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We address here a few classical lattice spin models, involving n-component unit vectors (n = 2,3), associated
with a D-dimensional lattice ZD,D = 1,2, and interacting via a pair potential restricted to nearest neighbors
and being isotropic in spin space, i.e., defined by a function of the scalar product between the interacting
spins. When the potential involves a continuous function of the scalar product, the Mermin-Wagner theorem
and its generalizations exclude orientational order at all finite temperatures in the thermodynamic limit, and
exclude phase transitions at finite temperatures when D = 1; on the other hand, we have considered here some
comparatively simple functions of the scalar product which are bounded from below, diverge to +∞ for certain
mutual orientations, and are continuous almost everywhere with integrable singularities. Exact solutions are
presented for D = 1, showing an absence of phase transitions and an absence of orientational order at all
finite temperatures in the thermodynamic limit; for D = 2, and in the absence of more stringent mathematical
results, extensive simulations carried out on some of them point to the absence of orientational order at all finite
temperatures and suggest the existence of a Berezinskiı̆-Kosterlitz-Thouless transition.
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I. INTRODUCTION

The study of lattice spin models, both classical (on which
we concentrate here) and quantum, is an important chapter of
statistical mechanics, where a number of mathematical results
have been obtained, entailing the absence or existence, and
sometimes type, of phase transitions at finite temperatures,
depending on lattice dimension, number of spin components,
range, and symmetry of the interaction.

The Mermin-Wagner theorem was first proven nearly
50 years ago in a quantum setting, for the isotropic spin
Heisenberg model with finite-range exchange interactions [1],
and later extended by various authors in a number of directions,
e.g., to the classical setting, to other functions of the scalar
product, or to longer-ranged interactions [2–5]; see also a
subsequent review in Ref. [6].

In the classical case, the Mermin-Wagner theorem and its
generalizations [7–10] hold for lattice spin models, consisting
of n-component unit vectors (n � 2), associated with a D-
dimensional lattice �D (D = 1,2 and typically �D = ZD),
and interacting via pair potentials which are isotropic in
spin space, and usually translationally invariant (on the other
hand, mathematical results have also been obtained which do
not need any translational invariance [11–16]); the distance
dependence is usually taken to be suitably short ranged. Their
orientational dependencies are defined by some functions
of the scalar product between interacting spin pairs: the
earlier mathematical results were obtained for rather smooth
functions (simple polynomials), and conditions were later
gradually relaxed, i.e., to the milder request of continuity and,
in some cases, even to less regular functions [9,10].

More explicitly, continuity is required in Refs. [9,10],
and some singularities are also allowed for in Ref. [9];
we restrict our present discussion to finite-range (actually,
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nearest-neighbor) interactions and notice that mathematical
results are known for long-range interactions as well (see,
e.g., Refs. [8–10], and others quoted therein).

To fix notation and ideas, let wj = (w1
j ,w

2
j , . . . ,w

n
j ) denote

the n-component unit vector (spin) associated with the j th
lattice site, with dimensionless coordinate vector xj ∈ ZD;
two-component spins are parametrized by usual polar angles
ϕj , and three-component spins are parametrized by usual
spherical angles (θj ,φj ). Here and in the following the
interaction is restricted to nearest neighbors and defined by

� ≡ �(τ ) = εF (τ ), τ ≡ τjk = wj · wk, (1)

where ε > 0 denotes a positive quantity setting energy and
temperature scales (i.e., T = kBTK/ε, where TK denotes the
temperature in degrees Kelvin), and to be scaled away from
the following formulas. For two-component spins, it proves
notationally convenient to define

τ = cos 	, 	 ≡ 	jk = ϕj − ϕk. (2)

When F (τ ) is a continuous function of its argument, the
above theorems entail the absence of orientational order
in the thermodynamic limit at all finite temperatures [9];
when D = n = 2, and under additional conditions, a
Berezinskiı̆-Kosterlitz-Thouless (BKT) or, in more general
terms, a BKT-like transition can be proven to exist [17–24].
The term “BKT-like” is used here to indicate a transition
to a disordered low-temperature phase possessing slowly
decaying correlations resulting in infinite susceptibility.
In thermodynamic terms, the transition may be of infinite
order (as in the more common, originally studied BKT
case [17–22]); it was also later proven [23,24] that it can turn
first order under certain conditions.

Cases where F (τ ) possesses some singularity have been
studied far less extensively (see also below). In fact one can
envisage a multitude of singular interactions: models involving
a finite number of jump discontinuities, as in sign or step
models, are discussed in Appendix A; another family, also
discussed there, involves constrained models, where whole

1539-3755/2015/92(1)/012135(13) 012135-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.012135


HASSAN CHAMATI AND SILVANO ROMANO PHYSICAL REVIEW E 92, 012135 (2015)

regions of configuration space are excluded. We have chosen
to start our investigation, so to speak, somewhere in between
these two cases, from functional forms containing slowly
divergent terms which do not disturb thermodynamics, i.e.,
from functional forms being bounded from below, continuous
almost everywhere, slowly diverging to +∞ for one (or a few)
mutual orientations, and possessing integrable singularities.
Thus, the present paper addresses a few models whose
functional forms are defined by

V (τ ) = − ln(1 + τ ), n = 2, (3a)

W (τ ) = − ln(1 + τ ), n = 3, (3b)

X(τ ) = − ln(|τ |), n = 3. (3c)

In due course, comparisons are also made with their
extensively studied counterparts defined by

F (τ ) = −τ, n = 2, (4a)

F (τ ) = −τ, n = 3, (4b)

F (τ ) = −P2(τ ), n = 3, (4c)

respectively, and simply referred to as “regular counterparts.”
Some models bearing similarities to ours [Eq. (3b)] have

been investigated previously in the literature [25–29]. More
recent studies showed that such classical models are effective
models obtained via mappings from quantum-mechanical
treatments [26–28]. The above singular models [Eqs. (3)], as
well as some generalizations and linear combinations of them,
can be solved exactly when D = 1, allowing one to obtain
thermodynamic and structural quantities in closed form; these
are worked out in Appendix A, where other singular models,
such as step or sign models and constrained ones are addressed
as well. The three models in Eqs. (3) are studied by extensive
Monte Carlo (MC) simulation for D = 2 so as to explore the
thermodynamic behavior of these models, on the one hand, and
to unveil potential effects of the singularities in comparison
with their regular counterparts, on the other hand.

The rest of the paper is organized as follows: in Sec. II we
further discuss the singular models; our simulation methodol-
ogy for D = 2 is discussed in Sec. III along with with brief
details on the finite-size approach we employ for the analysis of
the simulation data. In Sec. IV we present the simulation results
and finite-size scaling analysis used to extract the critical
behavior for the models under consideration. We conclude
the paper with Sec. V where we summarize our results.

II. REMARKS ON THE POTENTIAL MODELS

Both V and W attain their minimum at τmin = 1 and
slowly diverge to +∞ as τ → −1; X(τ ) attains its minima
at τmin = ±1 and slowly diverges to +∞ as τ → 0. The
above functions are bounded from below, are continuous
almost everywhere, and possess integrable singularities; in
these cases, an interaction diverging to +∞ is still compatible
with the thermodynamics and, by its very functional form, it
can be expected to enforce some strengthening of short-range
correlations. On the other hand, changing the sign in front of
the “ln” from “−” to “+” in (any of) Eqs. (3) would produce a
rather dramatic effect; i.e., it would cause a divergence to −∞

for some mutual orientations and, hence, make the modified
model not well defined at low temperatures [25].

Series expansions of Eqs. (3) can be written as

V (τ ) = ln(2) + lim
q→∞Vq,

(5a)

Vq = 2
q∑

l=1

(−1)l

l
cos(l	jk), 0 � 	jk < π,

W (τ ) = lim
q→∞Wq,

(5b)

Wq =
q∑

l=1

(−1)l

l
τ l, −1 < τ � 1,

X(τ ) = lim
q→∞Xq,

(5c)

Xq =
q∑

l=1

1

l
(1 − |τ |)l , 0 < |τ | � 1,

where each Xq is a polynomial in |τ |, where the coefficient in
front of |τ |l bears the sign (−1)l ; in other words, sign alterna-
tion is a common feature of the three above expansions. Any
of the above truncated expansions [Eqs. (5)] is a continuous
function of τ which, by the Mermin-Wagner theorem and its
generalizations [9,10], produces orientational disorder at all
finite temperatures. Let us now consider a generalization of
Vq , i.e.,

Fq =
q∑

l=1

cl cos(l	), (6)

where cl denote arbitrary real coefficients. The Mermin-
Wagner theorem can be applied here as well; moreover, for
a general ferromagnetic interaction (where all the coefficients
cl � 0), one can prove BKT behavior, based on its existence for
Eq. (4a) [17] and on correlation inequalities, and also obtain
a rigorous lower bound on the BKT transition temperature
(see Ref. [21] and others quoted therein). Unfortunately, the
alternating signs in Vq prevent us from using this approach in
general. Let us also mention in passing a simple specific case
of Eq. (6), defined by

G2 = c1 cos 	 + c2 cos(2	), c1 < 0, (7)

where c2 can either be negative or sweep a suitable range of
positive values. The model was studied by various authors in
the literature (see Refs. [30,31] and others quoted therein);
also in the equivalent version [32,33] (recall Appendix B)

G4 = c2 cos(2	) + c4 cos(4	), c2 < 0. (8)

Simulation or spin-wave evidence of BKT behavior was
obtained in various cases, and estimates of the BKT transition
temperature obtained for cases where the above mathematical
treatment applies [30,32] were later shown to agree with the
named lower bound [21]. It proves convenient to compare
each singular interaction potential [Eqs. (3)] with its regular
counterpart [Eqs. (4)], and with some truncated expansion
[Eqs. (5)]; this is done in Figs. 1–3. These are found to exhibit
a common feature: on the one hand, the singular interactions
diverge rather slowly for appropriate mutual orientations; on
the other hand, in a broad minimum-energy region, the growth
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FIG. 1. (Color online) Comparison between the singular model
V , its regular counterpart, and some truncated expansions
[Eqs. (3a), (4a), (5a)] as functions of the angle 	 between the two
spins. Meaning of symbols: red solid line, regular counterpart; blue
dashed line, model V ; magenta dotted line, V4; brown dash-dotted
line, V10.

of the singular interaction energy as τ moves away from the
corresponding τmin is recognizably slower than for its regular
counterpart, and then it becomes faster and faster outside this
region. The changeover takes place at about τ = 0 (V and W

model), or τ ≈ 1
4 (X model); a somewhat similar behavior can

also be seen for some (convergent) truncated expansions and
seems to reflect the above sign alternation.

What happens when the underlying lattice is taken to be
two-dimensional? The functional forms under investigation
here [Eqs. (3)] diverge to +∞ for some mutual orientations,
and, on the other hand, Refs. [9,10] address the general case
of continuous functions of the scalar product and Ref. [9] can
even allow for some singularities. As far as we could check,
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FIG. 2. (Color online) Comparison between the singular model
W , its regular counterpart, and some truncated expansions
[Eqs. (3b), (4b), (5b)] as functions of the scalar product τ between the
two spins. Meaning of symbols: red solid line, regular counterpart;
blue dashed line, model W ; magenta dotted line, W2; brown dash-
dotted line, W4.
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FIG. 3. (Color online) Comparison between the singular model
X, its regular counterpart, and some truncated expansions
[Eqs. (3c), (4c), (5c)] as functions of the scalar product τ between the
two spins. Meaning of symbols: red solid line, regular counterpart;
blue dashed line, model X; magenta dotted line, X2; brown dash-
dotted line, X4. Notice that the quantity −1 has been added to X as
well as to the two truncated expansions in order to ease comparison.

the divergent behavior of the models under investigation here
does not fit into the framework of weak singularity conditions
used in Sec. 2.2 of Ref. [9]. More explicitly, based on the series
expansion in Eq. (5a), one could try to realize a decomposition
of V (τ ) along the lines of Ref. [9] (Sec. 2.2, around their
Eqs. (24)–(26), pp. 441–443) by choosing a (large) positive
integer q and rewriting Eq. (3a) as

V (τ ) = ln(2) + Vq + rq . (9)

The divergent term rq would then be positive around 	 = π ,
and its sign would not agree with the hypotheses stipulated for
Theorem 1, singular case, in Ref. [9], where the small singular
term in the interaction is written (their notation)

−v(φ),v(·) � 0.

Thus, there appears to be no available mathematical theorem
entailing a Mermin-Wagner-type result in this case, although
it has been conjectured (expectation is not calculation) that, in
the thermodynamic limit, orientational order is also destroyed
at all finite temperatures (see, e.g., Ref. 13 in Ref. [28]); on
the other hand, at least for the V case, one might expect a
BKT behavior, since the singularity of the potential should
ultimately strengthen short-range correlations.

III. SIMULATION ASPECTS AND FINITE-SIZE
SCALING THEORY

For D = 2, the three models V , W , and X [Eqs. (3)]
were treated by simulation. Calculations were carried out
using periodic boundary conditions, and on samples consisting
of N = L2 particles, with L = 40, 60, 80, 100, 120, and
160. Simulations, based on the standard Metropolis updating
algorithm, were carried out in cascade, in order of increasing
temperature T ; equilibration runs took between 25 000 and
50 000 cycles, where one cycle corresponds to 2N attempted
Monte Carlo steps, including sublattice sweeps (checkerboard
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decomposition [34–37]), and production runs took between
500 000 and 1 500 000.

Subaverages for evaluating statistical errors were calculated
over macrosteps consisting of 1000 cycles. Calculated quanti-
ties include the potential energy (in units ε per particle), and
derivative with respect to temperature based on the fluctuation
formula

U ∗ = 〈H 〉
N

, (10)

and

C∗ = 1

NT 2
(〈H 2〉 − 〈H 〉2), (11)

with

H =
∑
{j<k}

F (τjk), (12)

where
∑

{j<k} denotes the sum over all distinct nearest-
neighboring pairs of lattice sites.

As for orientational quantities, such as mean magnetiza-
tion and corresponding susceptibilities [38,39], they can be
expressed in general by

P =
N∑

k=1

wk, (13a)

M = 1

N
〈|P|〉, (13b)

M2 = 1

N
〈P · P〉, (13c)

χ1 =
{
β(M2 − NM2), T < Tc

βM2, T � Tc,
(14a)

where β = 1/T , and Tc denotes the critical temperature. Since
|P| � N [Eq. (13a)], we have

M2 � N and χ1 � βN. (14b)

Notice that Eq. (14a) involves a true ordering transition
temperature Tc: in our case, for models V and W , we found
consistent evidence of the absence of orientational order at
all finite temperatures (see also the following section), i.e.,
Tc = 0, and selected the definition of χ1 accordingly. Model
X [Eq. (3c)], on the other hand, possesses even symmetry, and
its second- and fourth-rank order parameters P 2 and P 4, as
well as the corresponding susceptibility χ2, were calculated as
discussed in Ref. [40]; notice that, in this case

χ2 � βN. (15)

We also calculated various short-range order parameters,
defined by

σJ = 〈EJ (τjk)〉, (16)

measuring correlations between corresponding pairs of unit
vectors associated with nearest-neighboring sites; here EJ (τ )
denote appropriate orthogonal polynomials [see Eq. (A5) in
Appendix A], and we chose J = 1,2 for both V and W models,
and J = 2,4 for the X model.

In the quest for the possible occurrence of a phase
transition in the models investigated here, we analyze the

simulations data via the finite-size scaling (FSS) theory for
continuous phase transitions—second order and BKT (infinite
order) [37,41,42]. According to the FSS hypothesis when a
system is restricted to a finite geometry (a square of area L2 in
the present case) its thermodynamic quantities acquire a size
dependence with a behavior that is tightly related to the order
of the phase transition. It is worth mentioning that finite-size
effects become important when the correlation length is of the
same order as the linear size of the system. To be more specific
we give details based on the behavior of the susceptibility.

In the vicinity of a bulk critical point Tc the (magnetic)
susceptibility diverges against the reduced temperature t =
1 − T

Tc

 1 according to the scaling law χ1 ∼ |t |−γ with the

critical exponent γ > 0. For a finite-size system it turns into

χ1(L,T ) = Lγ/ν�χ (tL1/ν), (17)

where ν measures the degree of divergence of the distance
over which the spins are correlated, i.e., the correlation length
ξ ∼ |t |−1/ν with ν > 0. The function �χ (x) is a universal
function depending on the gross features of the system, but
not of its microscopic details.

On the other hand, when a BKT transition takes place, the
susceptibility of the bulk system diverges exponentially,

χBKT ∼ aχ exp
[
bχ (T − TBKT)−

1
2
]
, TBKT � T , (18)

as we approach TBKT and is infinite in the BKT phase with
a quasi-long-range order. For a finite system, however, the
divergence is rounded and the susceptibility is finite [Eqs. (14b)
and (15)]. In the vicinity of the bulk BKT temperature the
correlation length is proportional to the system’s linear size
and the susceptibility scales like

χBKT ∼ L2−ηBKT(T ). (19)

At the transition temperature ηBKT = 1
4 .

Expressions (17) and (19) are valid asymptotically in the
vicinity of the transition temperature, i.e., when both the
sample size L and the correlation length ξ are very large,
but their ratio ξ

L
is finite. In this limit the universal scaling

behavior is not affected by the finite-size effects.

IV. SIMULATION RESULTS AND FSS ANALYSIS

Simulation results obtained for the three investigated
models turned out to exhibit broad qualitative similarities,
to be contrasted to their regular counterparts (see following
discussion).

A. The magnetic models V and W

Simulation results for various observables, obtained for the
two models V and W , were found to exhibit a recognizable
qualitative similarity over a wide temperature range, so that,
in some cases, only V results are presented in the following.

Simulation data for the potential energies of both models
(not shown here) were found to evolve with temperature in a
gradual, monotonic way and to be essentially independent of
sample sizes, to within statistical errors falling below 0.1%.

As for the configurational specific heat C∗ (see Fig. 4
for model V , and Fig. 5 for model W ), related to thermal
fluctuations of the potential energy, the plots showed that
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FIG. 4. (Color online) The specific heat of model V for different
sample sizes against temperature; statistical errors (not shown here)
range between 1% and 5%. Meaning of symbols: red circles, L = 40;
green squares, L = 60; blue triangles, L = 80; magenta diamonds,
L = 100; cyan crosses, L = 160; red asterisks, L = 160.

C∗ starts with a maximum at T = 0, and first decreases to
a broad minimum (say at T ′). It then increases to another
maximum (say at T ′′); here the associated statistical errors
range between 1% and 5%, and results are only mildly
affected by sample size. We found T ′ ≈ 0.75, T ′′ ≈ 1.2 for
the V model, and T ′ ≈ 0.4, T ′′ ≈ 0.62 for the W counterpart.
Upon extrapolating the low-temperature results to T = 0, we
estimate the corresponding zero-temperature values to be 1

2 and
1, respectively. Notice also that the zero-temperature value for
the W model (but not for the V model) corresponds to the
global maximum; on the other hand, T ′′ for the V model (but
not for the W model) corresponds to the global maximum. The
same behavior was found by estimating the specific heat via
numerical differentiation of the internal energy.

A finite-size analysis of the configurational specific heat
according to corresponding scaling behavior compatible with
Eq. (17) ruled out the existence of a second-order phase
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FIG. 5. (Color online) The specific heat of model W for different
sample sizes against temperature; statistical errors (not shown here)
range between 1% and 5%; symbols are the same as in Fig. 4.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.3 0.6 0.9 1.2 1.5

M

T

L =   40
L =   60
L =   80
L = 100
L = 120
L = 160

Model V

FIG. 6. (Color online) Simulation results for the magnetization
of model V obtained with different sample sizes; symbols are the
same as in Fig. 4.

transition in both models. A similar analysis was performed
on the magnetization and the susceptibility for both models,
but no scaling was achieved.

Simulation results for the magnetization obtained with both
models (see, e.g., Fig. 6 for model V ) showed a decreasing
behavior as a function of temperature for a given sample size;
at each examined nonzero temperature, they kept decreasing
with increasing sample size. Low-temperature results appear
to extrapolate to M = 1 at T = 0 for all examined sample size,
as expected.

Low-temperature simulation results for M and for both
models V and W were found to exhibit a power-law decay
with increasing sample size; recall that the spin-wave analysis
worked out in Ref. [43] for the regular counterpart [Eq. (4a)]
predicts the low-temperature result

M ≈ (2L2)−
T
8π . (20)

3
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χ 1
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FIG. 7. (Color online) Simulation results for the susceptibility χ1

of model V obtained with different sample sizes; symbols are the same
as in Fig. 4. Assuming a BKT transition and fitting the largest sample
size L = 160 (upper solid orange curve) to the bulk behavior of the
susceptibility [Eq. (18)] leads to a transition at TBKT = 0.883 ± 0.007.
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FIG. 8. (Color online) Simulation results for the susceptibility χ1

of model W obtained with different sample sizes; symbols are the
same as in Fig. 4.

Our data at a given temperature were well fitted in a log-log
scale by the relation

ln M = −a ln L + b, a > 0, (21)

where the ratio a(T )
T

was found to increase with temperature
and to become constant in the low-temperature limit.

The thermal fluctuations of the magnetization for both
models V and W , i.e., their magnetic susceptibilities (actually
ln χ1), are presented in Figs. 7 and 8. At low temperatures
the susceptibility keeps growing with sample size for both
models, within the constraint of Eq. (14b), whereas at higher
temperatures it becomes independent of sample size; the
temperatures Tch where this change of scaling behavior first
becomes recognizable are Tch ≈ 1.3 > T ′′ for model V , and
Tch ≈ 0.56 < T ′′ for model W , respectively.

This specific behavior suggests a BKT transition from
a quasi-long-range ordered phase at low temperatures to a
disordered phase at higher ones. Assuming such a transitional
behavior, we have fitted the data of the largest sample size
(L = 160) to expression (18) for the bulk susceptibility and
found the results of Table I, as crude estimates (see also below).

We analyzed the behavior of the susceptibility χ1 according
to the finite-size scaling ansatz (19) in the vicinity of T = 0.9
for model V and of T = 0.28 for model W ; we first carried
out a linear fit of ln χ1 vs ln L and estimated the critical
exponent η from the slope of the curves corresponding to
different temperatures. The values obtained are presented in
Tables II and III for models V and W , respectively. A nonlinear
fit based on Eq. (19) was performed as well and yielded

TABLE I. Estimates of the parameters in Eq. (18) obtained by
fitting to data for the largest sample size for models V , W , and X

assuming they exhibit a BKT transition.

Model ln(aχ ) bχ TBKT

V −3.21 ± 0.15 5.29 ± 0.15 0.873 ± 0.007
W −3.93 ± 0.14 5.40 ± 0.14 0.259 ± 0.007
X −2.33 ± 0.05 3.03 ± 0.04 0.347 ± 0.003

TABLE II. Estimates of η for model V obtained via a log-log
fit according to Eq. (19) for different temperatures along with the
corresponding error δη.

T 0.890 0.895 0.900 0.905 0.910 0.915 0.920

η 0.246 0.244 0.248 0.240 0.250 0.251 0.257
δη 0.007 0.006 0.006 0.006 0.005 0.004 0.006

results in agreement with these ones. Thus, the transition
temperatures are most likely at TBKT = 0.910 ± 0.005 and
TBKT = 0.275 ± 0.005 for models V and W , respectively. The
discrepancy between these values and those in Table I points
to the presence of huge finite-size effects: recall that Eq. (18)
holds in the thermodynamic limit only, but was applied here
to the largest investigated sample size in the hope of gaining
insights into the transitional behavior of the models considered
here.

For the regular counterpart of model V the configurational
specific heat was found to exhibit a sharp maximum at about
15% [43] above the BKT transition. In Refs. [44,45] we have
investigated the impact of diluted random impurities on the
transition temperature. In Ref. [44] we have found a broad
peak about 5% above the BKT transition, and in Ref. [45] we
found a sharper one about 2% above the transition temperature.
Here we find a maximum at about 40% above TBKT. All these
results show that the maximum of the specific heat is always
above the transition temperature. As for Tch, we could not
find in the literature any estimate for the regular counterpart
[Eq. (4a)]; thus, additional simulations were run for the named
regular model, carried out with the same sample sizes as for
the three singular models and using over-relaxation [46–50];
the estimate Tch ≈ 1.05 was obtained.

Simulation data for the short-range order parameters de-
fined in Eq. (16) were found to be independent of sample size
and to decrease with temperature in a gradual and continuous
way, paralleling the potential energy data; results obtained with
the largest sample size of model V are collected in Fig. 9.

B. The two-dimensional nematic model X

Simulation results for the X model were also found to ex-
hibit a remarkable qualitative similarity with the ones obtained
for their magnetic counterparts. Data for the potential energy
(not shown) as well as for the short-range order parameters
(Fig. 10) were found to be independent of sample size and
to evolve with temperature in a gradual and monotonic way.
The temperature dependence of the specific heat corresponded
to its magnetic counterpart (Fig. 11); here also the associated
statistical errors were found to range between 1% and 5%,

TABLE III. Estimates of η for model W obtained via a log-log
fit according to Eq. (19) for different temperatures along with the
corresponding error δη.

T 0.265 0.270 0.275 0.280 0.285 0.290 0.295

η 0.239 0.243 0.249 0.257 0.271 0.273 0.285
δη 0.004 0.004 0.004 0.006 0.006 0.005 0.007
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FIG. 9. (Color online) Simulation results for the short-range or-
der parameters (16) of model V obtained with the largest sample size.
Meaning of symbols: red diamonds (upper curve), σ1; green circles
(lower curve), σ2.

and the results appeared to be only mildly affected by sample
size. The plot started with the value 1 at T = 0, decreased
with increasing temperature and reaching a broad minimum
at T ′ ≈ 0.3, and then its global maximum at T ′′ ≈ 0.5. It is
worth mentioning that a quite similar behavior was obtained
by numerical differentiation of the potential energy. Notice
also that, in the three cases, sample-size effects on the results
become more pronounced about T ′′. Here we anticipate that
neither the results for the specific heat nor those corresponding
to the second-rank order parameter P 2 or to the susceptibility
χ2 could obey the scaling behavior characteristic of a second-
order phase transition.

Simulation results for the order parameters P J (J = 2,4)
were also found to decrease with increasing temperature for
each sample size and to decrease with increasing sample size at
each nonzero temperature (Figs. 12 and 13). At all investigated
temperatures the results for the nematic order parameters

0.0
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σ J

T
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Model X

FIG. 10. (Color online) Simulation results for the short-range
order parameters (16) of model X obtained with the largest sample
size. Meaning of symbols: red diamonds (upper curve), σ2; green
circles (lower curve), σ4.
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FIG. 11. (Color online) The specific heat of model X for different
sample sizes against temperature; statistical errors (not shown here)
range between 1% and 5%. Symbols are the same as in Fig. 4.

P M (M = 2,4) exhibited a power-law decay with increasing
sample size. At a given temperature these were well fitted to
the corresponding relations

ln P J = −bJ1 ln L + bJ0, bJ1 > 0. (22)

The coefficients bJ1(T ) were found to increase with T , and
to become proportional to T to within statistical errors in the
low-temperature region. The results obtained from Eq. (22)
show that both order parameters vanish in the thermodynamic
limit; i.e., L → ∞. Such behavior is in agreement with the
spin-wave theory for magnetic systems discussed above.

Simulation results for ln χ2 vs T (Fig. 14) showed a low-
temperature regime where they kept increasing with increasing
sample size and then became independent of sample size at
higher temperatures; the temperature Tch where this change of
scaling first becomes recognizable was Tch ≈ 0.45 < T ′′. This
behavior also parallels the one observed for the two magnetic
counterparts.
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FIG. 12. (Color online) Simulation results for the second-rank
order parameter P 2 of model X obtained with different sample sizes.
Symbols are the same as in Fig. 4.
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FIG. 13. (Color online) Simulation results for the fourth-rank
order parameter P 4 of model X obtained with different sample sizes.
Symbols are the same as in Fig. 4.

By fitting the data obtained at high temperatures for our
largest sample size (L = 160) to expression (18) of the
susceptibility, we obtain the results reported in Table I with
a transition temperature TBKT = 0.347 ± 0.003.

Upon applying the finite-size-scaling analysis with data
for all sample sizes to the susceptibility given by Eq. (19),
we end up with the results of Table IV with an estimate of
the transition temperature �BKT = 0.275 ± 0.005 for model
X. Here again we observe a discrepancy between the result
obtained by fitting the bulk expression of the susceptibility to
the data for the largest size and the FSS analysis. This may be
traced back to the huge finite-size effects.

C. Comparisons with the regular counterparts

As for the regular counterparts [Eqs. (4)], the existence
of a BKT transition is by now a well-known result for
planar rotators [Eq. (4a)], and an estimate of the transition
temperature to be found in the literature is TBKT = 0.8929 ±

3

6

9

12

15

0.0 0.2 0.4 0.6 0.8

ln
χ 2

T

L =   40
L =   60
L =   80
L = 100
L = 120
L = 160

Model X

FIG. 14. (Color online) Simulation results for the susceptibility
χ2 of model X obtained with different sample sizes. Symbols are the
same as in Fig. 4.

TABLE IV. Estimates of η for model X obtained via a log-log
fit according to Eq. (19) for different temperatures along with the
corresponding error δη.

T 0.260 0.265 0.270 0.275 0.280 0.285 0.290

η 0.237 0.243 0.248 0.250 0.258 0.266 0.269
δη 0.006 0.005 0.005 0.006 0.004 0.006 0.003

0.0001 [51,52]. TBKT found for the V model is about 2% higher
than the corresponding value for the regular counterpart.

On the other hand, available evidence does not seem to
support a BKT scenario for the classical O(3) Heisenberg
regular counterpart [Eq. (4b)]. Various authors (see, e.g.,
Ref. [53]) have argued that the model does not exhibit such
a transition; the opposite view has been put forward by
Patrascioiu and Seiler in a series of papers (see, e.g., Ref. [54]).
Examples of the resulting debate can be found in or via
Ref. [55].

The nematic case [Eq. (4c)] has been studied for some
30 years [56–67], and a BKT scenario has been proposed by
various authors: a recent estimate of the transition temperature
is TBKT = 0.548 ± 0.002 [67], with the C∗ maximum at T ′′ ≈
0.57, and Tch ≈ T ′′; on the other hand, some other authors
claim that the named model [Eq. (4c)] does not exhibit any
critical transition, but its low-temperature behavior is rather
characterized by a crossover from a disordered phase to an
ordered phase at zero temperature [68,69].

These comparisons (see also Table V) suggest that, on the
one hand, the singular character of the interaction may bring
about a BKT behavior where the regular counterpart does not
support it (W model); on the other hand, the effect on TBKT

appears to be milder where the regular counterparts already
support this transitional behavior, and this we interpret as
a reflection of the potential features pointed out previously
(Sec. II) in the discussion of Eqs. (5) and of Figs. 1–3.

In contrast to the regular counterparts, where the tem-
perature dependence of C∗ shows a simple maximum, upon
increasing temperature from T = 0, the three singular models
investigated here exhibit first a minimum and then a maximum
of C∗; this behavior also appears connected with the potential
features discussed in Sec. II.

V. SUMMARY AND CONCLUSIONS

We have revisited and generalized a previously studied
model [25,26] and defined a few others, whose pairwise
interactions are isotropic in spin space and restricted to nearest
neighbors; in contrast to other extensively studied models, their

TABLE V. A summary of characteristic temperatures for the three
models examined by simulation in the present work; see text for
definitions.

Model T ′ T ′′ Tch TBKT

V ≈0.75 ≈1.25 ≈1.3 0.910 ± 0.005
W ≈0.4 ≈0.62 ≈0.56 0.275 ± 0.005
X ≈0.3 ≈0.5 ≈0.45 0.275 ± 0.005
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functional forms contains logarithmic singularities which, so
to speak, do not disturb the thermodynamics. When D = 1,
the above models could be solved in closed form, in terms
of gamma, beta, and polygamma functions, and were found
to produce orientational disorder and no phase transition, at
all finite temperatures, in the thermodynamic limit. Some
of the above models have been studied by simulation for
D = 2: among a few candidates (see Sec. II), we had
chosen those functional forms which strongly favor mutual
parallel orientations, thus strengthening (at least) short-range
correlations. In the absence of more stringent rigorous results,
the obtained simulation results point to orientational disorder
at all finite temperatures and suggest a BKT scenario in the
three cases; we hope to carry out a more thorough simulation
study of the models.

Moreover, the investigated models contain logarithmic
singularities, causing them to slowly diverge as τ → −1
or τ → 0; on the other hand, comparison with the regular
counterparts and with the above constrained models (Sec. II)
leads one to speculate as to what happens if the interaction
potential is chosen to be more confining, i.e., made more
rapidly divergent as τ moves away from τmin (actually,
a multitude of such functional forms can be envisaged).
Preliminary work along these lines has been started, and its
results will be reported in due course.
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APPENDIX A: EXACT SOLUTIONS FOR D = 1

Some available exact results in one dimension are recalled
here; when D = 1 (hence xj ≡ j ∈ Z), for a linear sample
consisting of N spins, the Hamiltonian reads

H =
N∑

j=1

F (wj · wj+1), (A1)

where we assume periodic boundary conditions, i.e., wN+1 =
w1. The corresponding overall partition functions can be
calculated exactly, and this is usually realized based on
the underlying O(n) symmetry, by means of an appropriate
coordinate transformation (i.e., geometrically, by taking each
spin wj as defining the reference axis for the next one,
wj+1) [70–75]. The corresponding overall partition function
reduces to the N th power [or (N − 1)th power if one uses
free boundary conditions] of a single-particle quantity, to be

denoted here by q(T ). In formulas

q(T ) = 1

2π
p(T ), (A2a)

p(T ) =
∫ 2π

0
exp(−βF (cos s))ds, n = 2, (A2b)

and

q(T ) = 1

2
p(T ), (A3a)

p(T ) =
∫ +1

−1
exp(−βF (s))ds, n = 3, (A3b)

where β = 1/T . Correlation functions are defined by

GJ (m) = 〈EJ (wj · wk)〉, as a function of m = |xj − xk|;
(A4)

here J is a strictly positive integer, and EJ (τ ) denote appropri-
ate orthogonal polynomials, i.e.,

EJ (τ ) =
{

TJ (τ ) = cos(J arccos(τ )), n = 2

PJ (τ ), n = 3.
(A5)

Here TJ (· · · ) denote Chebyshev polynomials of the first kind,
and PJ (· · · ) denote Legendre polynomials. For general D, and
when F (τ ) is not an even function of its argument, the simplest
correlation function is G1(r); for D = 1, the definition in
Eq. (A4) simplifies to

GJ (m) = 〈EJ (wj · wk)〉, as a function of m = |j − k| (A6)

and G1(m) reduces to the mth power of the quantity

c1(T ) = r1(T )

p(T )
, (A7)

where

r1(T ) =
∫ 2π

0
cos s exp(−βF (cos s))ds, n = 2, (A8a)

r1(T ) =
∫ +1

−1
s exp(−βF (s))ds, n = 3. (A8b)

The corresponding susceptibility is given by Refs. [38,39] [see
also Eqs. (13c) and (14a)]:

χ1 = β

N

〈
N∑

j=1

N∑
k=1

(wj · wk)

〉

= β

N

N∑
j=1

N∑
k=1

G1(|j − k|)

= β

N

N∑
j=1

N∑
k=1

c
|j−k|
1 . (A9)

Hence, in the large-N limit,

χ1 = β
1 + c1

1 − c1
. (A10)

These quantities have been calculated in the literature in a few
cases, where F (τ ) is a simple polynomial of its argument; i.e.,
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F = ±τ (n = 2,3),F = ±P2(τ )(n = 3) [70–76]. In the latter
cases F (τ ) is an even function of its argument, so that the
simplest relevant correlation function is

G2(m) =〈P2(wj · wk)〉, as a function of m = |j − k|, (A11)

which similarly reduces to the mth power of

c2(T ) = r2(T )

p(T )
, (A12a)

r2(T ) =
∫ +1

−1
P2(s) exp(−βF (s))ds, n = 3. (A12b)

In the large-N limit, the corresponding susceptibility reads

χ2 = β
1 + c2

1 − c2
. (A13)

Notice that the continuity of F (τ ) implies convergence and
regularity of q(T ); moreover, the definitions entail |c1(T )| < 1
or |c2(T )| < 1 at all finite temperatures, thus leading to the
well-known results related to the absence of phase transitions
at all finite temperatures, orientational disorder in the ther-
modynamic limit at all finite temperatures, and exponential
decay with distance for the absolute value of the correlation
functions. Actually, these results may also hold under weaker
conditions on F (τ ).

There also exist in the literature a few lattice spin models in-
volving mild integrable singularities, i.e., defined by bounded
and generally continuous functions of the scalar products,
which still allow usage of the method outlined here when
D = 1. One such case is the sign or step model [77–83],
defined by

F (τ ) = ± sign(τ ). (A14)

The model was solved exactly for D = 1 and n � 2 [79], and
was proven to remain orientationally disordered even at T = 0,
where calculations in Ref. [79] yield for the ferromagnetic case

G1(1) = 1√
π

�(n/2)

�((n + 1)/2)
. (A15)

For D = n = 2 there is consistent evidence of orientational
disorder at all temperatures, as well as of the existence of a
BKT transition [81–83].

We notice in passing that other extensions of Eq. (A14) can
be envisaged, e.g.,

F (τ ) = ±sign(PJ (τ )), n = 3, (A16)

where, say, J = 2,3,4; when D = 1, the resulting partition
functions can be worked out in closed form as well.

The effect of divergences in F (τ ) was seldom investigated,
and we consider here some extensions of Eqs. (3a) and (3b),
in addition to Eq. (3c),

VI (τ ) = − ln(1 + Iτ ), n = 2, (A17a)

WI (τ ) = − ln(1 + Iτ ), n = 3, (A17b)

where I = ±1 defines the ferro- or antiferromagnetic character
of the interaction. Both VI (τ ) and WI (τ ) attain their minimum
when τ = I and slowly diverge to +∞ as τ → −I ; X(τ )
attains its minima when τ = ±1 and slowly diverges to
+∞ as τ → 0. The above functions are bounded from

below, continuous almost everywhere, and possess integrable
singularities; moreover, their functional forms turn out to
be computationally convenient for D = 1. Two other related
models can be defined as well, by combining ferro- and
antiferromagnetic cases of VI (τ ) with equal positive weights,
and similarly for WI (τ ). In formulas:

A2(τ ) = − ln(2(1 − τ 2)), n = 2, (A18a)

A3(τ ) = − ln(1 − τ 2), n = 3, (A18b)

both A2(τ ) and A3(τ ) are even functions of their argument,
attaining their minimum for τ = 0 and diverging to +∞ for
|τ | → +1; the letter A in the names recalls their antinematic
character. Actually, further generalizations of the VI models
are possible; i.e.,

VI,K (τ ) = − ln(1 + I cos(K	jk)), n = 2, (A19)

where K is an arbitrary, strictly positive, integer, and VI,1 =
VI . By now it has been known for some time that interaction
models only differing in the value of K produce the same par-
tition functions, and that the resulting orientational properties
can be defined in a way independent of K [21,84,85]; for more
details see Appendix B. A few specific cases are listed here:

V+1,1(τ ) = − ln(1 + cos(	jk)), (A20a)

V−1,1(τ ) = − ln(1 − cos(	jk)), (A20b)

V+1,2(τ ) = − ln(1 + cos(2	jk)), (A20c)

V−1,2(τ ) = − ln(1 − cos(2	jk)). (A20d)

The standard trigonometric identity

cos(2x) = 2 cos2 x − 1

entails that

V+1,2(τ ) = − ln(2 cos2 	jk), (A20e)

V−1,2(τ ) = − ln(2 sin2 	jk). (A20f)

One recognizes that V+1,2 defines the two-component counter-
part of the X model, and that V−1,2 essentially coincides with
A2.

The above models can be solved explicitly, as worked out in
the following: notice also that some qualitative results can be
obtained in a more direct and elementary way, e.g., for VI,1(τ ),

p(T ) =
∫ 2π

0
(1 + I cos s)βds

=
∫ +π/2

−π/2
[(1 + cos s)β + (1 − cos s)β]ds, (A21a)

and, for the correlation function,

r1(T ) =
∫ 2π

0
cos s(1 + I cos s)βds

= I

∫ +π/2

−π/2
cos s[(1 + cos s)β − (1 − cos s)β]ds.

(A21b)
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Since |cos s| � 1, the above equations entail |c1(T )| < 1
at all finite temperatures. A similar approach can be used for
WI (τ ), i.e.

p(T ) =
∫ +1

−1
(1 + Is)βds

=
∫ +1

0
[(1 + s)β + (1 − s)β]ds, (A22a)

and, for the correlation function,

r1(T ) =
∫ +1

−1
s(1 + Is)βds

= I

∫ +1

0
s[(1 + s)β − (1 − s)β]ds. (A22b)

Since |s| � 1, the above equations entail |c1(T )| < 1 at all
finite temperatures.

Notice that, for each of the two functional forms (A17a)
or (A17b), and in the absence of an external field, the two
possible choices for I define models producing the same parti-
tion functions and correlation functions related by appropriate
numerical factors (equivalent by spin-flip symmetry).

The above models can be solved explicitly in terms of
known special functions with well-defined analytic properties,
and some of them yield results involving the functions gamma,

�(z) =
∫ +∞

0
sz−1 exp(−s)ds,

beta,

B(x,y) = B(y,x) = �(x)�(y)

�(x + y)
,

and polygamma,

�(l,z) = dl+1

dzl+1
ln �(z).

Here x,y,z are complex variables with Re(x) > 0,Re(y) > 0,

Re(z) > 0, and l denotes a non-negative integer [86,87]; let us
also recall that �( 1

2 ) = √
π .

The above properties of V models read

p(T ) = 2β

∫ 2π

0
(cos2 s)βds

= 2β

∫ 2π

0
(sin2 s)βds

= 2
√

π2β
�

(
β + 1

2

)
�(β + 1)

, (A23a)

q(T ) =
√

π

π
2β

�
(
β + 1

2

)
�(β + 1)

. (A23b)

The configurational specific heat (in units kB per particle) can
be obtained via the appropriate derivatives of the partition

function and reads

C∗ = 1

T 2

[
�

(
1,

1

T
+ 1

2

)
− �

(
1,

1

T

)]
+ 1. (A23c)

For V+1,2

c2(T ) = β

β + 1
, (A23d)

and in general for VI,K

cK (T ) = I
β

β + 1
. (A23e)

Notice that c2 for V+1,2 is the same as c1 for V+1,1.
The corresponding results for WI (τ ) are

q(T ) = 2β

β + 1
, (A24a)

C∗ = 1

1 + T 2
, (A24b)

c1(T ) = I
β

β + 2
. (A24c)

For X(τ ) one finds

p(T ) = 2

β + 1
, (A25a)

C∗ = 1

1 + T 2
. (A25b)

X(τ ) is an even function of its argument, and the previous
Eqs. (A12a) and (A12b) specialize to

c2(T ) = r2(T )

p(T )
, (A25c)

r2(T ) =
∫ +1

−1
P2(s)|s|βds, (A25d)

and eventually

q(T ) = 1

β + 1
, (A25e)

c2(T ) = β

β + 3
. (A25f)

Notice also that both WI (τ ) and X(τ ) yield the same
expression for the configurational contribution to the specific
heat per particle [Eqs. (A24b) and (A25b)] and produce rather
similar expressions for c1 [Eq. (A24c)] and c2 [Eq. (A25f)],
respectively. As for the four V models in Eqs. (A20), let us
recall that models with the same I and different K produce the
same partition functions, and their orientational properties can
be defined in a way independent of K , i.e., Gm(r) for VI,1 is
the same as G2m(r) for VI,2 [21,84,85]. On the other hand, the
above calculations also show that V+1,1 and V−1,1 produce the
same partition functions and correlation functions connected
by appropriate sign factors; thus, the four named interaction
models [Eqs. (A20)] produce one and the same partition
function, and essentially the same orientational properties.
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The corresponding properties for model A3 can be obtained
in closed form as well:

q(T ) =
√

π

2π

�(β + 1)

�
(
β + 3

2

) , (A26a)

C∗ = 1

T 2

[
�

(
1,1 + 1

T

)
− �

(
1,

3

2
+ 1

T

)]
, (A26b)

c2(T ) = − β

2β + 3
. (A26c)

Notice that one can combine the potential models X and A3 to
define

Y (τ ) = − ln[τ 2(1 − τ 2)], n = 3. (A27)

In this case the interaction diverges to +∞ when τ = 0
and |τ | = 1; on the other hand, by standard trigonometric
identities, one can recognize that the n = 2 counterpart
corresponds to V−1,4 within numerical factors. The partition
function of model Y is

q(T ) =
√

π

2
4−β �(2β + 1)

�
(
2β + 3

2

) , (A28a)

and the corresponding quantities are given by

C∗ = 4

T 2

[
�

(
1,1 + 2

T

)
− �

(
1,

3

2
+ 2

T

)]
, (A28b)

c2(T ) = 1

4 + 3T
. (A28c)

In all of the above cases, C∗ was found to be a monotonic
decreasing function of temperature, in contrast to the regular
counterparts, Eqs. (4a) and (4c), which produce a maximum of
C∗(T ); on the other hand, Eq. (4b) also produces a monotonic
decreasing behavior for C∗(T ).

In the main text we are simply referring to V+1,1 as a V

model, and to W+1 as a W model. For D = 1, the named
models produce no phase transition and no orientational order
at finite temperatures in the thermodynamic limit; actually,
some nonintegrable singularities in F (τ ) can produce the same
qualitative behavior as well. This happens, for example, with
constrained models, defined as follows: let s0 denote a real
number, 0 < s0 < π,τ0 = cos s0, and let [9,88–90]

F (τ ) =
{

f (τ ), +1 � τ > τ0

+∞, −1 � τ < τ0,
(A29)

where f (τ ) denotes some regular function of its argument
(see also below). In other words, the absolute value of the
angle between the two interacting unit vectors, defined modulo
2π , is constrained to remain below the threshold s0. Upon
following the previous line of thought and applying Eqs. (A2)
to Eq. (A8b), one can recognize that, when D = 1, functional
forms like Eq. (A29) also produce no phase transition and no
orientational order at finite temperatures in the thermodynamic
limit. Models defined by Eq. (A29) and D = n = 2 have also
been addressed: for f (τ ) = −τ , it was proven that, when s0 is
sufficiently small, the correlation function G1(r) never decays
exponentially with distance but obeys an inverse-square lower
bound at all temperatures [9,88,89]; on the other hand, when
f (τ ) = 0 [90], the system is athermal, and there is simulation
evidence of a BKT transition with s0 as a control parameter.

APPENDIX B: MAPPING BETWEEN
POTENTIAL MODELS

Consider the integral

ψ =
∫ 2π

0
�(cos s, sin s)ds, (B1)

where � denotes a sufficiently regular function, and let

�K =
∫ 2π

0
�(cos Ks, sin Ks)ds, (B2)

where K is an arbitrary nonzero integer, and �1 = ψ ; one can
immediately verify that

∀K ∈ Z \ {0}, �K = ψ. (B3)

Consider now

� =
∫ 2π

0
exp(±iμs)�(cos Ks, sin Ks)ds, (B4)

where μ > 1 denotes an arbitrary positive integer, and recall
the identity

j=μ∑
j=1

exp

(
±2πi

j

μ

)
= 0, μ > 1. (B5)

Thus, the value of � in Eq. (B4) is zero when μ is not an integer
multiple of K; on the other hand, when μ is an integer multiple
of K , say μ = λK , the value of � is again independent of K .
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[16] J. Fröhlich and D. Ueltschi, J. Math. Phys. 56, 053302 (2015).
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