10,13–15]. The idea of jamming as a critical phenomenon,
which is inspired by an observed power-law divergence of
mechanical quantities with respect to the distance from the
jamming transition, is what we will investigate here.

We first consider the relevant mechanical properties. For
concentrated systems above the jamming transition, the flow
behavior is often successfully described by the Herschel-
Bulkley equation [16]

σ = σy + Kγ̇ β = σy[1 + (τHBγ̇ )β], (1)

where σ is the shear stress, σy the yield stress, γ̇ the shear
rate, and K or τHB and β are adjustable parameters. One can
then attempt to describe the vanishing of the yield stress with
decreasing volume fraction as a power law in the distance to
jamming:

σy = σ0|�ϕ|�, (2)

with |�ϕ| = |ϕ − ϕc| and ϕc the “critical” (jamming) point.
Below ϕc, the generically observed Newtonian-to-shear-
thinning behavior with increasing shear rate can be well
described by the Cross equation [17],

σ = ηN γ̇ /(1 + Cγ̇ 1−δ) = ηN γ̇ /[1 + (τCγ̇ )1−δ], (3)

where C or τC and δ are again adjustable parameters; note that
the shear-thinning regions of (1) and (3) are of the same form,
with δ and C corresponding to β and ηN/K , respectively. The
Newtonian viscosity ηN often satisfies a power law in |�ϕ|,
expressed by the Krieger-Dougherty equation [18],

ηN = η0|�ϕ|−M, η0 = ηsolϕ
M
c ; (4)

ηsol is the viscosity of the continuous solvent phase.
The above equations, in particular some of the power laws

in γ̇ and |�ϕ|, have been verified for many dissimilar systems,
with often but not always similar values for each of the
exponents β,�, δ, and M . For instance, the Herschel-Bulkley
and Cross exponents β and δ are generally around 0.5 while
for the yield-stress exponent � and the Krieger-Dougherty
exponent M typically values between 1 and 3, and regularly
close to 2, are reported (see Appendix C for a compilation of
literature data with references).

Experimental and simulation studies report a power law
similar to (2) also for the static shear modulus of the solidlike
phase: G = G0|�ϕ|B . With σy = Gγy this corresponds to
a vanishing of the yield strain γy if B < �, as sometimes
reported (see, e.g., Ref. [19]), but B has also been found to
have a similar value as � [20].

All the above equations apply to a steady state; however
power-law scaling in time has also been reported for the
transient creeping flow of a broad variety of dense complex
systems close to their yield point but far from steady state.
Independent of the stress, the instantaneous effective viscosity
η = σ/γ̇ and the cumulative strain γ (t) often follow the
so-called Andrade law [21],

η(t) ∼ tα, γ (t) ∼ t1−α, (5)

over sometimes remarkably long times t . Such behavior was
already observed by Andrade for metals in 1910 and has since
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been reported, in the macroscopic rheology or in correspond-
ing microscopic time scales, for, e.g., crystals [13,22–24],
glasses [25], polymers [26], emulsions [27,28], gels [27,28],
foams [27,28], sand [29], paper [30], and even complex
biomaterials [31]. The value of the creep exponent α equally
remarkably then often falls in a narrow interval 0.5–0.7.

Previously, some of us (see Paredes et al. [20]) have
investigated the scaling in all the above equations on a
single well-defined yield-stress system: a dense soft-sphere
emulsion with supercritical and subcritical volume fractions
ϕ, and established exponent values within the mentioned
numerical ranges. Paredes et al. showed that by an appropriate
scaling of the stress and rate with only two independent
exponents all supercritical and subcritical flow curves could
be mapped onto two master curves that merge at high shear
rates. This was interpreted as evidence for a critical transition
in the dynamics, from fluid to solidlike behavior. Collapse
of supercritical Herschel-Bulkley data, with exponents very
close to those of Ref. [20], had previously been reported
by Nordstrom et al. for a different soft-colloid system [32].
Earlier, in two-dimensional (2D) simulations of overdamped
soft disks, Olsson and Teitel reported a similar data collapse
and a critical transition but with different power-law exponents
[33]. Simulations by Otsuki and Hayakawa [34,35] for 2D, 3D,
and 4D soft spheres with inertial dynamics gave qualitatively
similar scaling, data collapse, and transition with density and
could be rationalized with a similar scaling-ansatz approach;
however, in this case the exponents and exponent relations
proved independent of dimension and clearly differed from
those in the experiments of Refs. [20] and [32] or those in the
simulations of Ref. [33]. In equilibrium phase transitions, the
exponents and exponent relations depend on dimensionality
and symmetry, but not on details of the interactions. For
jamming systems, some evidence of dimension-independent
scaling, but with particle-interaction-dependent exponents
differing from those in Ref. [20], has been given, e.g., in static
simulations by O’Hern et al. [9,10] and/or in flow studies
[36,37]. However, very recently Vågberg et al. [38] revisited
this point and, based on two different simulation models,
claim for their 2D case universal exponents in the flow of
overdamped shear-driven frictionless systems.

The question is then whether the exponents that characterize
the mechanical behavior depend on the (details of the)
interparticle interactions. Paredes et al. propose that the critical
transition happens because the mechanical behavior of systems
near jamming is governed by a growing length scale associated
with the heterogeneous dynamics, well above the length
scale of the individual particles. In the loose analogy with
equilibrium phase transitions one would then suppose that the
exponent values are universal, i.e., independent of particle or
interaction details. Heterogeneous microscopic dynamics is
a frequently reported feature in various glassy or jamming
systems investigated experimentally or by simulation, with a
length scale of fluctuating cooperative motion well beyond
the single-particle diameter, with a characteristic time scale
of such fluctuations, and with accelerated particle motion
under load [33,39–48]. Several studies report a divergence
of such properties in approach of the yield stress, with
power laws in stress, rate, or distance |�ϕ| [38,42,49–57].
These observations have suggested that, in spite of important

differences [47,58–60], close analogies exist between glasses
and jammed systems (see, e.g., Refs. [11,44]) and have given
support to the idea [9,10,13–15] that the transition from
flow to arrest in complex disordered systems under external
load is a dynamic analog of thermodynamic second-order
phase transitions, with analogous mesoscopic heterogeneity
and power-law scaling, and that this transition is generic to
a broad variety of such complex systems. Paredes et al. [20]
outlined a simple microscopic two-state scaling theory that
could rationalize the observed macroscopic flow and transition
in terms of a critical divergence in the microscopic heteroge-
neous dynamics, with two independent microscopic scaling
exponents only that agreed with their experiments.

The aim of the present paper is threefold. First, we seek
more systematic order in the experimental results by compar-
ing the flow behavior of a number of systems that are all 3D
and overdamped but have different particle interactions. The
focus is thereby mainly on the supercritical Herschel-Bulkley
regime. Second, we elaborate in more detail the two-state
microscopic model that was briefly outlined in Ref. [20].
Third, we compare the predictions of this model with our
own experimental results and with a broad range of literature
data, ordering the latter in comparable classes.

The paper is organized as follows. In the next section
we experimentally investigate the steady-state rheology of
different systems that exhibit a jamming transition. First, the
difference between emulsions with mobile and rigid droplet
surfaces is considered; second, the flow curves of two other
complex liquids, a foam and a Carbopol gel, are examined.
Scaling of the data onto master curves is investigated and
the scaling exponents of the four systems are compared. In
the following section the master-curve scaling and the critical
transition from flow to jamming are described using a scaling
ansatz, following [33]. To rationalize this scaling ansatz from
a more microscopic point of view, we develop a model of
the heterogeneous dynamics. The model results in a number
of relations among the scaling exponents that can be verified
experimentally. A comparison with our own flow-curve data
and data from the literature is made in section four. We also
briefly discuss creep measurements as an additional test to
the model. In a final section conclusions are summarized, in
particular on the microscopic origin of the observed scaling
around the jamming transition and on the universality in this
scaling among different systems. Three appendices discuss in
more detail the mathematical derivation of the steady-state
flow curve, the nature of the critical transition, and a broad
range of literature data, respectively.

II. EXPERIMENTAL RHEOLOGY

A. Sample preparation

Two types of yield-stress emulsions have been prepared,
one system with mobile particle surfaces and one with rigid
surfaces. Rheological measurements have been performed
using a controlled-shear-stress rheometer (CSS) (Anton Paar
MCR 301) in a cone-plate geometry. Before carrying out the
experiments samples were presheared at 100 s−1 for 30 s and
left to rest for another 30 s before the experiments started.
Flow curves were obtained by performing an up-and-down
shear-rate sweep.
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The emulsions used are castor oil-in-water emulsions. In
general, most types of surfactant-stabilized emulsions are
considered as having mobile droplet surfaces and it is usually
assumed that this leads to harmonic interactions between
the drops [19]. Our mobile emulsions were stabilized using
sodium dodecyl sulfate (SDS, from Sigma Aldrich), which is
an ionic surfactant with molar formula CH3(CH2)11SO−

4 Na+.
The rigid emulsions were stabilized using a protein solution
composed of bovine serum albumin (BSA, from Sigma
Aldrich) and a cosurfactant propylene glycerol alginate (PGA,
from Dextra); this creates rigid surfaces on the droplets [61]
and will thereby increase the drops’ resistance to deformation.
As a consequence, the mechanical properties of the system
change and one would expect to see a difference in the flow
curves.

Mobile castor oil-in-water emulsions were prepared in the
following way:

(1) The continuous phase was prepared by dissolving SDS
in ultrapure water (Milli-Q R©), obtaining a solution with 1 wt%
SDS concentration.

(2) The dispersed phase consisted of castor oil (Sigma-
Aldrich).

(3) Emulsification: the oil was gradually added to the aque-
ous phase while stirring with a Silverson L5M-A emulsifier at
10 000 rpm for 2 min. During emulsification the sample was
cooled in an ice bath to prevent heating of the sample. The
internal volume fraction was ϕ = 0.8.

(4) Emulsions with lower ϕ were prepared by diluting the
original emulsion (ϕ = 0.80) with the 1% SDS solution.

Rigid systems were prepared in a similar way, but with
0.4 wt% PGA and 0.4 wt% BSA instead of 1 wt% SDS in the
continuous phase.

As a third system, SDS-stabilized foam was chosen. Data
for this foam were obtained from previous research of S. Marze
et al. [62], who studied the steady flow of three-dimensional
aqueous foams at different volume fractions. The fourth system
is a Carbopol “gel,” for which different volume fractions were
prepared as described in Ref. [63].

B. Rheology

1. Mobile emulsions

The results on the mobile emulsions were already reported
in Ref. [20]. Flow curves were obtained by performing a shear-
rate sweep as shown in Fig. 1(a). From these flow curves we
determined that ϕc ≈ 0.645; a linear extrapolation of the yield
stress to zero gives ϕc = 0.648 ± 0.004, whereas a quadratic fit
works better and gives ϕc = 0.645 ± 0.005. The curves above
ϕc can each be fitted separately with the Herschel-Bulkley
equation (1). However, the data for all these supercritical
volume fractions can also be mapped onto one master curve
by plotting σ/|�ϕ|� versus γ̇ /|�ϕ|� and fitting � = 2.13
and � = 3.84, see Fig. 1(b). Interestingly the flow data below
ϕc then also collapse automatically onto a curve that coincides
with the supercritical one at high rates. The supercritical master
branch accurately follows the Herschel-Bulkley equation with
β = �/� = 0.55 and K = 0.87. The branch corresponding
to fractions below ϕc can be fitted to the Cross equation (3)
with δ = β and C = ηN/K , with the same values of β and
K as above ϕc. The supercritical data can independently be
scaled as σ/σy versus γ̇ /σ

1/β
y , giving a collapse with β =

0.60. All fitted parameters, including the prefactors σ0 and η0,
are summarized with their uncertainties in Table I. Note
that in Ref. [20] the Newtonian viscosity ηN was indepen-
dently measured and found to accurately satisfy the Krieger-
Dougherty equation (4), with an exponent fully consistent
with the above exponent values, i.e., M = � − � = 1.71
[see the inset of Fig. 1(b)]; the supercritical shear modulus
G was found to vanish with �ϕ with the same exponent as the
yield stress. These linear-response aspects will not be further
discussed here, and we will focus on the flow curves.

2. Rigid emulsions

The flow curves obtained for the rigid emulsions are shown
in Fig. 2(a). From these curves, using again a quadratic fit
of the yield stresses versus �ϕ it is determined that ϕc =
0.64 ± 0.06. All flow curves for supercritical volume fractions,

FIG. 1. (Color online) (a) Flow curves of mobile emulsions: Castor oil in water with 1 wt% SDS, for different internal volume fractions,
showing Herschel-Bulkley fittings for ϕ > ϕc; symbols represent different volume fractions of the internal (oil) phase. (b) Master curve showing
collapse of flow curves onto two branches, one for samples with ϕ > ϕc and one for ϕ < ϕc, when plotted as σ/|�ϕ|� versus γ̇ /|�ϕ|�; the
red lines are supercritical and subcritical branches representing the Herschel-Bulkley and the Cross fits of the master curve, respectively. Black
symbols correspond to samples with ϕ > ϕc and blue (gray) symbols correspond to samples with ϕ < ϕc; fit parameters are given in Table I.
Inset in (b): Fit of the low-shear viscosity to the Krieger-Dougherty equation, giving ηsol = 2.2×10−3 Pa s and M = 1.71 with ϕc = 0.645 [20].
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TABLE I. Overview of all rescaling parameters for the four systems: Mobile and rigid emulsions, foam, and Carbopol. The factor in the
lowest row of the table is added as a numerical consistency check: The scaling approach to be discussed below shows that it should be of order
unity.

Parameter Mobile emulsion Rigid emulsion Foam Carbopol

ϕc 0.645 ± 0.005 0.64 ± 0.06 0.68 ± 0.03
� 2.13 ± 0.11 2.04 ± 0.13 2.21 ± 0.21
� 3.84 ± 0.44 3.80 ± 0.34 3.75 ± 0.20
β = �/� 0.55 ± 0.07 0.54 ± 0.06 0.59 ± 0.07
β (from σy scaling) 0.60 ± 0.08 0.54 ± 0.08 0.57 ± 0.09 0.48 ± 0.14

0.55 ± 0.04*

K 0.87 4.25 ± 0.39 2.53 ± 0.12 11.85 ± 0.11
11.77 ± 0.18*

σ0(Pa) 1100 2315 ± 59 497 ± 10
η0 (Pa s) 0.001
σ

1−β

0 η
β

0 /K 0.60

*Leaving out the lowest concentration of 0.10 wt% (see text).

each obeying the Herschel-Bulkley equation, can be rescaled
onto one master plot in the same manner as above, using
� = 2.04 and � = 3.80; these collapsed data fit to a Herschel-
Bulkley equation with β = �/� = 0.54 and K = 4.25. Once
again, all flow data below ϕc then automatically also collapse
with this procedure onto a single curve, which meets the
supercritical one at high rate, Fig. 2(b). However, as is clear
from the slopes in Fig. 2(a), all subcritical samples are still
shear thinning even at the lowest rates. As a consequence, no
reliable value for η0 can be obtained from a master fit of the
collapsed data to the Cross equation. Direct scaling of σ/σy

versus γ̇ /σ
1/β
y also gives β = 0.54. The final results are very

similar to the rescaling found for the mobile emulsions, see
Table I.

3. Foam

All flow curves as measured by Marze et al. [62] for
different volume fractions were fitted with the Herschel-
Bulkley equation, Fig. 3(a). The critical volume fraction was
determined by a quadratic fit of the yield stresses, resulting
in ϕc = 0.68 ± 0.03; this value is somewhat higher than

that of random close packing, which may be due to the
larger size polydispersity. Once again, all flow curves can be
rescaled and collapsed onto one master curve when plotted
as σ/|�ϕ|� versus γ̇ /|��|� , for � = 2.21 and � = 3.75,
Fig. 3(b). The Herschel-Bulkley representation of the latter
gives β = �/� = 0.59 and K = 2.53. Direct scaling of σ/σy

versus γ̇ /σ
1/β
y gives β = 0.57, see also Table I.

4. Carbopol

For the Carbopol gels with different volume fractions the
flow curves were obtained by performing the same rheological
procedure as for the yield-stress emulsions, Fig. 4(a). The
considered weight fractions are very low, but due to the strong
pH-dependent swelling of the spongelike particles a Herschel-
Bulkley fit with a yield stress and shear thinning is showing up
at all concentrations. It is hard to define a meaningful single
critical volume fraction for these expanding gels, but the data
for all volume fractions can still be collapsed onto one master
curve by direct scaling with the yield stress, Fig. 4(b). The
master curve fits the Herschel-Bulkley equation with β = 0.48
and K = 11.85. The relatively large error bound of about 30%

FIG. 2. (Color online) (a) Flow curves of rigid emulsions: Castor oil in water with 0.4 wt% BSA and 0.4 wt% PGA for different internal
volume fractions. (b) Master curve showing collapse of flow curves onto two branches, one for samples with ϕ > ϕc and one for ϕ < ϕc,
when plotted as σ/|�ϕ|� versus γ̇ /|�ϕ|�; the red line is the supercritical branch representing the Herschel-Bulkley master fit. Black symbols
correspond to samples with ϕ > ϕc and blue (gray) symbols correspond to samples with ϕ < ϕc; fit parameters are given in Table I.
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FIG. 3. (Color online) (a) Flow curves for SDS foams for different liquid volume fractions (experimental data from Ref. [62]). The red
lines show Herschel-Bulkley fittings. (b) Master curve showing the collapse of flow curves onto one, when plotted as σ/|�ϕ|� versus γ̇ /|�ϕ|� .
The different symbols represent different volume fractions; fit parameters are given in Table I.

in β is mainly due to the lowest concentration; if the data for
this concentration are omitted a much better master fit follows,
with β = 0.55 and K = 11.77, see also Table I.

C. Summary of the experimental data

Different systems were investigated and rescaled with sim-
ple power laws in the distance to jamming, giving supercritical
and (where accessible) subcritical master curves. As indicated
before by Paredes et al. [20], the combined Herschel-Bulkley
and Cross equations nicely describe such flow behavior for a
single simple yield-stress emulsion. We have shown here that
these combined equations can be used to successfully describe
the flow behavior near jamming for four different systems:
mobile and rigid emulsions, foam, and Carbopol. All of the
individual systems are rescaled onto one single master curve
by plotting σ/|�ϕ|� versus γ̇ /|�ϕ|� , with fitting parameters
as shown in Table I. As a remarkable result, all different
systems can be rescaled with exponents that within numerical
uncertainty have common values: � ≈ 2.1, � ≈ 3.8, and
β = �/� ≈ 0.55. This strongly supports the conclusion that
the flow behavior of such overdamped yield-stress materials

can be described by one universal scaling form, independent of
the mechanical properties of the system. A similar claim was
made recently by Vågberg et al. [38], based on two simulated
2D systems.

III. SCALING AND MICROSCOPIC MODEL

A. Scaling ansatz

The collapse of all rheological data on two master curves
by the scaling of the two axes with the appropriate power laws
in |�ϕ|, as demonstrated in Figs. 1–4, leads to the assumption
that the rheology above and below the jamming concentration
has one common origin. Such a collapse was already shown for
other soft-colloid dispersions [32] and also seen in simulations
[33–35,64]. The assumption is mathematically expressed by
a scaling ansatz [33] similar to the Widom scaling for
equilibrium critical phase transitions:

σ = σ0|�ϕ|�F±(ηN γ̇ /σy) = σ0|�ϕ|�F±(η0γ̇ /σ0|�ϕ|�).

(6)

FIG. 4. (Color online) (a) Flow curves of Carbopol for different internal volume fractions. The red lines show the Herschel-Bulkley fittings.
(b) Master curve showing collapse of all flow curves onto one, when plotted as σ/σy versus γ̇ /σ 1/β

y . The different symbols represent different
volume fractions; fit parameters are given in Table I.
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Here F±(z) is a crossover function that modifies the supercrit-
ical linear-elastic behavior depending on the ratio of viscous
to elastic stresses, both for supercritical (+) and for subcritical
(−) concentrations. So for z � 1 we must have F+(z) = 1 and
F−(z) = z; for z � 1 we get F±(z) = Azβ , with β = �/� to
ensure that (6) is independent of concentration in the critical
limit ϕ = ϕc; A is an unspecified constant of order unity. The
equation for large z corresponds to the shear-thinning regime,
since it implies σ = Aσ0(η0γ̇ /σ0)β . It expresses that here
the super- and subcritical systems become indistinguishable.
This is obviously the case at the critical concentration, but
as the argument of the crossover function shows the critical
regime widens at high rate, with crossover rates for critical
shear-thinning behavior at either side of ϕc satisfying (apart
from a constant of order unity):

γ̇co = (σ0/η0)|�ϕ|�. (7)

Identifying the above results with the power laws in the empiri-
cal Herschel-Bulkley, Cross, and Krieger-Dougherty equations
we have β = δ,K = ηN/C = Aσ

1−β

0 η
β

0 ,M = � − �. Note
that apart from a constant of order unity the relaxation rates
1/τHB and 1/τC of the Herschel-Bulkley and Cross equations
equal the critical crossover rate (7). While the scaling ansatz
is thus able to reproduce with only two independent scaling
exponents the phenomenology of the observed rheology
scaling across the critical concentration, both in the linear and
shear-thinning regimes, a microscopic model is still needed to
explain it.

B. Microscopic model

1. Two-state heterogeneous dynamics

Based on the experimentally observed scalings we now
propose a simple model of microscopic heterogeneous dy-
namics to explain the macroscopic rheology around the
critical concentration for jamming. As mentioned in the
Introduction, the observed flow mechanics is common to
many experimental and simulated systems for which such
heterogeneous dynamics has been reported and has led to the
suggestion that the underlying cause is a generic second-order
critical transition in the dynamics, between a stagnant and a
fluid phase. Here we follow this suggestion and attempt to
explain the data from a simple and ad hoc two-state model for
such a transition.

The power-law divergence of the Newtonian viscosity and
the power-law vanishing of the shear modulus or yield stress
are commonly understood from the existence of a diverging
length scale ξ that characterizes correlated motion, i.e., the
typical length over which particle displacements cannot be
considered independent. In experiments [45,47,49–51,57] and
simulations [33,53,54,65–69] such a divergent length scale
has been observed both in the linear regime around ϕc and
when approaching the yield-stress line of quasistatic flow at
higher concentrations ϕ. Since under stresses above the yield
stress the stagnant phase starts flowing, we assume that under
stress a fraction s of the particles remains stagnant in neighbor
cages while the fraction 1-s becomes fluidized. This simple
two-state picture represents what are in reality two sides of a
very broad mobility distribution. In view of the observations
we make an analogy with the linear regime and assume that the

length scale ξ of correlated, heterogeneous dynamics diverges
when s approaches a critical value sc where macroscopic
flow halts; this critical fraction for jamming will be below
unity. Following the idea that the divergence is similar to that
near a second-order phase transition, we can subsequently
choose the divergent length scale as the single dominant
variable that governs macroscopic behavior. Mathematically
this single relevant variable implies that ξ can only diverge
as a power-law in the distance �s = |s − sc| from critical
jamming and that other variables in their dependence on s

near sc derive from ξ again as power laws, with similar critical
behavior. In particular, this applies to the lifetime τhet of the
fluctuating heterogeneity pattern and to the average time τη

for the single-particle mobility, i.e., the time for the average
particle to move over a distance of its own diameter. The latter
time scale τη is directly proportional to the average viscosity
η of the system. So in fact ξ (s),τhet(s),τη(s), and η(s) are all
interrelated by power laws in �s. Normalizing them to their
values at s = 0 and introducing critical exponents ν, m, and n

we can then write:

ξ (s)/ξa = [τhet(s)/τa]ν/n = [τη(s)/τa]ν/m

= [η(s)/ηa]ν/m = |1 − s/sc|−ν . (8)

The length scale ξa is of the order of the single-particle
diameter. The limiting times τη(0) and τhet(0) will have a
similar scale and have for simplicity been taken equal to a
single time τa; however, for an increasing fraction s of stagnant
particles the heterogeneity lifetime τhet will become much
larger than the fluidity time τη, so its associated exponent will
be larger: n > m. Since the ratio τhet/τη of the two microscopic
time scales diverges near sc we can interpret ηa = η(s = 0) as
the asymptotic viscosity of a fully fluidized phase and treat the
arrested domains as a dispersed solid phase. Note that in this
interpretation the last equality in (8) is a logical generalization
of (4) if we choose the same exponent m = M as in the
Krieger-Dougherty equation. This supposes a deep relation
between the linear and the nonlinear rheology, with the same
physics in (4) and (8); indeed, a deep connection is already
implied by the empirical collapse of data over the full dynamic
range in Figs. 1–4, with a direct relation between the empirical
exponents M , �, and �, viz. M = � − �. We will return to
this point later. Both τa and ηa will be continuous functions of
ϕ near ϕc and in comparison with the functions that depend
as a power law on |�ϕ| they may be treated as constants
sufficiently close to ϕc; together they define a characteristic
asymptotic high stress σa = ηa/τa .

The internal parameter of our model, the stagnant fraction s,
is determined by a competition between stress-induced escape
of arrested particles from their cages, and fluctuation-induced
arrest of mobile particles; the latter arrest mechanism will be
dependent on this internal variable s and will be detailed later.
The time evolution of the stagnant fraction s(t) can then be
given by a simple first-order kinetic equation:

ds/dt = −s/τR + (1 − s)/τA, (9)

with 1/τR the relaxation rate for the arrested particles to
become mobile and 1/τA the rate with which mobile particles
become arrested again.
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The relaxation rate 1/τR can be considered as resulting
from either of two typical mechanisms. For low stress we may
consider that particles are caged by a large energy barrier ε and
that the applied stress, thermal energy, or a combination of
both facilitates barrier crossing of single particles; this process
is characterized by a typical barrier stress σb. Subsequently,
with increasing stress and hence increasing number of such
crossings a collective flow process develops in which the cage
itself vanishes; the latter process takes over when the average
rate γ̇ becomes of the order of the single-particle escape rate
or larger. So in a simple approximation we can write:

1/τR = (1/τb)f (σ/σb) + γ̇ , (10)

with τb the typical time for barrier crossing at stresses near
σb; around the solid-fluid transition that we are interested in
this time scale will be orders of magnitude larger than τa . In
fact, the ratio τb/τa , still a function of ϕ, will be the dominant
large parameter in the model and will be much larger than any
dimensionless experimental time scale (τaγ̇exp)−1 in the limit
ϕ ↑ ϕc and beyond.

For athermal jamming systems repulsive energies dominate
over thermal energies, and the limit of zero temperature has
to be assumed before applying shear [58–60]. The barrier
stress σb is then a sharply defined yield stress σy(ϕ) below
which the deformation is elastic and no flow is possible; it
scales as ε/vact, with vact some local activation volume needed
for a single relaxation event, and vanishes below the critical
volume fraction ϕc. So above ϕc we can assume the simple
form f+(x) = (x − 1)p for x > 1 and f+(x) = 0 for x < 1,
with some positive exponent p to be discussed later. Below ϕc

we can take f−(x) = 1 since at low stress the rheology should
be Newtonian. Note that there is continuity in f (x) across the
jamming point ϕc along the line x = 2, i.e., �σ = σy .

For high but finite ratios ε/kBT thermal processes may
at very large time scales still relax the elastic stress in the
solid within experimental time scales. This intermediate case
between glassy dynamics and jamming may be described by
adding up the probabilities for stress-induced and thermally
induced cage escape, i.e., adding to (10) the rate for thermal
barrier crossing. That process is an Eyring-type cage escape
[70], for which the characteristic time constant τb is the
equilibrium α-relaxation time and the typical barrier stress
σb is kBT /vact. The stress dependence above ϕc is in the
Eyring model given by f+(x) = x−1 sinh x; it crosses over
from parabolic at low stress to exponential at high stress.
This thermal scenario applies to glasses, i.e., when shear
is applied before considering the limit of low temperatures
[58–60,71,72]. Heterogeneous dynamics, accelerated dynam-
ics in approach of the yield point, and subsequent flow of
monomers has also been studied in polymer glasses, and
the analogy with jamming has been noted [42,44,46,48].
An Eyring-type near-Gaussian decrease of the single-particle
relaxation time with stress, as discussed around Eq. (10) is
revealed in simulations [43]. In view of the nature of the
systems that we studied experimentally we henceforth consider
the athermal limit of frictionless repulsive particles only.
Effects of particle friction and attraction will change the local
dynamics and bulk rheology and have been studied, e.g., in
Refs. [73,74].

With the expression (10) a deep connection is again
assumed between the dynamics near equilibrium and far in
the nonlinear regime. It is worthwhile noting that a similar
expression was introduced to explain strain-rate – frequency
superposition in the rheology of soft materials [75].

2. The steady state

The steady-state stagnant fraction s, and hence the viscosity
(8), follows as a function of σ or γ̇ by putting the left-hand
side of (9) equal to zero, which gives the rate balance s/τR =
(1 − s)/τA; either of these terms may now be taken as the rate
1/τhet with which the heterogeneity pattern fluctuates. So we
get as the steady-state condition for s and η:

s[(τa/τb)f (σ/σy) + τaγ̇ ] = (1 − s/sc)n = (ηa/η)n/m. (11)

Solving this set of equations we can derive the flow curve of
σ versus γ̇ , or, equivalently, the viscosity η versus σ , and
simultaneously have insight in the underlying microscopic
heterogeneity through the instantaneous stagnant fraction
s = s(σ ). The mathematics is worked out in Appendix A.
In the solution four different regimes of flow are recognized:
(I) Newtonian flow at low rate in absence of a yield stress,
so for subcritical concentrations; (II) a stress plateau ending
in the yield stress at vanishing rate, so for supercritical
concentrations; (III) power-law shear-thinning flow that makes
the distinction between the two low-rate regimes (I) and (II)
vanish at rates above 1/τb; and (IV) a second Newtonian
regime above the very high relaxation rate 1/τa , for both
concentration domains. The regimes I-III are easily identified
as those seen in the experimental data of Figs. 1–4. The regime
IV may well be inaccessible experimentally for many systems
but is predicted by our model; it will not be discussed here
further. For the regimes I–III the model predictions coincide
with the empirical Herschel-Bulkley and Cross equations (1)
and (3) when we make the identifications ηN = ηa(τb/τa)m/n,

K = ηN/C = ηa/τ
m/n
a , and β = δ = 1 − m/n = 1/p.

3. Recovering the scaling ansatz

The model describes the different regimes around the
solid-fluid transition in a unified manner. It focuses on the de-
pendence on flow rate γ̇ and, via the stress- or rate-dependent
order parameter s, on the relation with the heterogeneity in the
microscopic kinetics; in particular, the power laws involving
the exponents m and n relate to diverging microscopic time
scales. So far, the mathematical solution makes no connection
with the dependence on the concentration ϕ or with the empir-
ical exponents �, �, and M = � − �. This connection is now
easily made by employing the assumed relation between the
microscopic physics of the quasistatic and nonlinear regimes;
the equations (4) and (8) for η, valid in these two regimes,
respectively, both express the dependence of a fluid viscosity
on solids content, so the exponents may be identified: M = m.
From the result �/� = β = 1 − m/n we then immediately
get � = n, � = n − m. Having thus found the macroscopic
exponents in terms of the microscopic ones we can also
incorporate the ϕ depencence by equating the macroscopic
crossover rate (9) to 1/τb, which gives τb = (η0/σ0)|�ϕ|−n.
Inserting this into the expression just found for ηN we recover
the Krieger-Dougherty result (4), with the asymptotic high-rate
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viscosity ηa now also related to the yield-stress prefactor σ0 and
to the solvent viscosity ηsol = η0/ϕ

M
c , i.e., to the parameters

of the linear response: ηa = η0(τaσ0/η0)m/n. Equation (2) for
the dependence of the yield stress on ϕ is now automatically
implied, since it was used to derive (9) and hence τb; the
prefactor σ0 in this equation cannot be detailed further since it
relates to the elastic deformation, which is beyond the scope of
the present paper. In summary, with all these identifications we
have recovered the full scaling ansatz (6) from the microscopic
model.

4. Heterogeneous dynamics around the critical transition

The development of the heterogeneous dynamics as a
function of stress σ and concentration ϕ is recovered from
the model by using the relation (8) of the microscopic order
parameter s with the viscosity η = η(σ,ϕ). In particular it
gives in the low-rate Newtonian regime, and hence also at the
crossover (co), a linear scaling of |�s| with |�ϕ|:

|�s/sc| = |�sco/sc| = (η0/σ0τa)−1/n|�ϕ|. (12)

This shows that our two-state model predicts even in the low-
rate Newtonian regime a finite and increasing heterogeneity on
approach of ϕc. In reality this discrete heterogeneity should be
interpreted as a strong broadening of the continuous mobility
distribution. Similarly, the heterogeneity length scale ξ and
time scale τhet follow from the solution of η(σ , ϕ) by using
(8). In particular, at the critical concentration, and by extension
also in the regime of critical shear thinning, they are found to
diverge in a power-law fashion for vanishing stress or rate:

ξ/ξa = (τhet/τa)ν/n = (ηa/τaσ )−ν/(n−m) = (τaγ̇ )−ν/n (ϕ=ϕc).

(13)

We will come back to this result later. A more extensive
discussion of near-critical heterogeneous dynamics and the
nature of the critical transition is given in Appendix B.

5. Origin of the heterogeneous dynamics

Based on evidence from experiments and simulations we
have so far assumed that there are two diverging microscopic
time scales, τη, for the single-particle mobility and τhet � τη

for the lifetime of the heterogeneous mobility pattern, the
latter associated with a diverging correlation length ξ . Their
dependence on the distance |�s| from criticality is given in
our model by the power laws in (8), with critical exponents
m, n > m, and ν, respectively. However, the origin of the
growing heterogeneity in the dynamics upon approach of
the critical point s = sc has not yet been discussed here.
Fundamental aspects of this heterogeneous dynamics are
still a subject of active research in the literature (see, e.g.,
Refs. [12,76–80]), both for glasses and jammed systems, and
a detailed explanation is far beyond the scope of the present
paper. For glasses at rest extensive simulations have been made
from which both time scales could be recovered by analyzing
the four-point dynamic correlation [81–84]. These simulations
not only show the growing length and time scales but also their
power-law interdependence.

Here we limit ourselves to a rather heuristic reasoning to
understand the origin of the heterogeneity time scale and the
associated exponent n > m. As is classically done for glasses

[85], we consider a collectively rearranging region (CRR) of
N particles and assume that they share one collective free
volume v, of the order of a single-particle volume, to make
rearrangements possible. We define a time τ such that all N

particles will on average each have moved to a neighbor posi-
tion. Associated with this, each particle will have experienced
an individual free-volume change δv. For the statistics of this
free-volume redistribution we now invoke a simple argument
that is a variation on Mott’s argument to explain creep by
dislocation motion in metals [86] (see also Ref. [87]; Mott
actually considers stress redistribution rather than free-volume
redistribution). The fluctuations δv will scale as v/N and will
be of either sign. If we assume them to be Gaussian, the average
over a time t = τ of the CRR-summed fluctuation will vanish,
〈�δv〉 = 0, while the average squared fluctuation will scale as
〈(�δv)2〉 = 〈�(δv)2〉 ∼ N (v/N)2 ∼ 1/N . In the critical limit
of diverging N this will also vanish and within the considered
time τ nothing dramatic happens: the rearrangements will
continue. However, the squared Gaussian fluctuations keep
adding up linearly with time, so after a time τ ′ = Nτ we have
〈�(δv)2〉 ∼ v2. At this point the free-volume distribution has
become such that there is a finite probability of arrest, so τ ′
is the lifetime τA of the mobile region. The rates 1/τ and
1/τ ′ refer to particles that are a priori taken as mobile, so
1/τη = (1 − s)/τ and 1/τhet = (1 − s)/τ ′. Accordingly, we
have τhet = Nτη. This argument shows that the large-scale
fluctuating heterogeneity is a natural consequence of local
fluctuations in the free volume and that in the critical limit
in particular the ratio τhet/τη diverges, whence n > m. If we
characterize the CRR by its typical size ξ and (possibly fractal)
dimension d we get with (8):

N = (ξ/ξa)d = |1 − s/sc|−νd = |1 − s/sc|m−n. (14)

This gives us the relation n = m + dν between the critical
exponents. If we use this in (13) we see that the dependence of
the size ξ of heterogeneous domains on the applied stress takes
a very simple form at the critical concentration ϕ = ϕc and by
extension then also in the full critical shear-thinning region (the
red region in Appendix B, Fig. 5): σξd = σaξ

d
a = constant. It

expresses that the domain mass varies inversely proportional
to the applied stress, the total energy supplied to a domain
thus remaining constant. With the above exponent relation
also the empirical yield-stress exponent � = � − M = n − m

takes the very simple form � = dν. We have derived this
yield-stress exponent without considering the elastic phase
explicitly, but only considering that the crossover should take
place when σvisc ≈ σel ≈ σy . It is intriguing to note that in
Ref. [88] an exponent � of the same form is proposed for the
elastic modulus near the critical gelation point of gels with
entropic elasticity.

6. Power-law creep

So far, we only discussed the steady-state solution of
Eq. (9). However, as discussed in the Introduction, transient
creeping flow under nonsteady conditions is a generic feature
of simple yield-stress fluids and many other materials. In fact,
when the fluid is first exposed to a steady high stress and,
subsequently, the stress is lowered to below the yield stress,
a stress-independent viscosity develops that keeps increasing
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as a power law in time [27,28]. In terms of our model this
means that a system with ϕ > ϕc is initially brought to a value
s(t) for the stagnant fraction that is well below sc. In the rate
equation (9) the dominant last term for particle arrest then
rapidly brings s up near sc again when the stress is lowered
below σy , whereupon further arrest slows down. A time-
dependent creep regime thus develops below σy in which
(1 − s/sc) is already small but the arrest rate 1/τA still
dominates over the relaxation rate 1/τR . In this regime the time
scales τA and τη have strongly increased and are well separated
while the heterogeneity length scale ξ has correspondingly
grown large. Just as in the steady state this heterogeneity scale
will govern the dynamics and the same power laws apply, with
the time entering via the nonconserved order parameter s(t).
So we get from (9):

ds/dt ≈ (1 − s)/τA

≈ (1 − sc)(1 − s/sc)n/τa, (|�s| � sc). (15)

This is trivially integrated, with the result that for t � τa the
distance from criticality 1 − s/sc scales as an inverse power of
time. Hence all power laws in this distance, or, equivalently,
in ξ , also become power laws in time. In particular, we get
for the viscosity of the creeping flow in the limit t � τa the
functional form (5) proposed by Andrade [21] and verified
for many different systems [13,22–31]: η(t) ∼ (t/τa)m/(n−1).
So the Andrade creep exponent α can be expressed in terms
of our exponents m and n as α = m/(n − 1). Note that the
creeping-flow viscosity is indeed independent of the subcritical
stress, due to the fact that far from steady state the stress-
dependent relaxation term in the rate equation (9) could be
ignored. Accordingly, the exponent α differs from the linear-
response exponent 1 − β = m/n that would follow from the
steady-state shear-thinning viscosity η ∼ γ̇ β−1.

IV. COMPARING THE MODEL TO EXPERIMENTAL DATA

A. Universal steady-state rheology

To judge the merits of the model we first note that it
gives a microscopic basis for the scaling ansatz (6), which is
accurately satisfied by the experimental data in Figs. 1–4. As
is clear from Table I, the microscopic exponents m = � − �

and n = � or m/n = 1 − β derived from the fits show little
difference for the different experimental systems, notably for
the two emulsions with strongly different particle interactions.
Considering the numerical errors the exponents may well be
universal to such 3D shear-driven dissipative systems, with
typical values m = 1.7 and n = 3.8. The two microscopic time
scales τa and τb that can be derived from our data in each case
differ by many orders of magnitude: τb can be estimated from
the crossover rate to shear thinning; on the other hand, the
high-rate Newtonian regime IV above τ−1

a is nowhere within
reach, and, as a consequence, the asymptotic parameters τa

and ηa cannot be determined from the data. Since the spatial
heterogeneity has not been measured the third microscopic
exponent ν cannot be determined either. In the literature a value
around 0.7 has been suggested more than once [10,14,33,52];
together with our model prediction � = dν this would result
in a realistic value d = 3.0. Furthermore, as shown already

in Ref. [20] the soft emulsion gives within experimental
accuracy a single power-law exponent � = B for the yield
stress and shear modulus, respectively, and, consequently, a
nonvanishing yield strain near ϕc.

B. Literature data

In the literature many other jamming systems have already
been analyzed for their mechanical, rheological, or microstruc-
tural scaling laws, with a broad range of exponent values,
partly at variance with the present data. For instance, in several
papers [9,10,34–37] it is suggested that exponents should be
independent of spatial dimension but sensitively dependent on
the type of interparticle interaction; also the exponent � for
the vanishing yield stress is claimed to be larger than the
exponent B for the vanishing shear modulus, with a consequent
vanishing of the yield strain near ϕc. These suggestions are
supported by simulation data; however, it is not clear that the
assumptions underlying these simulations would hold for all
kinds of studied systems. Apart from the spatial dimension one
should a priori distinguish, e.g., athermal versus Brownian
systems and crossovers between the two [58–60,71,72], dry
or wet systems with inertial effects and a subcritical Bagnold
regime [34,35], and (quasi-)static simulated systems that are
fully energy minimized [9,10]; in particular, the conclusions of
interaction-dependent and dimension-independent exponents
and of a vanishing yield strain are reached in the latter cases.
Beyond the variety in studied systems is the problem of limited
data range and accuracy, which may lead to practical curve fits
rather than asymptotic scaling analysis, with correspondingly
inaccurate exponents. In Appendix C we have collected from
the literature measured or simulated exponent values for a
broad range of systems (Table III), with similar systems
grouped there together.

In the present discussion we compare in Table II our
experimental data and model only with those systems that are
clearly overdamped and athermal. Where possible and relevant
we have added in bold italics additional exponent values
that would result from applying our model to the published
exponent values.

The flow-curve scaling demonstrated by Ref. [32] for an
athermal soft suspension gives exponents very comparable
to those in Figures 1–4: � = 4.1, � = 2.1, so m = 2.0,
n= 4.1. By contrast, the scaling around the jamming transition
of overdamped simulated disks [33] gives � = 1.2, M =
1.65, hence β = 0.42, and thus markedly different exponents
m = 1.65, n = 2.85 in dimension 2; in a later study on the same
2D system by partly the same authors [38] a slightly lower
value β ≈ 0.30 is reported but still the exponents are argued
to be universal for overdamped systems, so independent of
details of particle interactions. The same authors also comment
on the deviating results and conclusions of Ref. [36].

The simulated value ν = 0.73 in Ref. [52] connects well
with our equation � = dν and a yield-stress exponent � = 2.1
as obtained here, while in the 2D simulations of Ref. [33] the
values of � and d differ but the model prediction � = dν

is still satisfied. In the 2D study of Ref. [33] there is also
an accurately satisfied scaling ansatz for ξ versus σ , with a
consequential relation ξ ∼ σ−ν/� in the critical regime; with
our identification � = n − m this relation is the same as (13).
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In the related study of Ref. [38] ξ has been measured near ϕc as
a power of γ̇ −1, with the result ν/� = ν/n = 1/5.6; within
the reported numerical accuracy for ν this is consistent with
the exponents of Ref. [33]. In the 3D simulation of Ref. [55]
ξ has been measured close to ϕc as a power of γ̇ −1, with an
exponent 0.23; for our emulsions, assuming ν = 0.7, Eq. (13)
would give an exponent 0.18. The model assumption that
for concentrations above ϕc the correlation length diverges
on approach of the yield stress, i.e., that the scale of the
heterogeneous dynamics becomes of the system size L in
the quasistatic limit, has been confirmed in the simulations
of Refs. [53,54,68].

The divergence of the microscopic time scales τη and τhet

has been little studied in a direct and quantitative manner.
In the simulations by Ref. [52] of a 3D overdamped system
a power-law divergence of the heterogeneity time scale was
indeed found, with an exponent n = 3.3, somewhat below our
value 3.8 for �. The simulations in Ref. [55] of the velocity
autocorrelation and the spatial correlations imply a ratio of
exponents m/n = 0.27, so there is, indeed, a strong separation
of the two time scales, although this actual value is below
our ratio of ca. 0.45. The samples of Ref. [32] that showed
much similarity to ours in the scaling of flow curves have
also been investigated for their microscopic and heterogeneous
dynamics [56]. Data covering the shear-thinning regime as
well as the plateau regime show a single power-law relation
between the mass of cooperative regions and the single-particle
relaxation time, strengthening the concept of one dominant
variable close to the critical transition. Using our equality
τhet = Nτη these results translate into a fairly low Herschel-
Bulkley exponent β = 1 − m/n = 0.24, much lower also than
earlier reported [32] from flow-curve scaling. The authors also
report a very accurate scaling of the mass and relaxation time
with the product of variables γ̇ |�ϕ|4 that cannot be explained
by our model; we expect the dependence on these two variables
to differ. The origin of the discrepancy remains unclear, but
we note that in the measurements a significant stress and rate
gradient was present over the larger cooperative domains, thus
making the relation between the domain size and a single value
for the order parameter s meaningless.

In sum, Table II shows that there is often good agreement
when comparing the present theory and emulsion data with
the steady-state rheology of other overdamped and athermal
literature systems, especially as regards the existence of the
scaling laws. The exponent values in the table support the idea
that the scaling around the jamming transition is universal for
such systems, being only dependent on the spatial dimension
but not on details of the interaction. The larger collection of
data in Appendix C, Table III reveals much more variety in the
exponent values, partly due to numerical inaccuracy but, more
importantly, as a result of different underlying mechanisms or
simulation assumptions.

In this paper the main focus is on steady-state rheology.
However, one of the key issues in the behavior of yield-stress
fluids is the creep behavior, which as shown above can also be
covered by the model. It was demonstrated recently [27,28]
that creep was the reason for sometimes wrongly interpreted
“liquidlike” behavior of yield-stress materials below σy ; in
fact the creep is then so slow that a steady state is not reached
within experimental time scales and so the apparent “viscosity”

keeps on increasing in time, following the Andrade law (5).
From the exponents m and n that characterize the steady-state
rheology, our model predicts the exponent for the transient
Andrade creep as α = m/(n − 1). This prediction was tested
on the soft emulsion with volume fraction ϕ = 0.66, just above
ϕc [20]. The steady-state data predict α = 0.60, whereas the
creep data accurately satisfy α = 0.6, in close correspondence
also with many observations in the literature.

V. CONCLUSIONS

We have determined and numerically analyzed the exper-
imental steady-state flow behavior of four different yield-
stress systems: two emulsions, with mobile and rigid particle
surfaces, respectively, a 3D foam, and a Carbopol gel. While
the particle interactions of all four overdamped systems can
be assumed to be rather different, their rheology near and
across the critical jamming transition was found to obey
universality: By appropriate scaling with the distance to
jamming all systems allowed a data collapse onto supercritical
Herschel-Bulkley and (where accessible) subcritical Cross
master curves that meet at critical shear thinning; moreover,
the sets of independent scaling exponents proved the same
within numerical error for the different systems.

To rationalize such critical scaling we have presented a
simple microscopic two-state theory in which the steady state
is a balance between stagnant and fluidized particles and
where the stagnant fraction is the internal order parameter that
is driven to criticality. Heterogeneous microscopic dynamics
is at the heart of this theory and the two empirical scaling
exponents could be related to exponents for two diverging
time scales: for the single-particle fluidity and for the lifetime
of the fluctuating heterogeneous domains. A third microscopic
exponent describes the critical divergence of the heterogeneity
length scale, not only near the jamming point but along the full
yield-stress line. A heuristic argument based on fluctuations in
the local free volume explains the origin of the heterogeneous
dynamics and is able to give a scaling relation among the
exponents. The theory also predicts power-law creep.

The experimentally determined exponents and the predic-
tions of the microscopic model have been compared with a
large set of literature data, giving additional support both for
the model and for the assumed universality among overdamped
frictionless yield-stress systems of the same dimension. For
other systems exponents clearly differ.
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APPENDIX A: DERIVATION OF THE
STEADY-STATE BEHAVIOR

The mathematical problem to solve in the different regimes
of concentration and flow can be summarized in one line as:

s[(τa/τb)f±(σ/σy) + τaγ̇ ] = (1 − s/sc)n = (ηa/η)n/m,

(A1)
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with τb/τa � 1, with n > m and with f±(x) given by:

f+(x) = (x − 1)p, x > 1 (ϕ > ϕc);
(A2)

f+(x) ≡ 0, x < 1 (ϕ > ϕc),

f−(x) = 1 (ϕ < ϕc). (A3)

Let us first consider the solution of (A1) in the limit s ↓ 0.
In this limit the viscosity becomes Newtonian, both above
and below the critical concentration: η = ηa and σ = ηaγ̇ .
However, it corresponds to very high stresses and rates that
may often not be accessible experimentally: γ̇ � 1/τa . The
stagnant fraction s vanishes as (τaγ̇ )−1.

With decreasing stress and rate the viscosity increases far
above ηa and the solids fraction approaches the critical value
sc. When the second term at the left-hand side of (A1) (i.e.,
collective flow) still dominates the relaxation, the viscosity
and viscous stress are seen to become power law in the
rate: η = ηa(τaγ̇ )−m/n and hence = (ηa/τa)(τaγ̇ )1−m/n, η =
ηa(ηa/τaσ )m/(n−m) (here we suppress an overall factor s ≈ sc,
which is of order unity). Also this power-law shear-thinning
rheology applies to both sides of ϕc, making the critical
transition continuous. As is clear from (A1) it corresponds
to rates 1/τb � γ̇ � 1/τa . The small distance �s from
criticality follows directly from the viscosity as |�s/sc| =
(τaγ̇ )−1/n = (ηa/τaσ )−1/(n−m).

Upon further increase of the stagnant fraction and viscosity
the two terms at the left-hand side of (A1) become of equal
order and a crossover happens to a regime where the collective
flow is no longer dominant. If we assume that the elastic
stress is of the order of the yield stress, this crossover should
correspond with �σ ∼= σy . Accordingly, f (σ/σy) will be of
order unity and the crossover rate of the order 1/τb, both
above and below ϕc. Inserting these crossover conditions in the
expressions of the shear-thinning regime we get the yield stress
as σy = (ηa/τa)(τb/τa)−(1−m/n). Note that this yield stress has
been found from the crossover conditions, without modeling
the response in the static elastic regime.

For lower stresses or rates the first term at the left-hand side
of (A1) becomes dominant and the solution splits, depending
on the sign of �ϕ. Above the jamming concentration we use
(A2) and then get for �σ � σy or, equivalently, γ̇ � 1/τb the
solution η = ηa(τb/τa)m/n(σy/�σ )pm/n. Inserting the above
expression for σy and taking �σ equal to the viscous stress
ηγ̇ we then find the total stress in this plateau regime as
σ = σy[1 + (τbγ̇ )1/(1+pm/n)]. Again the small distance �s

from criticality follows directly from the viscosity via (A1).
The expressions in this regime still contain the exponent p that
characterizes the stress-dependent escape rate. In principle p

may be left as a separate parameter, dependent on details
of the jamming mechanism. Olsson and Teitel [89] have
analyzed the rheology of soft particles near the athermal
jamming transition by mapping onto a hard-core system and
deriving from it that the Herschel-Bulkley exponent would
equal the inverse of the Krieger-Dougherty exponent: β =
1 − m/n = 1/m, which leaves one independent exponent
only. However, their derivation is based on an expansion
in powers of γ̇ at finite and positive �σ , i.e., near the
quasistatic limit in the plateau regime where elastic energies

still dominate; with the expression for the rate-dependent
stress in this regime the argument of Ref. [89] actually gives
p = n(1 − 1/m), so still two independent exponents. On a par
with the Herschel-Bulkley equation we pragmatically make
here the simplifying assumption that the minor excess viscous
stress of the plateau regime has the same rate dependence as
the much larger viscous stress of the shear-thinning regime.
This is realized by the practical choice p = (1 − m/n)−1,
which makes the viscous stresses in the two regimes fully
identical.

Below the critical concentration and again for γ̇ � 1/τb we
insert (A3); then normal Newtonian rheology is found, with a
very high viscosity: ηN = ηa(τb/τa)m/n.

APPENDIX B: NEAR-CRITICAL HETEROGENEOUS
DYNAMICS AND THE NATURE OF THE

CRITICAL TRANSITION

With the mapping of the mathematical solution onto the
empirical flow equations our model covers the full empirical
rheology that is contained in the scaling ansatz (6) for
the solid-fluid transition. This allows us to interpret the
transition in terms of the microscopic order parameter, i.e., the
instantaneous stagnant fraction s and the associated diverging
heterogeneity length scale ξ (s). To do so, we consider in Fig. 5
the 3D diagram with the schematic flow surface σ = σ (ϕ,γ̇ ).

FIG. 5. (Color online) Three-dimensional diagram of concentra-
tion ϕ, stress σ , and rate γ̇ . The steady-state flow surface σ = σ (ϕ,γ̇ )
is formed by the blue, red, and green areas (from bottom to
top), representing low-rate Newtonian flow, critical shear thinning,
and supercritical plateau stress, respectively. The crossover borders
between these areas are only sharp in the jamming point J, where they
all meet. The evolution through the flow surface of the microscopic
order parameter s, the stagnant fraction, is indicated. The black area
of elastic response is bounded by the yield-stress line σy(ϕ), where s

reaches its critical value sc.
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The regimes I–III are shown in blue, green, and red,
respectively; the regime of only elastic response (solid black
lines), which is not addressed in our model, is the σ − ϕ plane
bounded by the dashed black yield-stress curve σy(ϕ). As is
clear already from the scaling ansatz the critical jamming point
J at ϕ = ϕc widens with increasing rate into a tongue-shaped
area (red) bounded by the crossover rate; the latter grows
on both sides of ϕc as a power law with |�ϕ| (dotted line in
the bottom plane). In this area of power-law shear thinning
(regime III, with the solid red lines representing the flow
curves) the subcritical Newtonian phase (regime I, blue) and
the supercritical nearly stagnant plateau phase (regime II,
green) have become indistinguishable. Note that the figure
is only schematic and that in reality the blue and green flow
curves (solid lines) are not fully straight or flat and the red area
may be somewhat tilted and its boundaries (dashed) are not
sharp.

In this figure the growth of the stagnant fraction can now be
followed by starting at a concentration ϕ− < ϕc in the low-rate
regime. Since the flow is here Newtonian, s cannot vary with
σ or γ̇ until, along the blue arrow (increasing rate at constant
concentration), the critical regime is hit. Within that regime all
states are indistinguishable along the ϕ direction, i.e., along
the dotted red arrow that brings us at the concentration ϕ+ >

ϕc where the plateau regime is entered; so, again, s has not
varied. Only from that point will s raise when the green arrow
(decreasing rate at constant concentration) is followed, until it
reaches its maximum value sc at the yield-stress curve. When
the starting point ϕ− (and hence also ϕ+) is chosen closer to
J , the starting value of s will be higher, ultimately reaching sc

in the jamming point. The correlation length ξ , and the fluidity
and heterogeneity time scales τη and τhet and their ratio τhet/τη,
diverge with decreasing |�s|; so they are all infinite along the
full yield-stress curve.

A general conclusion from the above is that although
in the quasistatic limit the Newtonian fluid at ϕ− and the
yield-stress solid at ϕ+ obviously differ, a continuous path
between them exists via the power-law shear-thinning regime
where the two phases become indistinguishable. A qualitative
analogy with a second-order phase transition presents itself,
but a sharp transition only happens in the limit where the
two crossover lines meet, i.e., at ϕ = ϕc (see Fig. 5). In the
jamming point J (ϕ = ϕc,σ = 0) the correlation length ξ is
infinite, as in a classical second-order critical point; at the
critical concentration a finite external stress σ drives the system
away from the singularity in a power-law fashion, according
to Eq. (13). However, the diagram is clearly more complicated
than for classical phase transitions. The divergence of the
correlation length is continued from the point J onward
along the full yield-stress line, which marks the quasistatic
limit at which a sharp transition to the jammed solid phase
happens for ϕ > ϕc. The present paper does not address the
jammed phase itself. Theories of this phase with ϕ > ϕc

often focus on its linear-elastic behavior and consider another
characteristic length ξ̃ , which diverges when J is approached
by decreasing ϕ to ϕc along the equilibrium line σ = γ̇ = 0;
that length ξ̃ measures the domain size beyond which the
system is overcoordinated and behaves as an ordinary solid
[11,65,66,69]. Moving away from this equilibrium line by
elastic deformation, along the upward solid black lines in

Fig. 5, destabilizes the solid phase and will increase the size
ξ̃ of isostatic domains. Ultimately the elastic stress drives the
solid to the yield-stress line; here ξ̃ diverges and thus naturally
meets the divergent correlation length ξ of the fluidized
phase.

APPENDIX C: TABLE OF LITERATURE DATA

In Table III we have collected experimental or simulated
exponent values for a broad range of systems, with similar
systems grouped together to ease comparison. In spite of the
variety in all these values some observations can still be made
in addition to those already discussed in the main text for
athermal overdamped systems.

The table includes additional overdamped experimental
systems [45,56,57,72] which are supposed to be influenced,
at least in part, by thermal effects.

The exponent values from flow-curve scaling for inertial
systems with Bagnold scaling below ϕc, both obtained theoreti-
cally and by simulation [34,35], clearly differ from those of the
overdamped systems and turn out to be interaction dependent
and dimension independent. In Ref. [64] the flow-curve scaling
for a simulated inertial system gave exponents that somewhat
differ from Refs. [34,35] but are still clearly interaction
dependent and differ from ours. Note that athermal systems
with weak viscous damping may also crossover to an inertia-
dominated shear-thickening Bagnold regime very close to ϕc

[90]. Such systems should be modeled by particle exchange
between three rather than two microscopic states. However,
extension from the present model is not straightforward since
the inertial dynamics introduces important new mechanisms
beyond what is covered in the rate equation (9) with (8)
and (10).

As is clear also from Table III, there are broad indications
for heterogeneous dynamics as also assumed in our model,
with a diverging associated length scale ξ when ϕc is
approached from below [10,45,49,50,52,53,57]. Note that the
definition of ξ may vary here; in particular, both two-point
and four-point correlations have been considered. Often there
is evidence for a power-law divergence in |�ϕ|, with the
associated exponent ν generally below unity. Interestingly,
a correlation-length exponent around 0.7 is obtained both in
overdamped and inertial 2D and 3D systems.

Heterogeneous dynamics is also frequently observed in
liquids approaching the thermal glass transition, with a
growing correlation length and a separation of two time
scales; power laws are often assumed. However, as pointed
out [58–60,72], the microscopic dynamics, the critical con-
centration, and the rheology scaling then differ. Combined
fits can even be made of the glass and jamming singular-
ities [58–59,71], although this may influence an accurate
determination of the separate rheological exponents. For
glasses at rest (not included in the table) power-law relations
between a heterogeneity length scale and well-separated
microscopic time scales have been accurately established by
simulations, with implied exponent ratios n/m = 1.5 and
n/ν = 5.4 for soft spheres [81,82,84] and n/m = 1.75 for 2D
colloids [83].
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[38] D. Vågberg, P. Olsson, and S. Teitel, Phys. Rev. Lett. 113,

148002 (2014).
[39] M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
[40] R. Richert, J. Phys.: Condens. Matter 14, R703 (2002).
[41] E. Aharonov, E. Bouchbinder, H. G. E. Hentschel, V. Ilyin, N.

Makedonska, I. Procaccia, and N. Schupper, Europhys. Lett. 77,
56002 (2007).

[42] R. A. Riggleman, H.-N. Lee, M. D. Ediger, and J. J. de Pablo,
Phys. Rev. Lett. 99, 215501 (2007).

[43] R. A. Riggleman, K. S. Schweizer, and J. J. de Pablo,
Macromolecules 41, 4969 (2008).

[44] H.-N. Lee, K. Paeng, S. F. Swallen, and M. D. Ediger, Science
323, 231 (2009).

[45] D. A. Sessoms, I. Bischofsberger, L. Cipelletti, and V. Trappe,
Phil. Trans. Roy. Soc. A 367, 5013 (2009).

[46] R. A. Riggleman, H.-N. Lee, M. D. Ediger, and J. J. de Pablo,
Soft Matter 6, 287 (2010).

[47] S. Maccarone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti,
J.-M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe,
and L. Cipelletti, Soft Matter 6, 5514 (2010).

[48] H.-N. Lee and M. D. Ediger, Macromolecules 43, 5863 (2010).
[49] A. S. Keys, A. R. Abate, S. C. Glotzer, and D. J. Durian,

Nat. Phys. 3, 260 (2007).
[50] A. R. Abate and D. J. Durian, Phys. Rev. E 76, 021306 (2007).
[51] F. Lechenault, O. Dauchot, G. Biroli, and J. P. Bouchaud,

Europhys. Lett. 83, 46003 (2008).
[52] T. Hatano, Phys. Rev. E 79, 050301(R) (2009).
[53] C. Heussinger, L. Berthier, and J.-L. Barrat, Europhys. Lett. 90,

20005 (2010).
[54] C. Heussinger, P. Chaudhuri, and J.-L. Barrat, Soft Matter 6,

3050 (2010).
[55] T. Hatano, J. Phys. Conf. Ser. 319, 012011 (2011).
[56] K. N. Nordstrom, J. P. Gollub, and D. J. Durian, Phys. Rev. E

84, 021403 (2011).
[57] Y. Rahmani, K. van der Vaart, B. van Dam, Z. Hu, V. Chikkadi,

and P. Schall, Soft Matter 8, 4264 (2012).
[58] A. Ikeda, L. Berthier, and P. Sollich, Phys. Rev. Lett. 109, 018301

(2012).
[59] A. Ikeda, L. Berthier, and P. Sollich, Soft Matter 9, 7669 (2013).
[60] P. Olsson and S. Teitel, Phys. Rev. E 88, 010301(R) (2013).
[61] S. A. Koehler, S. Hilgenfeldt, E. R. Weeks, and H. A. Stone,

Phys. Rev. E 66, 040601(R) (2002).
[62] S. Marze, D. Langevin, and A. Saint-Jalmes, J. Rheol. 52, 1091

(2008).
[63] J. F. Paredes Rojas, Ph.D. thesis, University of Amsterdam,

2013.
[64] T. Hatano, J. Phys. Soc. Jpn. 77, 123002 (2008).
[65] M. Wyart, S. R. Nagel, and T. A. Witten, Europhys. Lett. 72,

486 (2005).
[66] W. G. Ellenbroek, E. Somfai, M. van Hecke, and W. van

Saarloos, Phys. Rev. Lett. 97, 258001 (2006).
[67] C. Heussinger and J.-L. Barrat, Phys. Rev. Lett. 102, 218303

(2009).
[68] K. Martens, L. Bocquet, and J.-L. Barrat, Phys. Rev. Lett. 106,

156001 (2011).

012305-16

http://dx.doi.org/10.1007/s00397-010-0504-3
http://dx.doi.org/10.1007/s00397-010-0504-3
http://dx.doi.org/10.1007/s00397-010-0504-3
http://dx.doi.org/10.1007/s00397-010-0504-3
http://arxiv.org/abs/arXiv:1502.05281
http://dx.doi.org/10.1038/23819
http://dx.doi.org/10.1038/23819
http://dx.doi.org/10.1038/23819
http://dx.doi.org/10.1038/23819
http://dx.doi.org/10.1038/35081021
http://dx.doi.org/10.1038/35081021
http://dx.doi.org/10.1038/35081021
http://dx.doi.org/10.1038/35081021
http://dx.doi.org/10.1103/PhysRevE.66.051305
http://dx.doi.org/10.1103/PhysRevE.66.051305
http://dx.doi.org/10.1103/PhysRevE.66.051305
http://dx.doi.org/10.1103/PhysRevE.66.051305
http://dx.doi.org/10.1209/epl/i2002-00195-4
http://dx.doi.org/10.1209/epl/i2002-00195-4
http://dx.doi.org/10.1209/epl/i2002-00195-4
http://dx.doi.org/10.1209/epl/i2002-00195-4
http://dx.doi.org/10.1103/PhysRevLett.88.075507
http://dx.doi.org/10.1103/PhysRevLett.88.075507
http://dx.doi.org/10.1103/PhysRevLett.88.075507
http://dx.doi.org/10.1103/PhysRevLett.88.075507
http://dx.doi.org/10.1103/PhysRevE.68.011306
http://dx.doi.org/10.1103/PhysRevE.68.011306
http://dx.doi.org/10.1103/PhysRevE.68.011306
http://dx.doi.org/10.1103/PhysRevE.68.011306
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104045
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104045
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104045
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104045
http://dx.doi.org/10.1103/PhysRevLett.89.165501
http://dx.doi.org/10.1103/PhysRevLett.89.165501
http://dx.doi.org/10.1103/PhysRevLett.89.165501
http://dx.doi.org/10.1103/PhysRevLett.89.165501
http://dx.doi.org/10.1103/PhysRevLett.95.088001
http://dx.doi.org/10.1103/PhysRevLett.95.088001
http://dx.doi.org/10.1103/PhysRevLett.95.088001
http://dx.doi.org/10.1103/PhysRevLett.95.088001
http://dx.doi.org/10.1038/nphys580
http://dx.doi.org/10.1038/nphys580
http://dx.doi.org/10.1038/nphys580
http://dx.doi.org/10.1038/nphys580
http://dx.doi.org/10.1007/BF01432034
http://dx.doi.org/10.1007/BF01432034
http://dx.doi.org/10.1007/BF01432034
http://dx.doi.org/10.1007/BF01432034
http://dx.doi.org/10.1016/0095-8522(65)90022-X
http://dx.doi.org/10.1016/0095-8522(65)90022-X
http://dx.doi.org/10.1016/0095-8522(65)90022-X
http://dx.doi.org/10.1016/0095-8522(65)90022-X
http://dx.doi.org/10.1122/1.548848
http://dx.doi.org/10.1122/1.548848
http://dx.doi.org/10.1122/1.548848
http://dx.doi.org/10.1122/1.548848
http://dx.doi.org/10.1103/PhysRevLett.107.158303
http://dx.doi.org/10.1103/PhysRevLett.107.158303
http://dx.doi.org/10.1103/PhysRevLett.107.158303
http://dx.doi.org/10.1103/PhysRevLett.107.158303
http://dx.doi.org/10.1103/PhysRevLett.111.015701
http://dx.doi.org/10.1103/PhysRevLett.111.015701
http://dx.doi.org/10.1103/PhysRevLett.111.015701
http://dx.doi.org/10.1103/PhysRevLett.111.015701
http://dx.doi.org/10.1098/rspa.1910.0050
http://dx.doi.org/10.1098/rspa.1910.0050
http://dx.doi.org/10.1098/rspa.1910.0050
http://dx.doi.org/10.1098/rspa.1910.0050
http://dx.doi.org/10.1016/j.msea.2005.03.067
http://dx.doi.org/10.1016/j.msea.2005.03.067
http://dx.doi.org/10.1016/j.msea.2005.03.067
http://dx.doi.org/10.1016/j.msea.2005.03.067
http://dx.doi.org/10.1140/epjb/e2008-00198-5
http://dx.doi.org/10.1140/epjb/e2008-00198-5
http://dx.doi.org/10.1140/epjb/e2008-00198-5
http://dx.doi.org/10.1140/epjb/e2008-00198-5
http://dx.doi.org/10.1103/PhysRevLett.105.015501
http://dx.doi.org/10.1103/PhysRevLett.105.015501
http://dx.doi.org/10.1103/PhysRevLett.105.015501
http://dx.doi.org/10.1103/PhysRevLett.105.015501
http://dx.doi.org/10.1103/PhysRevLett.108.255701
http://dx.doi.org/10.1103/PhysRevLett.108.255701
http://dx.doi.org/10.1103/PhysRevLett.108.255701
http://dx.doi.org/10.1103/PhysRevLett.108.255701
http://dx.doi.org/10.1088/0953-8984/15/11/301
http://dx.doi.org/10.1088/0953-8984/15/11/301
http://dx.doi.org/10.1088/0953-8984/15/11/301
http://dx.doi.org/10.1088/0953-8984/15/11/301
http://dx.doi.org/10.1209/0295-5075/87/38004
http://dx.doi.org/10.1209/0295-5075/87/38004
http://dx.doi.org/10.1209/0295-5075/87/38004
http://dx.doi.org/10.1209/0295-5075/87/38004
http://dx.doi.org/10.1098/rsta.2009.0194
http://dx.doi.org/10.1098/rsta.2009.0194
http://dx.doi.org/10.1098/rsta.2009.0194
http://dx.doi.org/10.1098/rsta.2009.0194
http://dx.doi.org/10.2118/51324-PA
http://dx.doi.org/10.2118/51324-PA
http://dx.doi.org/10.2118/51324-PA
http://dx.doi.org/10.2118/51324-PA
http://dx.doi.org/10.1103/PhysRevLett.105.100601
http://dx.doi.org/10.1103/PhysRevLett.105.100601
http://dx.doi.org/10.1103/PhysRevLett.105.100601
http://dx.doi.org/10.1103/PhysRevLett.105.100601
http://dx.doi.org/10.1103/PhysRevLett.105.175701
http://dx.doi.org/10.1103/PhysRevLett.105.175701
http://dx.doi.org/10.1103/PhysRevLett.105.175701
http://dx.doi.org/10.1103/PhysRevLett.105.175701
http://dx.doi.org/10.1103/PhysRevLett.99.178001
http://dx.doi.org/10.1103/PhysRevLett.99.178001
http://dx.doi.org/10.1103/PhysRevLett.99.178001
http://dx.doi.org/10.1103/PhysRevLett.99.178001
http://dx.doi.org/10.1143/PTP.121.647
http://dx.doi.org/10.1143/PTP.121.647
http://dx.doi.org/10.1143/PTP.121.647
http://dx.doi.org/10.1143/PTP.121.647
http://dx.doi.org/10.1103/PhysRevE.80.011308
http://dx.doi.org/10.1103/PhysRevE.80.011308
http://dx.doi.org/10.1103/PhysRevE.80.011308
http://dx.doi.org/10.1103/PhysRevE.80.011308
http://dx.doi.org/10.1103/PhysRevLett.105.088303
http://dx.doi.org/10.1103/PhysRevLett.105.088303
http://dx.doi.org/10.1103/PhysRevLett.105.088303
http://dx.doi.org/10.1103/PhysRevLett.105.088303
http://dx.doi.org/10.1039/c3sm51543e
http://dx.doi.org/10.1039/c3sm51543e
http://dx.doi.org/10.1039/c3sm51543e
http://dx.doi.org/10.1039/c3sm51543e
http://dx.doi.org/10.1103/PhysRevLett.113.148002
http://dx.doi.org/10.1103/PhysRevLett.113.148002
http://dx.doi.org/10.1103/PhysRevLett.113.148002
http://dx.doi.org/10.1103/PhysRevLett.113.148002
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
http://dx.doi.org/10.1088/0953-8984/14/23/201
http://dx.doi.org/10.1088/0953-8984/14/23/201
http://dx.doi.org/10.1088/0953-8984/14/23/201
http://dx.doi.org/10.1088/0953-8984/14/23/201
http://dx.doi.org/10.1209/0295-5075/77/56002
http://dx.doi.org/10.1209/0295-5075/77/56002
http://dx.doi.org/10.1209/0295-5075/77/56002
http://dx.doi.org/10.1209/0295-5075/77/56002
http://dx.doi.org/10.1103/PhysRevLett.99.215501
http://dx.doi.org/10.1103/PhysRevLett.99.215501
http://dx.doi.org/10.1103/PhysRevLett.99.215501
http://dx.doi.org/10.1103/PhysRevLett.99.215501
http://dx.doi.org/10.1021/ma8001214
http://dx.doi.org/10.1021/ma8001214
http://dx.doi.org/10.1021/ma8001214
http://dx.doi.org/10.1021/ma8001214
http://dx.doi.org/10.1126/science.1165995
http://dx.doi.org/10.1126/science.1165995
http://dx.doi.org/10.1126/science.1165995
http://dx.doi.org/10.1126/science.1165995
http://dx.doi.org/10.1098/rsta.2009.0178
http://dx.doi.org/10.1098/rsta.2009.0178
http://dx.doi.org/10.1098/rsta.2009.0178
http://dx.doi.org/10.1098/rsta.2009.0178
http://dx.doi.org/10.1039/B912288E
http://dx.doi.org/10.1039/B912288E
http://dx.doi.org/10.1039/B912288E
http://dx.doi.org/10.1039/B912288E
http://dx.doi.org/10.1039/c0sm00155d
http://dx.doi.org/10.1039/c0sm00155d
http://dx.doi.org/10.1039/c0sm00155d
http://dx.doi.org/10.1039/c0sm00155d
http://dx.doi.org/10.1021/ma1006649
http://dx.doi.org/10.1021/ma1006649
http://dx.doi.org/10.1021/ma1006649
http://dx.doi.org/10.1021/ma1006649
http://dx.doi.org/10.1038/nphys572
http://dx.doi.org/10.1038/nphys572
http://dx.doi.org/10.1038/nphys572
http://dx.doi.org/10.1038/nphys572
http://dx.doi.org/10.1103/PhysRevE.76.021306
http://dx.doi.org/10.1103/PhysRevE.76.021306
http://dx.doi.org/10.1103/PhysRevE.76.021306
http://dx.doi.org/10.1103/PhysRevE.76.021306
http://dx.doi.org/10.1209/0295-5075/83/46003
http://dx.doi.org/10.1209/0295-5075/83/46003
http://dx.doi.org/10.1209/0295-5075/83/46003
http://dx.doi.org/10.1209/0295-5075/83/46003
http://dx.doi.org/10.1103/PhysRevE.79.050301
http://dx.doi.org/10.1103/PhysRevE.79.050301
http://dx.doi.org/10.1103/PhysRevE.79.050301
http://dx.doi.org/10.1103/PhysRevE.79.050301
http://dx.doi.org/10.1209/0295-5075/90/20005
http://dx.doi.org/10.1209/0295-5075/90/20005
http://dx.doi.org/10.1209/0295-5075/90/20005
http://dx.doi.org/10.1209/0295-5075/90/20005
http://dx.doi.org/10.1039/b927228c
http://dx.doi.org/10.1039/b927228c
http://dx.doi.org/10.1039/b927228c
http://dx.doi.org/10.1039/b927228c
http://dx.doi.org/10.1088/1742-6596/319/1/012011
http://dx.doi.org/10.1088/1742-6596/319/1/012011
http://dx.doi.org/10.1088/1742-6596/319/1/012011
http://dx.doi.org/10.1088/1742-6596/319/1/012011
http://dx.doi.org/10.1103/PhysRevE.84.021403
http://dx.doi.org/10.1103/PhysRevE.84.021403
http://dx.doi.org/10.1103/PhysRevE.84.021403
http://dx.doi.org/10.1103/PhysRevE.84.021403
http://dx.doi.org/10.1039/c2sm25267h
http://dx.doi.org/10.1039/c2sm25267h
http://dx.doi.org/10.1039/c2sm25267h
http://dx.doi.org/10.1039/c2sm25267h
http://dx.doi.org/10.1103/PhysRevLett.109.018301
http://dx.doi.org/10.1103/PhysRevLett.109.018301
http://dx.doi.org/10.1103/PhysRevLett.109.018301
http://dx.doi.org/10.1103/PhysRevLett.109.018301
http://dx.doi.org/10.1039/c3sm50503k
http://dx.doi.org/10.1039/c3sm50503k
http://dx.doi.org/10.1039/c3sm50503k
http://dx.doi.org/10.1039/c3sm50503k
http://dx.doi.org/10.1103/PhysRevE.88.010301
http://dx.doi.org/10.1103/PhysRevE.88.010301
http://dx.doi.org/10.1103/PhysRevE.88.010301
http://dx.doi.org/10.1103/PhysRevE.88.010301
http://dx.doi.org/10.1103/PhysRevE.66.040601
http://dx.doi.org/10.1103/PhysRevE.66.040601
http://dx.doi.org/10.1103/PhysRevE.66.040601
http://dx.doi.org/10.1103/PhysRevE.66.040601
http://dx.doi.org/10.1122/1.2952510
http://dx.doi.org/10.1122/1.2952510
http://dx.doi.org/10.1122/1.2952510
http://dx.doi.org/10.1122/1.2952510
http://dx.doi.org/10.1143/JPSJ.77.123002
http://dx.doi.org/10.1143/JPSJ.77.123002
http://dx.doi.org/10.1143/JPSJ.77.123002
http://dx.doi.org/10.1143/JPSJ.77.123002
http://dx.doi.org/10.1209/epl/i2005-10245-5
http://dx.doi.org/10.1209/epl/i2005-10245-5
http://dx.doi.org/10.1209/epl/i2005-10245-5
http://dx.doi.org/10.1209/epl/i2005-10245-5
http://dx.doi.org/10.1103/PhysRevLett.97.258001
http://dx.doi.org/10.1103/PhysRevLett.97.258001
http://dx.doi.org/10.1103/PhysRevLett.97.258001
http://dx.doi.org/10.1103/PhysRevLett.97.258001
http://dx.doi.org/10.1103/PhysRevLett.102.218303
http://dx.doi.org/10.1103/PhysRevLett.102.218303
http://dx.doi.org/10.1103/PhysRevLett.102.218303
http://dx.doi.org/10.1103/PhysRevLett.102.218303
http://dx.doi.org/10.1103/PhysRevLett.106.156001
http://dx.doi.org/10.1103/PhysRevLett.106.156001
http://dx.doi.org/10.1103/PhysRevLett.106.156001
http://dx.doi.org/10.1103/PhysRevLett.106.156001


UNIVERSAL RESCALING OF FLOW CURVES FOR YIELD- . . . PHYSICAL REVIEW E 92, 012305 (2015)

[69] C. P. Goodrich, W. G. Ellenbroek, and A. J. Liu, Soft Matter 9,
10993 (2013).

[70] H. Eyring, J. Chem. Phys. 4, 283 (1936).
[71] F. Scheffold, F. Cardinaux, and T. G. Mason, J. Phys.: Condens.

Matter 25, 502101 (2013).
[72] A. Basu, Y. Xu, T. Still, P. E. Arriata, Z. Zhang, K. N. Nordstrom,

J. M. Rieser, J. P. Gollub, D. J. Durian, and A. G. Yodh,
Soft Matter 10, 3027 (2014).

[73] M. Grob, C. Heussinger, and A. Zippelius, Phys. Rev. E 89,
050201 (2014).

[74] E. Irani, P. Chaudhuri, and C. Heussinger, Phys. Rev. Lett. 112,
188303 (2014).

[75] H. M. Wyss, K. Miyazaki, J. Mattsson, Z. Hu, D. R. Reichman,
and D. A. Weitz, Phys. Rev. Lett. 98, 238303 (2007).

[76] G. Biroli, J.-P. Bouchaud, K. Miyazaki, and D. R. Reichman,
Phys. Rev. Lett. 97, 195701 (2006).

[77] D. Hajnal and M. Fuchs, Eur. Phys. J. E 28, 125 (2009).
[78] E. Flenner and G. Szamel, Phys. Rev. Lett. 105, 217801 (2010).

[79] C. Fusco, T. Albaret, and A. Tanguy, Eur. Phys. J. E 37, 43
(2014).

[80] J. Lin, E. Lerner, A. Rosso, and M. Wyart, Proc. Natl. Acad.
Sci. USA 111, 14382 (2014).

[81] K. Kim and S. Saito, Phys. Rev. E 79, 060501(R) (2009).
[82] K. Kim and S. Saito, J. Chem. Phys. 133, 044511 (2010).
[83] H. Tanaka, T. Kawasaki, H. Shintani, and K. Watanabe,

Nat. Mater. 9, 324 (2010).
[84] K. Kim and S. Saito, J. Chem. Phys. 138, 12A506 (2013).
[85] G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
[86] N. F. Mott, Philos. Mag. 44, 742 (1953).
[87] F. Louchet and P. Duval, Int. J. Mater. Res. 100, 1433 (2009).
[88] X. Xing, S. Mukhopadhyay, and P. M. Goldbart, Phys. Rev. Lett.

93, 225701 (2004).
[89] P. Olsson and S. Teitel, Phys. Rev. Lett. 109, 108001

(2012).
[90] A. Fall, A. Lemaı̂tre, F. Bertrand, D. Bonn, and G. Ovarlez,

Phys. Rev. Lett. 105, 268303 (2010).

012305-17

http://dx.doi.org/10.1039/c3sm51095f
http://dx.doi.org/10.1039/c3sm51095f
http://dx.doi.org/10.1039/c3sm51095f
http://dx.doi.org/10.1039/c3sm51095f
http://dx.doi.org/10.1063/1.1749836
http://dx.doi.org/10.1063/1.1749836
http://dx.doi.org/10.1063/1.1749836
http://dx.doi.org/10.1063/1.1749836
http://dx.doi.org/10.1088/0953-8984/25/50/502101
http://dx.doi.org/10.1088/0953-8984/25/50/502101
http://dx.doi.org/10.1088/0953-8984/25/50/502101
http://dx.doi.org/10.1088/0953-8984/25/50/502101
http://dx.doi.org/10.1039/c3sm52454j
http://dx.doi.org/10.1039/c3sm52454j
http://dx.doi.org/10.1039/c3sm52454j
http://dx.doi.org/10.1039/c3sm52454j
http://dx.doi.org/10.1103/PhysRevE.89.050201
http://dx.doi.org/10.1103/PhysRevE.89.050201
http://dx.doi.org/10.1103/PhysRevE.89.050201
http://dx.doi.org/10.1103/PhysRevE.89.050201
http://dx.doi.org/10.1103/PhysRevLett.112.188303
http://dx.doi.org/10.1103/PhysRevLett.112.188303
http://dx.doi.org/10.1103/PhysRevLett.112.188303
http://dx.doi.org/10.1103/PhysRevLett.112.188303
http://dx.doi.org/10.1103/PhysRevLett.98.238303
http://dx.doi.org/10.1103/PhysRevLett.98.238303
http://dx.doi.org/10.1103/PhysRevLett.98.238303
http://dx.doi.org/10.1103/PhysRevLett.98.238303
http://dx.doi.org/10.1103/PhysRevLett.97.195701
http://dx.doi.org/10.1103/PhysRevLett.97.195701
http://dx.doi.org/10.1103/PhysRevLett.97.195701
http://dx.doi.org/10.1103/PhysRevLett.97.195701
http://dx.doi.org/10.1140/epje/i2008-10361-0
http://dx.doi.org/10.1140/epje/i2008-10361-0
http://dx.doi.org/10.1140/epje/i2008-10361-0
http://dx.doi.org/10.1140/epje/i2008-10361-0
http://dx.doi.org/10.1103/PhysRevLett.105.217801
http://dx.doi.org/10.1103/PhysRevLett.105.217801
http://dx.doi.org/10.1103/PhysRevLett.105.217801
http://dx.doi.org/10.1103/PhysRevLett.105.217801
http://dx.doi.org/10.1140/epje/i2014-14043-0
http://dx.doi.org/10.1140/epje/i2014-14043-0
http://dx.doi.org/10.1140/epje/i2014-14043-0
http://dx.doi.org/10.1140/epje/i2014-14043-0
http://dx.doi.org/10.1073/pnas.1406391111
http://dx.doi.org/10.1073/pnas.1406391111
http://dx.doi.org/10.1073/pnas.1406391111
http://dx.doi.org/10.1073/pnas.1406391111
http://dx.doi.org/10.1103/PhysRevE.79.060501
http://dx.doi.org/10.1103/PhysRevE.79.060501
http://dx.doi.org/10.1103/PhysRevE.79.060501
http://dx.doi.org/10.1103/PhysRevE.79.060501
http://dx.doi.org/10.1063/1.3464331
http://dx.doi.org/10.1063/1.3464331
http://dx.doi.org/10.1063/1.3464331
http://dx.doi.org/10.1063/1.3464331
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1063/1.1696442
http://dx.doi.org/10.1063/1.1696442
http://dx.doi.org/10.1063/1.1696442
http://dx.doi.org/10.1063/1.1696442
http://dx.doi.org/10.1080/14786440708521052
http://dx.doi.org/10.1080/14786440708521052
http://dx.doi.org/10.1080/14786440708521052
http://dx.doi.org/10.1080/14786440708521052
http://dx.doi.org/10.3139/146.110189
http://dx.doi.org/10.3139/146.110189
http://dx.doi.org/10.3139/146.110189
http://dx.doi.org/10.3139/146.110189
http://dx.doi.org/10.1103/PhysRevLett.93.225701
http://dx.doi.org/10.1103/PhysRevLett.93.225701
http://dx.doi.org/10.1103/PhysRevLett.93.225701
http://dx.doi.org/10.1103/PhysRevLett.93.225701
http://dx.doi.org/10.1103/PhysRevLett.109.108001
http://dx.doi.org/10.1103/PhysRevLett.109.108001
http://dx.doi.org/10.1103/PhysRevLett.109.108001
http://dx.doi.org/10.1103/PhysRevLett.109.108001
http://dx.doi.org/10.1103/PhysRevLett.105.268303
http://dx.doi.org/10.1103/PhysRevLett.105.268303
http://dx.doi.org/10.1103/PhysRevLett.105.268303
http://dx.doi.org/10.1103/PhysRevLett.105.268303



