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Slow approach to steady motion of a concave body in a free-molecular gas
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A body in a free-molecular gas accelerated by a constant external force is considered on the basis of kinetic
theory. The body is an infinitely long rectangular hollow column with one face removed, and thus it has a squarish
U-shaped cross section. The concave part of the body points toward the direction of motion, and thus the gas
molecules may be trapped in the concavity. Gas molecules undergo diffuse reflection on a base part, whereas
specular reflection on two lateral parts. It is numerically shown that the velocity of the body approaches a terminal
velocity, for which a drag force exerted by the gas counterbalances the external force, in such a way that their
difference decreases in proportion to the inverse square of time for a large time. This rate of approach is slower
than the known rate proportional to the inverse cube of time in the case of a body without concavity [Aoki
et al., Phys. Rev. E 80, 016309 (2009)]. Based on the detailed investigation on the velocity distribution function
of gas molecules impinging on the body, it is clarified that the concavity prevents some molecules from escaping
to infinity. This trapping enhances the effect of recollision between the body and the gas molecules, which is the
cause of the inverse power laws, and thus leads to the slower approach.
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I. INTRODUCTION

Free motion of a body in a fluid has been of interest in
fluid mechanics as well as in statistical mechanics. In the
former case, the fluid is treated as a continuum and thus only
macroscopic variables are involved. On the other hand, in the
latter case, the fluid is a collection of molecules. In either
treatment, when the body moves in a time-dependent manner,
the history of the motion may influence the motion in the future
and thus a long-time behavior. However, a time-dependent drag
on the body exerted by the fluid may have different features
between the two treatments. In the present paper, we are
interested in the role of the history effect on the time-dependent
behavior of the body, especially when we apply the latter
treatment and the body has a concave part.

Before getting to the main point, let us introduce the familiar
example of a motion with a history effect: the rectilinear
motion of a sphere immersed in a Stokes fluid (incompressible
viscous fluid without nonlinear term). Such a motion can
be described by the Basset-Boussinesq-Oseen equation that
contains the history integral (e.g., Refs. [1,2]; cf. Ref. [3] for a
more general case with a nonuniform flow field). Suppose that
a constant external force acts on the sphere. As time goes on,
the velocity V of the sphere approaches its terminal velocity
V∞ for which the drag acting on the sphere counterbalances
the external force. It is shown in Ref. [4] that the difference
|V∞ − V| decreases in proportion to t

−1/2
∗ for large t∗ (i.e.,

the rate of approach is t
−1/2
∗ ), where t∗ is the time variable.

In contrast, if the history effect is neglected, the rate is
exponentially fast in time. In order to know the response of
a body in a fluid to an external force, the correct description
of the history effect may be necessary. The importance of the
history effect in a viscous flow is studied numerically [5,6] or
experimentally [7] (see also references therein).

When a fluid is treated as a collection of molecules, the
history effect appears in a different manner. By the use of
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kinetic theory (e.g., Refs. [8,9]), the long-time behavior of a
body immersed in a rarefied gas under an external force has
been studied in the literature, both mathematically [10–17] and
numerically [18–22] (see also the monograph [23]). Most of
these studies are devoted to the case of a free-molecular gas,
that is, the gas is so rarefied that intermolecular collisions may
be neglected. Let us introduce one of the results for a free-
molecular gas [10]: the rectilinear motion of a d dimensional
disk in its perpendicular direction. Note that the body is an
infinite plate for d = 1 and an infinitely long plate with a finite
width for d = 2. Moreover, the interaction between the body
and the gas molecules is assumed to be specular reflection,
and the gas is set to an equilibrium at an initial time. The disk
is accelerated by a constant external force and approaches the
steady motion with a terminal velocity as time goes on, as in
the above-mentioned example of the sphere in a Stokes fluid;
however, now the rate is proportional to t−d−2

∗ for large t∗ [10].
The inverse power law with an integer exponent is attributed to
a recollision, which is the collision between the body and the
molecule that has already collided with the body in the past.
Recollision is the history effect peculiar to a highly rarefied
gas. This mathematical result is extended to the cases with
the different type of an external force [11], a general convex
body [12] (convex toward a gas domain), different boundary
conditions [13,16,17], an elastic body [14], and a body with
a concave part [15]. For the physical background of these
studies, the readers are referred to the monograph [23]. Some
other related studies are presented as follows. The history
effects on the motion of a particle weakly coupled to a dense
ideal Bose gas is studied in Ref. [24], and the motion of a
particle interacting with surrounding particles via short-range
potential is in Ref. [25] (see also references therein).

The numerical studies are also carried out using dif-
fuse reflection as the interaction between a body and gas
molecules [18–22] in order to complement (and extend) the
mathematical works [10–13] and to make the results visible
things. The motivation of the numerical works is the following.
First, the mathematical results are based on the assumption
that the difference between an initial velocity and a terminal
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velocity is sufficiently smaller than a thermal speed at an
initial equilibrium. This assumption is imposed solely by
a technical issue and not by a physical situation. Second,
the mathematical estimates cannot give the full solution
to the present problem. Therefore, the detailed information of
the solution, e.g., the velocity distribution function, is missing.
Finally, the numerical works are able to treat the cases that
are difficult for mathematical analysis (e.g., the case of many
oscillations under an external elastic force [19], the case of
a gas with a special interaction with background [20], and
the case of a collisional gas [21,22]). In the present paper,
we try to complement the mathematical result of a two- or
three-dimentional concave body with specular reflection [15],
in which the rate of approach is proved to be proportional to
t−3
∗ under the above-mentioned smallness assumption. This

is slower than the rate for a convex body t−4
∗ for d = 2 (or

t−5
∗ for d = 3) [10] and is independent of d. We apply the

diffuse-reflection condition for the part of the concave body
and give the corresponding numerical evidence of the slower
approach, without the smallness assumption. The dependence
of the rate on the degree of concavity (H in Sec. II A) is
systematically investigated. Moreover, we visualize the effect
of recollision at the level of a velocity distribution function in
order to explain the physical origin of the slower rate. Let us
close this section by noting that for diffuse reflection, the rate
is t−d−1

∗ for a convex body [13,16–18].

II. FORMULATION

A. Description of the problem

Let us consider a concave body in an infinite expanse of an
ideal monatomic gas. The body is an infinitely long rectangular
hollow column with one face removed, and thus it has a
squarish U-shaped cross section (Fig. 1). More specifically, the
concave body consists of three infinite plates: a base plate of
width L and two lateral plates of width H , where the thickness
δ of the plates are neglected, i.e., δ → 0. Each lateral plate

Base plate

Lateral plate 2 

Lateral plate 1

Direction of the external force

FIG. 1. A concave body considered in Ref. [15] and in the
present problem. The case of H → 0 corresponds to the previous
studies [10,11,13,16–18,20].

is connected to, respectively, the both sides of the base plate
in such a way that the angles between the lateral and the
base plates are orthogonal (Fig. 1). We introduce the Cartesian
coordinates X = (X1,X2,X3) in space. The concavity of the
body points the positive X1 direction as described in Fig. 1.
The position of the body X1 = XB(t∗) is defined as the position
of the base plate. Then we define the faces of plates as follows
(Fig. 1):

S±
B (t∗) = {X1 = XB(t∗) ± 0, X2 ∈ [−L/2,L/2],

X3 ∈ R}, (1a)

S±
L1(t∗) = {X1 ∈ [XB(t∗),XB(t∗) + H ], X2 = L/2 ∓ 0,

X3 ∈ R}, (1b)

S±
L2(t∗) = {X1 ∈ [XB(t∗),XB(t∗) + H ], X2 = −L/2 ± 0,

X3 ∈ R}, (1c)

where we name the lateral plates at X2 = L/2 and X2 = −L/2
as plate 1 and plate 2, respectively. In Eq. (1) and what follows,
upper and lower signs go together. The body is subject to
an external force M∗F∗ and a drag force G∗ exerted by the
surrounding gas, where M∗ is the mass of the body. The drag
G∗ and the mass M∗ are the quantities per unit length in the
X3 direction, and we will introduce the equation of motion per
unit length later. The motion of the concave body is restricted
to the translation in the X1 direction, i.e., the rotation of the
body and the translation in the other directions Xj (j = 2, 3)
are not considered.

The gas and the body is in an equilibrium at an initial
time t∗ = 0. To be more specific, the gas is initially set to a
uniform thermal equilibrium at rest with a density ρ0 and a
temperature T0. Moreover, the body is kept at a uniform and
constant temperature T0. Under these settings, the body sets
in motion induced by the external force at t∗ = 0. As time
proceeds, the velocity VB(t∗) of the body (in the X1 direction)
approaches a terminal velocity VB∞ ≡ limt∗→∞ VB(t∗) so that
the drag force exerted by the gas counterbalances the external
force. We study the approach of VB to VB∞ under the following
assumptions:

(1) The gas is so rarefied that the interaction between
the gas molecules are neglected. Such a gas is called a
free-molecular gas (or, equivalently, a Knudsen gas) [8,9]. The
behavior of the gas is described by the free transport equation
of the molecular velocity distribution function, namely the
Boltzmann equation without the collision term.

(2) The velocities of molecules reflected on S±
B are dis-

tributed according to a Maxwellian distribution characterized
by the temperature and the velocity of the body, where
the density is determined in such a way that there is no
net mass flux across S±

B . That is, we impose the so-called
diffuse-reflection boundary condition on S±

B [9].
(3) The gas molecules are reflected specularly on S±

L1 and
S±

L2, that is, only the normal component to the boundary is
inverted through the collision. Thus, the collisions between a
gas molecule and S±

Lj (j = 1, 2) do not contribute to the drag
force.

(4) The velocity VB is the monotonically increasing func-
tion of t∗. This is expected to be true as long as VB(t∗ = 0) <

VB∞ ([11,17,18]).
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(5) The physical quantities are uniform in the X3 direction.
Before we describe basic equations, let us summarize

(and repeat) the notations used in the present paper: t∗ is
the time variable; X is the Cartesian coordinates in space;
ξ = (ξ1,ξ2,ξ3) is the molecular velocity; XB(t∗) is the position
(in the X1 direction) of the base plate; VB(t∗) is the velocity (in
the X1 direction) of the body; VB0 and VB∞ are, respectively,
the initial and the terminal velocities; f∗(X1,X2,ξ ,t∗) is the
molecular velocity distribution function; F∗ is the constant
external force per unit mass; G∗ is the drag force; M∗ is the
mass of the body (G∗ and M∗ are defined for unit length in the
X3 direction); and H is the width of the lateral plates. Then
we introduce the following dimensionless counterparts:

t = t∗/t0, x = X/L, ζ = ξ/ξ0,

xB(t) = XB(t∗)/L, vB(t) = VB(t∗)/ξ0,

vB0 = VB0/ξ0, vB∞ = VB∞/ξ0,
(2)

f (x,ζ ,t) = f∗(X∗,ξ ∗,t∗)/
(
ρ0ξ

−3
0

)
,

F = F∗/
(
Lt−2

0

)
, G = G∗/

(
ρ0L

3t−2
0

)
,

M = M∗/(ρ0L
2), h = H/L,

where ρ0 is the reference density of the gas, T0 is the reference
temperature of the gas (and is equal to the temperature of the
body), L is the width of the base plate, ξ0 = (2R0T0)1/2 is
the reference speed (R0 is the specific gas constant), and t0 =
L/ξ0 is the reference time. We further introduce the marginal
velocity distribution function g as

g(x1,x2,ζ1,ζ2,t) =
∫
R

f (x1,x2,ζ ,t)dζ3. (3)

B. Basic equations

The free transport equation that describes the behavior of
the gas is written as

∂g

∂t
+ ζ1

∂g

∂x1
+ ζ2

∂g

∂x2
= 0, (4)

and the initial condition is

g = E(ζ ) at t = 0, (5)

where E(ζ ) is the equilibrium:

E(ζ ) = π−1 exp(−ζ 2), ζ = (
ζ 2

1 + ζ 2
2

)1/2
. (6)

The faces of the plates in the dimensionless form without the
irrelevant x3 component are

S±
B (t) = {x1 = xB(t) ± 0, x2 ∈ [−1/2,1/2]}, (7a)

S±
L1(t) = {x1 ∈ [xB(t),xB(t) + h], x2 = 1/2 ∓ 0}, (7b)

S±
L2(t) = {x1 ∈ [xB(t),xB(t) + h], x2 = −1/2 ± 0}. (7c)

The boundary condition on the base plate is written as

g=gB±(x2,ζ1,ζ2,t) at (x1,x2)∈S±
B (t) for ζ1 ≷vB(t),

(8)

where

gB± = π−1σ±(x2,t) exp
( − [ζ1 − vB(t)]2 − ζ 2

2

)
, (9a)

σ±(x2,t) = ∓2π1/2
∫

ζ1≶vB (t)
[ζ1 − vB(t)]g(x1,x2,ζ1,ζ2,t)

× dζ1dζ2, [(x1,x2) ∈ S±
B (t)]. (9b)

The boundary conditions on the lateral plates 1 and 2 are,
respectively,

g(x1,x2,ζ1,ζ2,t) = g(x1,x2,ζ1,−ζ2,t) at (x1,x2) ∈ S±
L1

for ζ2 ≶ 0, (10a)

g(x1,x2,ζ1,ζ2,t) = g(x1,x2,ζ1,−ζ2,t) at (x1,x2) ∈ S±
L2

for ζ2 ≷ 0. (10b)

The position xB(t) and the velocity vB(t) of the body
contained in Eqs. (4)–(10) are coupled with the equation of
motion,

d

dt

[
xB(t)
vB(t)

]
=

[
vB(t)

F − 1
M

G

]
,

[
xB(0)
vB(0)

]
=

[
0

vB0

]
. (11)

The initial position can be set to zero without the loss of
generality. The initial velocity vB0 is set to zero in the present
paper since it was numerically shown in Ref. [18], where the
body is convex, that the value of vB0 does not affect the overall
behavior as long as vB0 < vB∞. As stated in Sec. II A, we
treat only the case of vB0 < vB∞ in the present paper. The
drag force G is determined through the velocity distribution
function at (x1,x2) ∈ S±

B as

G = G+ + G−, (12a)

G± = ±
∫ 1/2

−1/2

{∫∫
ζ1≶vB (t)

[ζ1−vB(t)]2g(xB(t) ± 0,x2,ζ1,ζ2,t)

× dζ1dζ2 +
∫∫

ζ1≷vB (t)
[ζ1 − vB(t)]2

× gB±(x2,ζ1,ζ2,t)dζ1dζ2

}
dx2. (12b)

The first term in the right-hand side of Eq. (12b) is the
contribution from the molecules that impinge on S±

B and the
second term is the contribution from those reflected by S±

B .
The velocity distribution of reflected molecules are determined
by the use of Eq. (9).

Equations (4)–(10) for the gas and Eqs. (11) and (12) are
the coupled system. To be more precise, it is a free boundary
problem of the kinetic equation in two dimension for both
space variables and molecular velocity variables. Moreover,
we are interested in the long-time behavior. Such a class of
the problem is difficult to solve in general, even without the
collision term, for the following reasons:

(i) The unknown function g has five independent variables
(x1,x2,ζ1,ζ2,t).

(ii) The numerical solution needs to be extremely accurate
to observe the rate of approach, since we treat the long-time
behavior of the vanishing quantity |vB∞ − vB(t)|.

(iii) The velocity distribution function localizes in the
velocity space for moving boundary problems [21,22]. For this
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Time Time

Type (i)

Type (ii)

times collisions with lateral plates

Recollision

FIG. 2. Schematic description of 	 = 	1 × 	2. Solid zigzag curve [type (i)] is the molecular path of the molecule that collides with the
base plate at time tb and time t (recollision). Dashed zigzag curve [type (ii)] is the molecular path of the molecule coming from the initial
condition, i.e., tb = 0.

reason, a standard finite-difference method or a finite-volume
method loses the accuracy.

In addition to the above-mentioned known difficulties,
the velocity distribution function is a piecewise continuous
function in ζ2 space as will be seen in Sec. V A 1. It is
necessary for the accurate computation to capture the detailed
structure of such velocity distribution function. Therefore,
we solve the system Eqs. (4)–(11), extending the numerical
method developed in the previous studies [18–21]. The method
resolves all the difficulties mentioned above.

III. PRELIMINARY FOR THE NUMERICAL ANALYSIS

In order to solve the equation of motion (11), we need
the drag (12). The velocity distribution function gB± in the
second term of the right-hand side of (12b) is given by Eq. (9).
Therefore, we notice that the velocity distribution function

g(x1,x2,ζ1,ζ2,t) at (x1,x2) ∈ S±
B (t) for ζ1 ≶ vB(t),

ζ2 ∈ R, (13)

included in Eq. (9b) and the first term in the right-hand side
of Eq. (12b) is all we have to compute to obtain the drag.
We note that Eq. (13) is the velocity distribution function on
the base plate with the impinging molecular velocities. First,
we describe the method to compute σ+ (9b) in Sec. III A and
later σ− and G± in Sec. III B.

A. Transformation of σ+

The velocity distribution function is a constant along its
characteristic curve, which is a trajectory of a molecule. In
fact, a solution to Eq. (4) may be written as

g(x1,x2,ζ1,ζ2,t) = g
(
xb

1 ,x̃2,ζ1,(−1)ñζ2,t
b
)
, (14a)

xb
1 = x1 − ζ1(t − tb), (14b)

where tb ∈ [0,t] and (xb
1 ,x̃2) are a time and a point at which

the characteristic curve originates, and ñ is the number of
collisions between the lateral plates and the molecule. We call
tb the backward exit time. The expressions for tb, x̃2, and ñ will
be specified in Secs. III A 1 and III A 2. If we trace a molecular
path back in time, we reach either (i) the base plate at time

tb or (ii) the initial time, i.e., tb = 0 [see Fig. 2 in the case
of (x1,x2) ∈ S+

B (t)]. In the latter case we immediately obtain
g = E [cf. Eq. (5)]. In contrast to the previous studies [18–21],
the molecule may hit the lateral plates ñ(�0) times along
the way. In such a case, we change the molecular velocity
according to the specular reflection (10). When the molecule
classified in type (i) collides with the base plate at a future
time t(>tb), we say that the molecule recollides with the body
(see Fig. 2). Let us introduce the set 	1 and 	2 so that the
molecular velocity of the recolliding molecule is expressed as
ζ1 ∈ 	1 and ζ2 ∈ 	2 [or (ζ1,ζ2) ∈ 	 = 	1 × 	2]. By the use
of 	1 and 	2, the quantity σ+ (9b) is rewritten as

− σ+
2π1/2

=
∫ ∞

−∞

∫ vB

−∞
[ζ1 − vB(t)]E(ζ )dζ1dζ2

+
∫

ζ1∈	1

∫
ζ2∈	2

[ζ1 − vB(t)]

× [gB+(x̃2,ζ1,(−1)ñζ2,t
b) − E(ζ )]dζ2dζ1.

(15)

The first term in the right-hand side is the quantity σ+ obtained
by neglecting the recollision, that is, by substituting g = E

into Eq. (9b). This term is explicitly computed in the last
paragraph of Sec. III B. The second term is the correction
by the recollision of molecules, whose molecular velocity is
included in the set 	. In the argument of gB+ in Eq. (15), x̃2

is the position of the molecule at time tb. In other words, the
second term is the contribution of the molecules that leave a
point (xB(tb),x̃2) ∈ S+

B (tb) at a time tb and impinge a point
(x1,x2) ∈ S+

B (tb) at a time t (Fig. 2). We specify tb, x̃2, ñ, 	1,
and 	2 in the following.

1. Expressions of �1 and tb

We describe the trajectory of the base plate in Fig. 3(a) in
(x1,t) plane. When the velocity of the body is monotonically
increasing in time, the trajectory [the bold curve in Fig. 3(a)]
is always convex upward. For a molecule to make recollision
at time t , the necessary condition is

ζ1 ∈ 	1 = {w(t) < ζ1 < vB(t)}, w(t) = xB(t)

t
. (16)
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Molecular path 
with 

Trajectory of 
the base plate

)b()a(

Molecular path 
with 

times collisions

(c)

Molecular path 
with 

time

Ex.

Trajectory of 
the base plate

Trajectory of the tip

FIG. 3. Schematic diagrams for the definitions of (a) tb and 	1; (b) x̃2; and (c) 	̄1, τ , and τ±.

The backward exit time tb is defined as

tb = { ∃ t̂ ∈ [0,t]|xB(t) − ζ1(t − t̂) = xB(t̂)}. (17)

2. Expressions of ñ and x̃2

In Fig. 3(b), we describe the schematic motion of the body in
the (x1,x2) plane. The molecule makes recollision if (ζ1,ζ2) ∈
	. It collides with the lateral plates ñ times, where ñ is given
by

ñ = ∓⌊
x2 − ζ2(t − tb) + 1

2

⌋
for ζ2 ≷ 0. (18)

Here 	X
 is a floor function and takes the largest inte-
ger smaller than X. Using Eq. (18), the position x̃2 is
given by

x̃2 = (−1)ñ[x2 − ζ2(t − tb) ± ñ] for ζ2 ≷ 0. (19)

3. Expression of �2

We consider only the case of a positive ζ2, since the case
of a negative ζ2 can be treated in the same manner. First, we
note that 	2 is the function of ζ1, and we divide 	1 into two
parts as follows:

	1 = 	̄1 ∪ 	∞
1 , 	̄1 = [w(t),vB(τ )), 	∞

1 = [vB(τ ),vB(t)],

(20)

where a time τ is defined as

τ = { ∃τ̂ ∈ [0,t]|xB(t) − vB(τ̂ )(t − τ̂ ) = xB(τ̂ ) + h,

w(t) < vB(τ̂ )}. (21)

The schematic diagram for the definitions of 	̄1, 	∞
1 , and τ

are described in Fig. 3(c). The dash-dot curve in Fig. 3(c) is
the trajectory of the tip, i.e., the right end of lateral plates (cf.
Fig. 1). The molecules having the velocity in 	∞

1 never go
outside of the concavity, since their x1 components are always
included in [xB,xB + h]. On the other hand, the molecules
having the velocity in 	̄1 stay outside of the body during the
time interval Iout = [τ−,τ+], where

τ− = min{ ∃τ̂ ∈ [0,t]|xB(t) − ζ1(t − τ̂ ) = xB(τ̂ ) + h,

ζ1 ∈ 	̄1}, (22a)

τ+ = max{ ∃τ̂ ∈ [0,t]|xB(t) − ζ1(t − τ̂ ) = xB(τ̂ ) + h,

ζ1 ∈ 	̄1}. (22b)

If such a molecule translates in the x2 direction and |x2| > 1/2
is satisfied during the time interval Iout, the molecule cannot
recollide with the body in a future time regardless of ζ1. That is,
the molecular velocity for such a molecule should be excluded
from 	2. Let us denote by tk (t1 > t2 > · · · > tk > · · · > tñ)
the instants that a molecule hits the lateral plates [cf. Fig. 3(b)]:

tk = t − x2 + (2k − 1)/2

ζ2
for ζ2 > 0. (23)

Then, for a molecule to recollide, all tk must be outside of the
interval Iout. Summarizing the above discussion, we have

	2 =
{
R for ζ1 ∈ 	∞

1 ,

	̄2 = {tk ∈ [tb,τ−] ∪ [τ+,t], ∀k = 1, . . . ,ñ} for ζ1 ∈ 	̄1.
(24)

Since it is not possible to have an explicit expression for 	̄2,
we compute 	̄2 numerically. A recipe is shown in Appendix A,
and we only give some comments in this section.

The set 	̄2 turns out to be a series of discrete finite segments,
and thus any function on 	̄2 is piecewise continuous with finite
supports. It is necessary to capture its shape in order for the

accurate numerical integration of, e.g., Eq. (15). For a given
set of F and h, there may not exist τ [Eq. (21)] for some t .
In such a time t , we set 	2 = R. If this is true for all t under
concern (e.g., the case of h → ∞), the problem is reduced to
the case of an infinite plate as the body (see the case of d = 1
in Ref. [18]).
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B. Transformation of σ− and G±

In the present problem, the trajectory of the body is convex upward in (x1,t) space as shown in Fig. 3(a). The recollision on
the back of the body S−

B never happens in such a case. Therefore, we can substitute g = E into Eq. (9b) to obtain

σ− = 2π1/2
∫ ∞

−∞

∫ ∞

vB (t)
[ζ1 − vB(t)]E(ζ )dζ1dζ2. (25)

The first term of the drag force (12b) has a form similar to σ±, and thus it follows by the same argument in Sec. III A that

G+ =
∫ 1/2

−1/2

{ ∫ ∞

−∞

∫ vB

−∞
[ζ1 − vB(t)]2E(ζ )dζ1dζ2 +

∫
ζ1∈	1

∫
ζ2∈	2

[ζ1 − vB(t)]2[gB+(x̃2,ζ1,(−1)ñζ2,t
b) − E(ζ )]dζ2dζ1

+
∫ ∞

−∞

∫ ∞

vB

[ζ1 − vB(t)]2gB+(x2,ζ1,ζ2,t)dζ1dζ2

}
dx2, (26a)

G− = −
∫ 1/2

−1/2

{ ∫ ∞

−∞

∫ ∞

vB

[ζ1 − vB(t)]2E(ζ )dζ1dζ2 +
∫ ∞

−∞

∫ vB

−∞
[ζ1 − vB(t)]2gB−(x2,ζ1,ζ2,t)dζ1dζ2

}
dx2. (26b)

Some integrals included in Eqs. (15), (25), and (26) can be explicitly carried out. The integral in the first term of Eqs. (15)
and (25) is ∫∫

ζ1≶vB

(ζ1 − vB)Edζ1dζ2 = −1

2

[
vB ± e−v2

B√
π

± vBerf(vB)

]
, (27)

and that in the first terms of Eqs. (26a) and (26b) is∫∫
ζ1≶vB

(ζ1 − vB)2Edζ1dζ2 = 1

2

(
v2

B + 1

2

)
[1 ± erf(vB)] ± vBe−v2

B

2
√

π
, (28)

where erf(vB) is the error function. Finally, the integral in the last term of Eqs. (26a) and (26b) is∫∫
ζ1≷vB

(ζ1 − vB)2gB±dζ1dζ2 = σ±
4

. (29)

IV. NUMERICAL METHOD

After the preliminary analysis in Sec. III, our problem is reduced to the equation of motion (11) with the drag (26), supplemented
by Eqs. (15), (25), and (27)–(29). This is an ordinary differential equation with a history term [the integrals for (ζ1,ζ2) ∈ 	1 × 	2

in Eqs. (15) and (26a)], that includes the displacement xB and the velocity vB in the past time tb. We denote the history terms by
Hp [cf. Eqs. (15) and (26a)]:

Hp(x2,t) =
∫

	1

Q̄p(x2,ζ1,t)dζ1, (30a)

Q̄p(x2,ζ1,t) =
∫

	2

Qp(x2,ζ1,ζ2,t)dζ2, (30b)

Qp(x2,ζ1,ζ2,t) = [ζ1 − vB(t)]pQ(x2,ζ1,ζ2,t), (30c)

Q(x2,ζ1,ζ2,t) = gB+(x̃2,ζ1,(−1)ñζ2,t
b) − E(ζ ), (30d)

where p = 1 or 2; x̃2 and tb are defined by, respectively, Eqs. (19) and (17). Equation (30d) is the velocity distribution function
of the recolliding molecules minus the velocity distribution function at the equilibrium. Therefore, we call Q the correction by
recollision. The ordinary differential equation with the history term is solved numerically in a standard manner, that is, we apply
the third-order Adams-Bashforth method for Eq. (11) and the trapezoidal approximation for the integrals in the history terms.
However, special care is taken to obtain 	.

A. Discretization

Let us introduce the following discretized independent variables: t (m) = m�t , x
(j )
2 = j�x2, ζ

(k)
1 = L1(k) [cf. Eq. (32)], and

ζ
(l)
2 = L2(l) [cf. Eqs. (33) and (34)], where m is a step number (m = 0,1, . . .), �t is a time step, �x2 = (2Nx2 )−1 is a grid size in

space, and Nx2 is the number of the grid (j = −Nx2 , . . . ,Nx2 ). The grid in the velocity variables, L1 and L2, will be specified in
Sec. IV B. These are defined in such a way that the grid system in (ζ1,ζ2) adopts the range of integral 	 [cf. Eqs. (16) and (24)].
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Note that L1 is dependent on t (m) and L2 is dependent on x
(j )
2 , ζ

(k)
1 , t (m); however, their dependencies are not explicitly shown.

The dependent variables are discretized as x
(m)
B = xB(t (m)), v

(m)
B = vB(t (m)), G

(m)
± = G±(t (m)), and σ

(j,m)
± = σ±(x(j )

2 ,t (m)). Using
the third-order Adams-Bashforth method, the equation of motion (11) is discretized as

x
(m+1)
B = x

(m)
B + �t

2∑
m′=0

W
(m′)
AB v

(m−m′)
B ,

v
(m+1)
B = v

(m)
B + �t

2∑
m′=0

W
(m′)
AB

[
F − 1

M
(G(m−m′)

+ + G
(m−m′)
− )

]
,

for m = 2,3, . . . , (31)

with weights W
(m′)
AB given by W

(0)
AB = 23/12, W (1)

AB = −4/3, and W
(2)
AB = 5/12, where suitable lower-order schemes are applied for

m = 0 and m = 1. The initial conditions are x
(0)
B = 0 and v

(0)
B = 0. Substituting v

(0)
B = 0 into Eqs. (15), (25), and (26), we obtain

σ
(0)
± = 1 and G

(0)
± = ±1/2. In the drag force G

(m)
± , all the terms can be explicitly computed as soon as v

(m)
B is obtained, except for

the history terms: H(j,m)
p = Hp(x(j )

2 ,t (m)), Q̄(j,k,m)
p = Q̄p(x(j )

2 ,ζ
(k)
1 ,t (m)), and Q

(j,k,l,m)
p = Qp(x(j )

2 ,ζ
(k)
1 ,ζ

(l)
2 ,t (m)). The next section,

Sec. IV B, is devoted to describing the computational method for these terms.
The numerical algorithms to obtain tb, τ , and τ±, which are necessary to carry out the computation in Sec. IV B, are described

in Appendix B. Moreover, the functions with these arguments, i.e., the values vB(tb) and σ+(x̃2,t
b), which are not on the grid

points, are linearly interpolated by using neighbor discrete points.

B. Integration of the history term

Let us begin with the integration with respect to ζ1 [Eq. (30a)]. Since the range of integration 	1 [Eq. (20)] is dependent
on t (m), we discretize ζ1 ∈ 	1(t) = 	∞

1 ∪ 	̄1 in the following manner. First, we replace vB(t) and vB(τ ) by, respectively,
v̌B,t = (x(m)

B − x
(m−1)
B )/�t and v̌B,τ [cf. a sentence below Eq. (B4) in Appendix B]. We introduce the minimum grid size

�ζ1 min and the minimum number of grid N1 min and define the total number of grid points for 	̄1 and 	∞
1 , respectively, as

N̄1 = max (� v̌B,τ −w(t (m))
�ζ1 min

�,N1 min) and N∞
1 = max (� v̌B,t−v̌B,τ

�ζ1 min
�,N1 min), where �X� is the ceil function that takes the smallest integer

larger than X. Using these values and N1 = N̄1 + N∞
1 , we determine L1(k) as

L1(k) =
⎧⎨
⎩

w(t (m)) + [v̌B,τ − w(t (m))]
[
1 − (N̄1−k)np

N̄
np

1

]
for k = 0, . . . ,N̄1 − 1,

v̌B,τ − (v̌B,t − v̌B,τ )
(

N̄1−k
N∞

1

)
for k = N̄1, . . . ,N1,

(32)

where np is set to 5 unless otherwise stated. By choosing
larger np, the grid points are accumulated near the veloc-
ity v̌B,τ . Note that np = 1 leads to uniform meshing for
k = 0, . . . ,N̄1 − 1. By the use of Eq. (32), H(j,m)

p is given
by H(j,m)

p = ∑N1
k=0 Q̄

(j,k,m)
p W

(k)
1 , where W

(k)
1 is the weight

determined by a quadrature. We apply a trapezoidal rule as
the quadrature through the present paper.

Next we describe the integration with respect to ζ2

[Eq. (30b)]. Note that 	2 is dependent not only on t (m)

but also on ζ
(k)
1 [cf. Eq. (24)]. For ζ1 ∈ 	∞

1 , i.e., k =
N̄1, . . . ,N1, we have 	2 = R. In such a case, we replace R
by [−Z,Z], where Z is the numerical parameter of truncation.
Introducing the minimum grid size �ζ2 min and the minimum
number of grid N2 min, the number of grid points is N2 =
max (� 2Z

�ζ2 min
�,N2 min), and the grid function L2 is

L2(l) = −Z + 2Z

N2
l, for l = 0, . . . ,N2 and

k = N̄1, . . . ,N1. (33)

Then Q̄
(j,k,m)
p is given by Q̄

(j,k,m)
p = ∑N2

l=0 Q
(j,k,l,m)
p W

(l)
2 for

k = N̄1, . . . ,N1, where W
(l)
2 is the weight determined by a

quadrature.
On the other hand, for ζ1 ∈ 	̄1, i.e., k = 0, . . . ,N̄1 − 1, we

have 	2 = 	̄2. According to the discussion in Appendix A,

the range of integration 	̄2 consists of imax segments. To
be more specific, 	̄2 = ⋃

i=1,...,imax
[ζ (i)

2 min,ζ
(i)
2 max], where ζ

(i)
2 min

and ζ
(i)
2 max are obtained numerically using the recipe in

Appendix A. For each segment, the number of grid points

is N
(i)
2 = max (� ζ

(i)
2 max−ζ

(i)
2 min

�ζ2 min
�,N2 min) and the grid function L2 is

written as

L2(l) = ζ
(i)
2 min +

[
ζ

(i)
2 max − ζ

(i)
2 min

N
(i)
2

]
l, for l = 0, . . . ,N

(i)
2 ,

k = 0, . . . ,N̄1, and i = 1, . . . ,imax. (34)

Then Q̄
(j,k,m)
p is given by Q̄

(j,k,m)
p = ∑imax

i=1[
∑N

(i)
2

l=0

Q
(j,k,l,m)
p W

(l,i)
2 ] for k = 0, . . . ,N̄1 − 1, where W

(l,i)
2 is

the weight determined by a quadrature.
Finally, in Eq. (26a), the spatial integration is also

necessary. This is approximated as
∫ 1/2
−1/2 H2(x2,t)dx2 =∑Nx2

j=−Nx2
H(j,m)

2 W
(j )
x2 , where W (l,i)

x2
is the weight determined

by a quadrature.

V. RESULT

Before presenting numerical results, we describe the param-
eters used in the numerical analysis. The (nondimensional)
mass M is set to M = 1 throughout the paper because the
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computation with M = 1 is identical to that with M = M ′,
t = M ′t ′, and F = F ′/M ′. The external force F and the
terminal velocity vB∞ are related each other as follows. As
time goes to infinity, the velocity approaches the terminal
velocity, for which the drag G/M counterbalances the external
force F . For such a steady motion with the constant velocity
vB∞, the recollision never happens, and thus the drag G can
be explicitly expressed by using Eqs. (26a) with 	1 = 	2 = ∅
and (26b) together with (27)–(29), where σ± is obtained by
Eqs. (15) with 	1 = 	2 = ∅ and (25). Therefore, in the actual
numerical analysis, we set vB∞ rather than F and determine
the corresponding F from these equations.

In the present problem, we are mainly concerned with the
behavior of the difference

vd (t) = |vB∞ − vB(t)|, (35)

which is a monotonically decreasing function of time and
vanishes in the limit of t → ∞. In order to obtain van-
ishingly decreasing vd with great accuracy, it is better to
compute with the quadruple precision. Therefore, the external
force F is also set with quadruple precision, e.g., F =
6.2720710288448953848845480783002 for vB∞ = 2.

As mentioned in Sec. I, vd is expected to be in proportion
to the inverse power of time. In order to examine this behavior
in detail, we introduce the functional α(X ) as

α(X ) = d logX
d log t

for X > 0, (36)

where X is a time-dependent quantity. If α(X ) approaches
a constant as time goes to infinity, e.g., limt→∞ α(X ) → n∗,
we may conclude X ≈ Ctn∗ for sufficiently large t with C a
positive constant.

Numerical parameters are set to

�t = 0.05, Nx2 = 4, �ζ1 min = 0.1, N1 min = 10,

�ζ2 min = 0.1, N2 min = 4, Z = 5, (37)

unless otherwise stated. The error estimate using different
values of numerical parameters are presented in Sec. V C.

A. Contribution of recolliding molecules

1. Velocity distribution function

We first visualize the contribution by recollision at the
level of the velocity distribution function. Let us introduce the
normalized molecular velocity as ζ nor

1 = [ζ1 − w(t)]/[v̌B,t −
w(t)]. Note that ζ nor

1 ∈ [0,1] when ζ1 ∈ 	1. We show in
Fig. 4 the velocity distribution function Q [cf. Eq. (30d)]
versus ζ2(>0) at x2 = 0 for several values of ζ nor

1 ∈ [0,1]
and for (a) t = 0.8, (b) t = 1, . . . , (i) t = 50 in the case
of vB∞ = 2 and h = 0.1. The red curve represents Q with
ζ nor

1 = v̌nor
B,τ ≡ [v̌B,τ − w(t)]/[v̌B,t − w(t)] [cf. Eq. (21) and

Fig. 3(c)]. First, let us focus on Fig. 4(a) at t = 0.8. The
molecule with ζ nor

1 > v̌nor
B,τ is trapped by the concave part

throughout its flight during the previous collision at time tb

and the present collision at time t . In other words, the x1

component of the molecule never exceeds the x1 component of
the tip, i.e., xB + h. The set 	2 for such a molecule isR and the
curves are continuous for ζ nor

1 > v̌nor
B,τ . However, the molecule

with ζ nor
1 < v̌nor

B,τ has a chance to escape from the concave part

during the previous collision at time tb and the present collision
at time t , since there exists a nonzero time interval during
which the molecule is distant more than h from the base plate.
If the molecular velocity ζ2 of such a molecule is not included
in 	2, the contribution by recollision is zero because it does
not recollide. Therefore, the velocity distribution function for
a certain ζ nor

1 (<v̌nor
B,τ ) is a piecewise continuous function with

discrete supports. As time goes on [see Figs. 4(a) → 4(i)], the
velocity distribution function changes such that v̌nor

B,τ increases
and the velocity distribution function for ζ nor

1 < v̌nor
B,τ becomes

a complex shape. In particular, the number of supports of the
velocity distribution function depends on ζ nor

1 ; the number is
smaller for smaller ζ nor

1 (e.g., the number is 1 for ζ nor
1 = 0)

and the number becomes larger as ζ nor
1 approaches v̌nor

B,τ .
Moreover, each support for a certain ζ nor

1 shrinks as time
goes on, as clearly demonstrated by the magnified figures
of Figs. 4(g)–4(i). Note that we can accurately describe the
velocity distribution of such a complex shape thanks to the
numerical method described in the present paper.

We should mention how the velocity distribution function
behaves in the two limits: h → ∞ and h → 0. In order to
illustrate these two limits, we show in Fig. 5 the cases of
h = 103 [Fig. 5(a)] and h = 10−5 [Fig. 5(b)] at x2 = 0 and
t = 5. In the former case, most of the recolliding molecules
are trapped in the concave part. On the other hand, in the
latter case, most of recolliding molecules never experience a
collision with lateral plates, and thus their ζ2 is restricted to
near ζ2 ≈ 0 except for ζ nor

1 ≈ 1. Note that v̌nor
B,τ ≈ 1 and the

number of support is only one in this case. As Figs. 4 and 5
describe, the velocity distribution function varies qualitatively
for different h. Since the velocity distribution function Q plays
a key role in determining the rate of approach, we show some
integrated quantities in the following.

2. Moments of Q
In Fig. 6, a quantity described by Eq. (30b) with p = 2,

which is the moment of Q, is plotted against ζ nor
1 for various

t . The parameters are set to vB∞ = 2 and h = 0.1. Let us first
focus on Fig. 6(a). The moment Q̄2 decreases as time goes
on, however, there appears a sharp point (e.g., ζ nor

1 ≈ 0.4 and
t = 1), at which the velocity is ζ nor

1 = v̌nor
B,τ . The occurrence of

the sharp point is consistent with the observation of Fig. 4(b),
in which the change of the velocity distribution function with
respect to ζ nor

1 shows different trends for ζ nor
1 < v̌nor

B,τ and
ζ nor

1 > v̌nor
B,τ . For larger times [see Figs. 6(b) → 6(d)], it seems

that the moment Q̄2 decreases nonuniformly in ζ nor
1 , and the

sharp point becomes much sharper as time goes on. Figure 6
indicates that the Q̄2 can be decomposed into two parts that
have different long-time behaviors: Q̄2 for ζ nor

1 ∈ [v̌nor
B,τ ,1] (or

ζ1 ∈ 	∞
1 ) and Q̄2 for ζ nor

1 ∈ [0,v̌nor
B,τ ] (or ζ1 ∈ 	̄1). Therefore,

it is natural to evaluate the history term by decomposing it into
two parts: H2 = H∞

2 + H̄2 with H∞
2 = ∫

	∞
1

Q̄2(x2,ζ1,t)dζ1

and H̄2 = ∫
	̄1

Q̄2(x2,ζ1,t)dζ1.
The history termH2 for cases h → ∞, h = 0.1, and h → 0

are presented in Fig. 7(a) by solid curves. In the cases of
h > 0, H2 decreases in proportion to t−3, whereas H2 is
proportional to t−4 for h → 0. This observation is verified in
Fig. 7(b), where the gradient α are shown for each curve. The
decomposed parts for the case of h = 0.1 in Fig. 7, expressed
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FIG. 4. (Color online) The velocity distribution function Q [cf. Eq. (30d)] versus ζ2(>0) for several ζ nor
1 at x2 = 0 and time (a) t = 0.8, (b)

t = 1, (c) t = 2, (d) t = 3, (e) t = 4, (f) t = 5, (g) t = 10, (h) t = 20, and (i) t = 50 in the case of vB∞ = 2 and h = 0.1. The red (dark gray)
curve represents Q with ζ nor

1 = v̌nor
B,τ [cf. Eq. (21) and Fig. 3(c)]. The magnified figure around ζ2 ≈ 0 for (g)–(i) is also shown at the bottom

row. For the better visualization, we set np = 2 and N1 min = 40.
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FIG. 5. The velocity distribution functionQ [cf. Eq. (30d)] versus
ζ2(>0) for several ζ nor

1 at x2 = 0 and time t = 5. (a) h = 103 and
(b) h = 10−5 in the case of vB∞ = 2 and h = 0.1. For better
visualization, we set N1 min = 40.

by dashed and dash-dot curves, show more details about the
history term for finite h. To be specific, the contribution H∞

2
from the molecules with velocity ζ nor

1 > v̌nor
B,τ decreases in

proportion to t−3 for sufficiently large t (say, t > 102). In
contrast, the contribution H̄2 from the molecules with velocity
ζ nor

1 < v̌nor
B,τ is seemingly proportional to t−4. In Fig. 7(b), the

gradient α(H̄2) stays close to −4; however, the convergence
is worse compared with other curves. We also show the result
obtained by the finer grid N1 min = 40 (solid), and it is seen the
results is much closer to −4. In any case, the contribution from

sharp 
point

FIG. 6. The profile of Q̄2 versus ζ nor
1 at x2 = 0 and for various

t in the case of vB∞ = 2 and h = 0.1. (a) t = 0.5, 0.6, . . . ,1; (b)
t = 1 (dashed) and t = 2, 3, 4, 5 (solid); (c) t = 5 (dashed) and t =
6,8, . . . ,20 (solid); (d) t = 20 (dashed) and t = 30, 40, 50 (solid). In
panels (c) and (d), the magnified figures around ζ nor

1 ≈ v̌nor
B,τ are shown

in the insets with circles at the grid points. For better visualization,
we set N1 min = 40.

ζ nor
1 > v̌nor

B,τ dominates the one from ζ nor
1 < v̌nor

B,τ for sufficiently
large t .

B. Long-time behavior

Before presenting the results, recall that the rate of approach
is described by vd ∼ t−3 for t � 1 if h = 0 [18]. In Fig. 8,
we show the long-time behavior of vd . The bold curves are the
results for the two limiting cases: h → ∞ and h → 0. As in the
previous work [18], we observe the inverse power-law decay
of vd ≈ C∞t−2 for h → ∞ and vd ≈ C0t

−3 for h → 0, where
C∞ and C0 are some positive constants. In between these
two curves, the results of the cases with h = 1 × 10−1, 5 ×
10−2, 2.5 × 10−2 (dashed), 1 × 10−2, 5 × 10−3, 2.5 × 10−3

(long-dashed), 1 × 10−3, 5 × 10−4, and 2.5 × 10−4 (dash-dot)
are plotted. It seems that the cases with h = 1 × 10−1, 5 ×
10−2, 2.5 × 10−2 exhibits the inverse power law t−2 for t > 10
as in the case of h → ∞. On the other hand, the exponent of the
power law is unclear for the cases with h < 10−2. Therefore,
we show in Fig. 8(b) the gradient of curves in Fig. 8(a), i.e.,
α(vd ). Moreover, we present −α(vd ) − 2 [or −α(vd ) − 3] in
Fig. 8(c) [or Fig. 8(d)] in order to facilitate the visibility of
approach of α(vd ) to −2 (or −3). From these figures, one
can tell that the gradients for h → ∞ (or h → 0) obviously
approach −2 (or −3). The differences are of the order of 10−3

at t = 2 × 103, i.e., −2 > α(vd ) > −2.001 for h → ∞ [or
−3 > α(vd ) � −3.001 for h → 0]. In addition, we can see that
α(vd ) ≈ −2 − Cα∞t−1 for h → ∞ and α(vd ) ≈ −3 − Cα0t

−1

for h → 0, where Cα∞ and Cα0 are positive constants. In the
cases of 0 < h < ∞, we notice the following things. First,
α(vd ) approaches −2 rather than −3. Figure 8(d) denies the
approach to −3 for all the values of h computed, and Fig. 8(c)
supports that α(vd ) → −2, at least in the case of h = 1 × 10−1,
5 × 10−2, and 2.5 × 10−2. However, Fig. 8(c) tells that the rate
of approach of α(vd ) → −2 is slower for h < ∞. In summary,
the rate of approach may be described by

|vB∞ − vB(t)| ≈ Cht
−2 for t � 1, (38)

where Ch > 0 is a positive constant. It is seen from Fig. 8 that
Ch is an increasing function of h, and the limiting values are
Ch → C0 for h → 0 and Ch → C∞ for h → ∞. For a finite
h, the faster power law t−3 would hold transiently, and the
slower power law t−2 would appear for sufficiently large t .

The results for different vB∞ = 0.5, shown in Fig. 9, exhibit
the qualitatively similar behaviors of vd and its gradient.
Hence, the above-mentioned behavior of vd is not a particular
one for a specific vB∞.

C. Error estimate

In this section, we estimate the error contained in the present
numerical analysis using the case of vB∞ = 2 and h = 0.1 with
different numerical parameters. As a reference case (Case 1),
we choose the parameter set (37). The different numerical
parameters are used in the following cases:

Case 2a: Nx2 = 8, Case 2b: Nx2 = 16, (39a)

Case 3a: N2 min = 8, Case 3b: N2 min = 16, (39b)

Case 4a: N1 min = 20, Case 4b: N1 min = 40, (39c)

Case 5a: �t = 0.025, Case 5b: �t = 0.0125. (39d)
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FIG. 7. (a) Profiles of the history term H2 (solid), H∞
2 (dashed), and H̄2 (dash-dot) [cf. Eq. (30a)] versus t in the double logarithmic scale

for cases h → ∞, h = 0.1, and h → 0. (b) The gradients of curves in panel (a) [cf. Eq. (36)]. For α(H̄2), two curves are presented: the one
obtained with N1 min = 10 (dash-dot) and the one obtained with N1 min = 40 (solid).

FIG. 8. The long-time behavior of vd [cf. (35)] and α(vd ) in the case of vB∞ = 2. The results with h → ∞ and h → 0 are shown with a
bold solid line; those with h = 1 × 10−1, 5 × 10−2, and 2.5 × 10−2 are shown by a dashed line; those with h = 1 × 10−2, 5 × 10−3, 2.5 × 10−3

are shown by a long-dashed line; those with h = 1 × 10−3, 5 × 10−4, 2.5 × 10−4 are shown by a dash-dot line. The curves for h = 10−1, 10−2,
and 10−3 are slightly thickened. (a) vd , (b) α(vd ), (c) −α(vd ) − 2, and (d) −α(vd ) − 3.
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FIG. 9. The long-time behavior of vd [cf. (35)] and α(vd ) in the case of vB∞ = 0.5. See the caption to Fig. 8.

The values of vd and −α(vd ) − 2 for times t = 1, 10, 102, and
103 are shown in Tables I and II, respectively. It is seen from
both tables that the errors in all cases are sufficiently small to
support the discussion in Secs. V A and V B. To see the tables in
detail, we define the relative change by the absolute difference
between the results of Case 1 and Case X (X = 2a, 2b, . . . ,

5b) divided by the result of Case 1. The relative changes of

Cases 2, Case 3, Case 4, and Case 5 for vd are less than
10−3%, 10−3%, 0.05%, and 0.5%, respectively, for t = 103.
The relative changes of Cases 2, Case 3, Case 4, and Case 5 for
α(vd ) are less than 0.1%, 0.01%, 5%, and 0.5%, respectively,
for t = 103. The comparatively large error in Case 3 is due
to the presence of the sharp point caused by the nonuniform
decay of Q̄2 presented in Fig. 6. We have checked that the

TABLE I. The values of vd for Case 1, Case 2a, Case 2b, . . . , Case 5b. The parameters are set to vB∞ = 2 and h = 0.1.

vd

t Case 1 Case 2a Case 2b Case 3a Case 3b

1(0) 5.61708(−2)a 5.61640(−2) 5.61623(−2) 5.61709(−2) 5.61714(−2)
1(1) 8.18155(−5) 8.17898(−5) 8.17825(−5) 8.18173(−5) 8.18183(−5)
1(2) 4.14948(−7) 4.14914(−7) 4.14903(−7) 4.14950(−7) 4.14952(−7)
1(3) 3.58237(−9) 3.58223(−9) 3.58219(−9) 3.58238(−9) 3.58239(−9)

t – Case 4a Case 4b Case 5a Case 5b
1(0) – 5.62591(−2) 5.62762(−2) 5.62919(−2) 5.63334(−2)
1(1) – 8.08189(−5) 8.05976(−5) 8.14404(−5) 8.13938(−5)
1(2) – 4.13266(−7) 4.12869(−7) 4.13948(−7) 4.13812(−7)
1(3) – 3.58144(−9) 3.58119(−9) 3.57605(−9) 3.57509(−9)

aRead as 5.61708 × 10−2.
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TABLE II. The values of −α(vd ) − 2 for Case 1, Case 2a, Case 2b, . . . , Case 5b. The parameters are set to vB∞ = 2 and h = 0.1.

−α(vd ) − 2

t Case 1 Case 2a Case 2b Case 3a Case 3b

1(0) 8.04486(−1)a 8.04927(−1) 8.05031(−1) 8.04480(−1) 8.04435(−1)
1(1) 5.34833(−1) 5.34416(−1) 5.34463(−1) 5.34858(−1) 5.34866(−1)
1(2) 1.28943(−1) 1.28881(−1) 1.28858(−1) 1.28949(−1) 1.28951(−1)
1(3) 2.53877(−2) 2.53725(−2) 2.53678(−2) 2.53887(−2) 2.53893(−2)

t – Case 4a Case 4b Case 5a Case 5b
1(0) – 8.01678(−1) 8.02973(−1) 8.23683(−1) 8.30970(−1)
1(1) – 5.32306(−1) 5.32059(−1) 5.33293(−1) 5.33199(−1)
1(2) – 1.26029(−1) 1.25251(−1) 1.28304(−1) 1.28279(−1)
1(3) – 2.46562(−2) 2.44486(−2) 2.53090(−2) 2.53341(−2)

aRead as 8.04486 × 10−1.

value of Z = 5 is sufficient and the computation with larger
Z results in negligibly small difference compared with the
differences discussed in Tables I and II.

VI. CONCLUSION

The motion of a concave body in a free-molecular gas under
a constant external force is studied numerically, with special
interest on the rate of approach to the terminal velocity vB∞.
The boundary condition on the base plate is diffuse reflection
and that on the lateral plates are specular reflection. Since the
lateral plates do not give rise to an additional drag force but
only play a role of preventing the molecule from escaping to
infinity, the present setting can elucidate solely the effect of the
concavity arising from the lateral plates. It is found that the rate
of approach can be described as |vB∞ − vB | ≈ Cht

−2 for h >

0, which is slower than the rate |vB∞ − vB | ≈ C0t
−3 found in

the previous study [18] for h = 0. The slower approach for
h > 0 is due to the molecules trapped by the concavity. We
have visualized the effect of trapped molecules at the level of
the velocity distribution function and its moments. As a result,
the velocity distribution function is shown to be a piecewise
continuous function in (ζ1,ζ2) space and has the complex
shape. The numerical method used in the present paper
captures the exact shape of the complex velocity distribution
function and correctly describes the time development of the
moments (i.e., nonuniformity with respect to ζ nor

1 ).
As the continuation of previous works [10–14,16–22] (see

also the monograph [23]) that aim to clarify the microscopic
dynamics of the friction acting on a moving obstacle, the
present study together with Ref. [15] clarify that a simple
concavity of a body may affect the time-dependent motion
qualitatively. Note that the shape of the body in the present
study may be the special class of concave bodies. Therefore, it
is not surprising if a qualitatively different behavior is observed
for different (more general) concavities. However, as expected
from the description in Secs. III and V A, a slight change of the
body shape may result in the drastic change of the computation
as well as the shape of the velocity distribution function. There-
fore, we have restricted ourselves to the detailed investigation
of the simplest case with great accuracy in the present paper.
The effect of different concavities, intermolecular collisions
(cf. Refs. [21,22]), initial velocities larger than the terminal

velocity (cf. Ref. [11]), and different boundary conditions (cf.
Refs. [16,17]) are the subject of future works.

APPENDIX A: ALGORITHM TO OBTAIN �̄2

As in the main text, we consider only a positive ζ2. Suppose
that a recolliding molecule hits the lateral plates ñ times. Then,
at least, the velocity ζ2 must satisfy the following:

ζ2 ∈ [zñ,zñ+1], zñ = x2 + (2ñ − 1)/2

t − tb
. (A1)

For such a molecule, the condition {tk ∈ [tb,τ−] ∪
[τ+,t], ∀k = 1, . . . ,ñ} [cf. 	̄2 in Eq. (24)] can be rewritten
as

{ζ2 ∈ [zk,γ−zk] ∪ [γ+zk,∞), ∀k = 1, . . . ,ñ}, (A2)

where γ± = (t − tb)/(t − τ±), (1 < γ− < γ+ < ∞). There-
fore, the velocity ζ2 of the recolliding molecule, which makes
ñ times reflections by the lateral plates, is included in the
intersection of Eqs. (A1) and (A2). Then, 	̄2 can be expressed
as the sum of such intersections for all ñ = 0, . . . ,∞. Note
that for ñ = 0 we only use Eq. (A1), and thus we mention
ñ = 1, . . . in the following.

Let us introduce ak = γ−zk and bk = γ+zk (cf. ak <

bk, ak < ak+1, bk < bk+1). In addition, we introduce a subset
of R as �1 = [z1,a1] ∪ [b1,∞). We call a semi-infinite
segment [b1,∞) a last segment (Fig. 10). Then we transform
�1 to �2 under the following rule (see also Fig. 10 for the
visualization of the rule):

(a) If a2 < b1, the lower end of the last segment is replaced
by b2. That is, �1 → �2 = [z1,a1] ∪ [b2,∞).

(b) If a2 � b1, the upper end of the last segment is replaced
by a2. Moreover, a new segment is added after the last segment,
and the new segment becomes a new last segment. The lower
and upper ends of the new last segment are, respectively, b2

and ∞. That is, �1 → �2 = [z1,a1] ∪ [b1,a2] ∪ [b2,∞).
By iterating the above procedure until the necessary region

of ζ2 space is covered, we finally obtain 	̄2 as �k , which
consists of several segments on which the velocity distribution
function gB+ − E (i.e., the contribution of recollision) is
nonzero [cf. Eq. (15)].

Note that there always exists an integer k′ such that
ak+1 < bk ( ∀k > k′). If we iterate the above transformation
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1st segment 2nd segment 
(last segment)

1st last

1st last2nd

1st last2nd

1st last2nd

1st last2nd 3rd

1st last

FIG. 10. Schematic diagram of �1, �2, and �3, which are represented by bold segments. Depending on the relation between ak+1 and bk ,
the number and the range of segments, i.e., the support of gB+ − E [cf. Eq. (15)], vary.

of �k infinitely many times, the lower end of the last segment
goes to infinity. Therefore, ζ2 → ∞ is not included in 	̄2,
namely the last segment is not included in 	̄2.

APPENDIX B: ALGORITHM TO OBTAIN t b, τ , AND τ±

In the numerical analysis, the trajectory of the base plate
xB(t) is expressed as the connection of m segments �

(m′)
B (m′ =

0, . . . ,m − 1):

�
(m′)
B : x1 = t − t (m′)

�t
x

(m′+1)
B − t − t (m′+1)

�t
x

(m′)
B for

t ∈ [t (m′),t (m′+1)]. (B1)

Here t is a dummy variable that runs from 0 to t (m). The
molecular path of a molecule that hits the base plate at time
t (m) is expressed as

�M : x1 = x
(m)
B − ζ1[t (m) − t]. (B2)

Since we treat only the case where the velocity of the body is
monotonically increasing, the connection of segments �

(m′)
B and

the molecular path �M with ζ1 ∈ 	1 has only one intersection
in (x1,t) space. The time at the intersection is obtained as tb

[cf. Fig. 3(a)].

Next we introduce the trajectory of the tip xB(t) + h as

�
(m′)
T : x1 = t − t (m′)

�t
x

(m′+1)
B − t − t (m′+1)

�t
x

(m′)
B + h for

t ∈ [t (m′),t (m′+1)]. (B3)

The connected segments �
(m′)
T and the molecular path �M with

ζ1 ∈ 	̄1 have two intersections in (x1,t) space. We define
these times corresponding to those two intersections as τ−
and τ+(>τ−) [cf. Fig. 3(c)].

Finally, the tangential line in Fig. 3(c) and the contact
point is obtained as follows. Since we consider the discrete
trajectory (B3), the tangential line from a point (xB,t) to
Eq. (B3) has the slope between the slopes of two segments
that share the contact point. In other words, letting [x

(m�)
B ,t (m�)]

be the contact point, it satisfies the following relation:

τ = t (m�),

m� = { ∃m′ = 1, . . . ,m − 1|[s(m′) − ζ
(m′)
1� ]

× [s(m′+1) − ζ
(m′)
1� ] < 0}, (B4a)

s(m′) = x
(m′)
B − x

(m′−1)
B

�t
,

ζ
(m′)
1� = x

(m)
B − [

x
(m′)
B + h

]
t (m) − t (m′) . (B4b)

A velocity v̌B,τ in the main text is then given by v̌B,τ = ζ
(m′)
1� .
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