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Percolation of site trimers (k-mers with k = 3) is investigated in a detailed way making use of an analytical
model based on renormalization techniques in this problem. Results are compared to those obtained here by
means of extensive computer simulations. Five different deposition possibilities for site trimers are included
according to shape and orientation of the depositing objects. Analytical results for the percolation threshold p.
are all close to 0.55, while numerical results show a slight dispersion around this value. A comparison with p,
values previously reported for monomers and dimers establishes the tendency of p. to decrease as k increases.
Critical exponent v was also obtained both by analytical and numerical methods. Results for the latter give values
very close to the expected value 4/3 showing that this percolation case corresponds to the universality class of

random percolation.
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I. INTRODUCTION

Percolation is a very active field of research and applied to
a diversity of phenomena in physics as, for example, metal-
insulator phase transitions, fluid flow in random media, sol-gel
transitions, and failures in complex networks [1,2]. Percolation
models have also been used to understand many chemical,
biological, and social phenomena [2—4].

Models to attempt to explain the percolation properties of
different two-dinensional (2D) systems can allow different
features as can be seen from the following examples. The
percolation properties of cars parking in a marked parking lot
can be tackled as monomeric percolation on a lattice: a single
object is deposited on a geometrically determined position.
If the parking lot has just one level we must add another
condition to this kind of percolation: nonoverlapping. If the
cars now park anywhere in the parking lot (no geometrical
marks) no lattice needs to be considered. On the other hand, if
we consider painting with a spray device we do not only want
percolation but we need full coverage of randomly deposited
overlapping objects.

In the present paper we consider trimers (polymers or
k-mers with k =3 in a more general conception) where
three objects are simultaneously deposited onto a surface.
An example is provided by triatomic molecules which tend
to self-organize to minimize energy which leads to a long-
range ordering in many cases: this means the presence of a
lattice. Even when only short-range ordering is possible an
approximate lattice is always present.

All of the previous introduction is to say that in the present
work we consider the deposition of trimers whose equilibrium
positions are at least approximately described by a square
lattice. Such trimer could be any object occupying a slot that
can be considered as formed by three pieces. Just as a way
of thinking we can mention the analog to triatomic molecules
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which can be formed by atoms along a straight line (like CO,,
for instance) or in an angular way (like H,O, for instance).
This is an approximate model and some allowance has to be
made to consider cases of different interatomic distances or
angles not exactly at 90° as in the square lattice. This is the
case of the water molecule whose angle is about 105°, which
is halfway between a square lattice and a triangular lattice.
Actually, the water molecule has been considered as occupying
sites in a triangular lattice with an angle of 120° [5]. Actually
a better realization for a 90° angle is given by H,S and H,Se
whose angles are about 92° and 91°, respectively. The case of
nonoverlapping trimers in the form of triangles (and hexagons)
deposited randomly over a 2D surface [6] bears something in
common with these examples, but this is only with respect
to the number of elements defining the geometrical object.
However, the shape of the objects and the approach used in the
present are different.

Percolation theory was derived for periodic lattices of
sites (bonds) which are occupied with probability p or
empty (nonoccupied) with probability (1 — p) [1,7]. In the
thermodynamic limit p coincides with the coverage of
the lattice or fraction of occupied sites (bonds). Nearest-
neighboring occupied sites (bonds) form structures called
clusters. Quantities relevant to percolation will depend on
the concentration of elements and geometry of the lattice.
When the concentration is low, sites are either isolated or in
small clusters of adjacent elements. As p increases, the average
size of the clusters increases monotonically. The probability
that a cluster percolates connecting one extreme of the lattice
to the opposite extreme increases monotonically with p. For
finite-size lattices there is a probability for percolation as a
function of p. This function tends to a step function in the
thermodynamic limit; the critical concentration p. at which
the step occurs is known as the percolation threshold p.. The
percolation transition is a second-order phase transition and
can be characterized by well-defined critical exponents.

More general percolation problems can be formulated by
including deposition of elements occupying more than one
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site (bond) [8—12]. In Refs. [8,9], the percolation behavior for
particles that occupy several k contiguous lattice sites (k-mers)
with alengthintheintervalk = 1, ..., 15hasbeennumerically
studied. The authors found that, for straight and tortuous
k-mers deposited on 2D square lattices, the percolation
threshold exhibits an exponentially decreasing behavior as a
function of the k-mer size. Actually, the results reported below
confirm this tendency for all possible trimers. This feature was
also observed for straight k-mers on 3D cubic lattices [10].
A nonmonotonic size dependence was observed for the
percolation threshold of large straight k-mers on 2D square
lattices, which decreases for small particles sizes, goes through
a minimum at k &~ 13-16, and finally increases for larger
segments [11,12]. In all the studied cases, the problem was
shown to belong to the random percolation universality class.

In most of the cases mentioned above [8—11], the objects
are deposited randomly and irreversibly. This filling process,
known as random sequential adsorption model, leads to inter-
mediate states characterized by an isotropic distribution of the
directions of the deposited objects. The effect of anisotropy (or
k-mer alignment) on percolation has been recently investigated
for the case of dimers [13] and straight rigid k-mers on square
lattices [12,14,15]. The studies in Refs. [12-15] represent
an important step in the understanding of the percolating
properties of anisotropic conductors. From the experimental
point of view, it is important to consider the contribution of
the aspect ratio of the k-mers to the electrical conductivity of
anisotropic composites made of small conducting rods on an
insulating matrix; such a role has been emphasized by various
authors [16-19].

Despite of the number of contributions to the multisite
percolation problem, there are many aspects which still need
to be explored. In fact, most of the studies have been based on
computer simulations and the obtained results have not been
corroborated yet by analytical methods. In recent works from
our group [20,21], bond and site dimer percolation have been
studied by using analytical approximations based on exacts
results for small cells that can be extrapolated to larger sizes.
In this context, the main objective of the present work is to
extend such results to larger objects like the trimers considered
here. The study is a natural continuation of our previous
work [20,21] and focuses on the percolation properties of
site trimers with all possibleshapes and orientations. The
study of trimer phases is not only of analytical interest, but
also of considerable practical importance in surface physics
[5,6,22-24].

The paper is organized as follows. In Sec. II, the basic
definitions are given along with the general basis of the
computer simulations. Results are presented in Sec. I11. Finally,
the conclusions are drawn in Sec. I'V.

II. MODEL

A. Trimer deposition

We assume a trimer formed by three bound objects which
can be along a straight line or at an angle. For simplicity,
we assume equal distances between objects and angles of
180° (linear trimers) or 90° (angular trimers). Deposition
is irreversible, nonoverlapping, and always assumed parallel
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FIG. 1. Five possible ways for trimer deposition on a square
lattice. (1) Straight: a lineal trimer can match the lattice constant both
horizontally and vertically. (/ /) Nematic: an oriented lineal trimer can
have directional depositions only, horizontal in the present case. (/1)
Angular: angular trimers can deposit in any of the four equivalent
possibilities. (/V) Arrow: oriented angular trimers can deposit in
only one of the four possibilities. (V) Tortuous: combination of (1)
and (/117) under equal probability of deposition for each of the six
possibilities. In all the illustrated cases a percolating occupancy is
shown.

to the deposition surface (substrate). Trimers are illustrated
in Fig. 1 as formed by three equal disks bound by short
black bars. The substrate can be represented by a square
lattice with a lattice constant equal to the distance between
neighboring objects in the trimer. Then several possible
deposition possibilities can be studied as follows.

(i) Case I: Straight. Linear trimers can be deposited either
in the left-right direction (horizontal) or up-down direction
(vertical); this is illustrated in Fig. 1(I).

(ii) Case I1: Nematic. A polarization is imposed in such
way that just one direction is allowed for linear trimers;
horizontal is the case illustrated in Fig. 1(I).

(iii) Case I11: Angular. 90° trimers are deposited in any of
the four possible orientations as illustrated in Fig. 1(II).

(iv) Case 1V: Arrow. A polarization is imposed so only
one of the previous four possibilities prevails as illustrated in
Fig. 1(IV). In a sense this is also a nematic case since it favors
a particular direction.

(v) Case V: Tortuous. The six deposition possibilities
comprised upon combining cases I and /I are considered;
this is shown in Fig. 1(V). Cases I I and IV could be achieved
by means of chemical transport, applied electric fields, or
applied magnetic fields, depending on the nature of the trimers.
In the cases I, I11, and V the deposition scans all possible
orientations without biasing any one in particular.

B. Renormalization cell

We assume that the deposition takes place on a small
lattice of dimensions L, and L, along the horizontal and
vertical directions, respectively. The unit of measure is the
distance between two nearest neighbors on the lattice. Thus
this finite lattice or cell has M = L, x L, individual sites,
where we can define L =L, =L, for symmetric cells
and L = (L, + L,)/2 for nonsymmetric cells. Each trimer
occupies simultaneously three sites according to its shape
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and orientation. Once deposited the trimer remains “frozen”
on the substrate without dissociations or migrations. For a
deposition of ¢ trimers the coverageis p = 3¢/M. For any
given p different combinations of the 3¢ trimers are possible
each one of which will be called a configuration.For any
polymer (k-mer) we can think of successive depositions in a
progressive way going over different coverage values, namely,
p=03/M,...,3¢/M. This is valid for any of the five
depositions, considering cells of different M values. Just one
percolating configuration for each case is shown in Fig. 1,
but the reader can realize that by means of variations in
the depositions of the trimers other configurations can be
reached for the same p value, some of which may not lead
to percolation.

From what is known of percolation theory the probability
of percolation increases with coverage p. One of the main
goals of the present work is to obtain all the configurations
for a given p, for each deposition case. From there, we can
analytically get the percolation probabilities for several M
sizes. Then by means of scaling methods upon progressive
L values we will estimate the percolation threshold for each
deposition case in the thermodynamic limit. This progressive
analysis also allows one to get an approximation to the critical
exponents is a way similar to what was done in the case of
site dimer percolation [20]; we will concentrate here on the
exponent v.

For each cell a protocol is defined to cover exhaustively
for possible depositions going from one trimer (¢ = 1) to the
maximum possible number of trimers for each deposition case.
We illustrate in Fig. 2 the six possible initial configurations
corresponding to the tortuous case (V in the enumeration
above). This is a nested protocol where we first vary the
pivot site position (i,j), being j the column index which
corresponds to the inner nest; for each of such positions these
six possible trimer shapes K = 1 through 6 are successively
tried as presented in Fig. 2 for £ = 1, at the initial position
(1,1). The numbering given to these shapes is arbitrary and it
does not matter since all six shapes have exactly the same
probability (1/6) in the exhaustive enumeration. If at any
instant the trimer corresponding to a given shape lays outside

e B &

~
1
=
=
I
N
=
1]
w

o
MYy

K=4 K=5 K=6

FIG. 2. Six possible depositions of trimers associated to case V
for a cell M = 36 at the initial deposition site (1,1) (i =1, j =1).
Each of these figures illustrates the first deposition of each one of
these shapes; then the deposition site (i,j) sweeps the entire cell
looking for allowed depositions.
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FIG. 3. (a) Deposition of two trimers for £ = 2, K1 = 2, (2,2),
and K2 = 1, (3,4) on a square lattice of size M = 36. This deposition
is followed by (i2, j2) going over (3,5) and (3,6) which are forbidden;
itcontinues to (4,1), (4,2), etc. (b) Deposition of three trimers, namely
¢{=3forK1=1@3,4),K2=4(4,1),and K3 = 6 (4,3). Again here
the inner nest is run until the last possible deposition position before
moving the previous deposition.

the cell, such configuration is discarded going onto the next
possible one. In this way we find all the F, x configurations
corresponding to £ = 1, namely F; | =24, F|, =25, F13 =
25, F14 =25, F15 =25, and F) ¢ = 24. This makes a total
of 148 configurations for one trimer deposition in the tortuous
case, all of them nonpercolating.

The next step is to consider ¢ = 2, two trimers, which
requires two equally likely independent shapes K1 and K2,
at two different deposition sites (i1,j1) and (i2,j2), where
@@1,j1) run from (1,1) to (6,6), while (i2,;2) runs from
the values of previous indices to (6,6). This is illustrated
in Fig. 3(a) for £ =2, K1 =2, (2,2), and K2 =1, (3,4).
If at any instant the trimer corresponding to a given shape
lays outside the cell or over any already occupied position,
such configuration is discarded and the most inner index is
increased. The configurations in terms of F, x| arenow F, | =
1289, Fr, = 1379, F,3 = 1414, F,4 = 1477, F,5 = 1497,
and F, ¢ = 1620. This makes a total of 8676 configurations
for the deposition of two trimers in the tortuous case, with
only six of them percolating.

Then we move onto three trimers deposition, namely £ = 3
as illustrated in Fig. 3(b) for K1 =1 (3,4), K2 =4 (4,1),
and K3 =6 (4,3). The counting now yields F3; = 41905,
F3, =39846, Fz3 = 41572, F34 = 450006, F3s5 = 46094,
and F3 ¢ = 47693. The total number of configurations for
£ =3 1s 262116, from which 3812 percolate in the tortuous
case.

This process can be continued until £ = 6 for the tortuous
case. Similar procedure was applied separately to all the other
deposition cases.

Consider any of the six shapes K =1 through 6 which
requires the simultaneous occupancy of three connected sites.
In Fig. 4 we illustrate it by means of shape K =1 but
the same argument applies for the other five shapes in
Fig. 2. We consider the four possibilities: (a) the three sites
available for trimer occupancy; (b) two sites available and
one site forbidden (occupied or out of bounds marked with
an X in Fig. 4) with degeneracy 3; one site available and
two sites forbidden with degeneracy 3; (d) the three sites
forbidden. Just one of these configurations will lead to the
simultaneous occupancy of the three sites, with a weight
t = p? for coverage p. The other seven possibilities will imply
that this shape cannot be accommodated in the slot under
consideration, so the weight for nontrimer deposition is given
by 3p°(1 —p)+3p(l—p)+ (U —pP=1-p’=1-1
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FIG. 4. Probabilities of occupancy for the first shape in Fig. 2,
namely three adjacent horizontal sites: (a) each one of the three sites
is available at an occupancy p each; (b) two sites are available and
one site forbidden (marked with an X), with degeneracy 3; (c) one
site is available and two sites are forbidden, with degeneracy 3; (d)
the three sites are forbidden.

For any large enough value of p there are configurations that
percolate among the total number of possible configurations
for any k-mer deposition. The ratio between these two
quantities represents the percolation probability which is a
function of p tending to a step function at a critical value p,
in the thermodynamic limit.

One of the main goals of the present work is to obtain all the
configurations for a given p, for each deposition case. From
there, we can analytically get the point of the curve behaving
like the percolation threshold for several M sizes. Then by
means of scaling methods upon progressive L values we
will estimate the percolation threshold in the thermodynamic
limit for each deposition case. This progressive analysis also
allows to get an approximation to the critical exponents is
a way similar to what was done in the case of site dimer
percolation [20]; we will concentrate here on the exponent v.

A percolation cluster is formed by all the sites that connect
the cell from one extreme to the opposite one (from left to right
when using the cell method below). Such cluster (also known
as percolation trajectory) is formed by ¢ trimers satisfying
a necessary condition for percolation: £ > £;,. For smaller
values of £, percolation is not possible. At the precise value £ =
£min atleast one configuration leads to percolation. The number
of percolating trajectories for any given £ will render the weight
of such concentration of trimers as it will be calculated and
tabulated below. This process goes over until saturation, which
is reached for £ = £,.x. It can be noticed that each size L has
a well defined pair of values for £, and €p,x.

As discussed above t = p® represents the occupancy
probability for a trimer and 1 —¢ is the probability that
such slot cannot be occupied by a trimer. Generalizing the
example studied above for the tortuous case we can say that
the total number of configurations for ¢ trimers in the X
case (X = I,I1,111,1V,V) of deposition in a lattice of size
M is HZ(M. From these configurations, Gé{ » percolate. For
simplicity we will drop the index M.

The analytical percolation probability for any given ¢ (or
p) and L is the ratio between the number of percolating
configurations G to the total number of configurations H}
for each cell, and for each deposition case:

i GE (1 — )t

Y. ¢
ZZ Limax HXte(l _ l‘)emax—e - fL (p)s (1)

g =

where £min = [Ly/3], €max = [M/3]; the bracketed ratio
[P/Q] represents the approximation to the upper integer
whenever the ratio P/ is not an exact integer.
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The task is now to evaluate the coefficients H and G
in an exact way for each cell size and deposition case. This
is accounted for by a computer program which goes over
all possible deposition possibilities, detecting percolation. In
this way all configurations for any given £ are counted and
all percolating configurations are separately counted in order
to get the G coefficients. This process is extremely time
consuming as cell sizes grow which imposes a practical limit
for the maximum M value to be considered.

At this point we illustrate the results of this process for
M =36 (L = 6). Here £,;, = 2 for cases I, I1, and V, while
Lmin = 3 for cases 111 and IV . On the other hand, £,,x = 12
for all cases except IV where £,,x = 9. This last exception
is topological and unique for this case, where a full coverage
is impossible. Table I(a) lists coefficients HZX and Gf for
deposition cases I, 11, I11, and V defined above. Table I(b)
completes the series for M = 36 with case I V. Tables for other
sizes M were constructed along this same procedure.

C. Numerical calculations

In the case of present numerical simulations the depositions
of the trimers follow the same five possibilities already
described above. The main difference with respect to the
renormalization cell is that the lattice sizes considered here
are much larger making exact enumeration nearly impossible.
However, if a large enough number of random configurations
is visited for each p value then the ratio defined by Eq. (1)
can be obtained in an approximate way. The larger the set
of random configurations used to numerically calculate the
percolation function the better the approximation is.

Each simulation run consists of the following two steps:
(a) the construction of the lattice for the desired fraction p of
occupied sites, and (b) the cluster analysis using the Hoshen
and Kopelman algorithm [25]. In the last step, the existence
of a percolating island is determined. For this purpose, the
probability Ry ,(p) that a lattice composed of L x L sites
percolates at concentration p can be defined [1]. Here, the
following definitions can be given according to the meaning
of Y [26].

R f r(p)(P): the numerical probability of finding a rightward
(downward) percolating cluster of type X trimers (X =
LILIILIV,V).

R ,(p): the numerical probability of finding a cluster of
type X trimers which percolates both in a rightward and in a
downward direction.

R{U(p): the numerical probability of finding either a
rightward or a downward percolating cluster of type X trimers.

RE 4(p) = 5[RY ,(p) + RY ()]

A total of m¥ independent runs of such two steps procedure
were carried out for each X case and each lattice size L.
From these runs a number m’L(’Y of them present a percolating
cluster. This is done for the desired criterion among Y =
{R,D,I,U,A}. Then, R} ,(p)=my,/my is defined and
the procedure is repeated7 for different values of L, p, and
trimer deposition (cases /-V). A setof m¥ = 10° independent
random samples is numerically prepared for several values
of the system size (L = 384,768,1152,1536,1920). As it can
be appreciated this represents extensive calculations to cope
with the trimer percolation problem from the numeric point of
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TABLE 1. (a) Coefficients HZX and Gz( where X is associated to trimers of the cases I, I1, I11, and V on a square cell of size M = 36.

(b) Coefficients H!" and G!" associated to arrow trimers on a square cell of size M = 36.
¢ ¢ q

L Polynomial H/ G} H]! Gl H]TT Gl HY GY
(a)

0 (11—t 1 0 1 0 1 0 1 0
1 t(1 — )l 48 0 24 0 100 0 148 0
2 t2(1 - 924 6 246 6 3952 0 8676 6
3 (1 —1)° 9376 288 1400 136 80068 972 262116 3812
4 t*(1 —1)8 55378 5367 4815 1191 903814 61172 4454292 319089
5 (1 —1t) 198112 46080 10224 5056 5809648 1230872 43732304 9316072
6 (1 — 1)® 432408 191908 13236 10596 21017436 9684026 246232904 111171662
7 (1 =ty 565504 388924 10224 10224 41094868 30345152 767045820 552117100
8 81—t 424270 371787 4815 4815 40254432 37084564 1234332462 1122288219
9 (1 — 1) 169744 164104 1400 1400 17240936 17026500 911325936 898421292
10 t10(1 —1)? 31509 31311 246 246 2462672 2461728 249479639 249386239
11 "1 —1) 1317 1317 24 24 70208 70208 16453726 16453726
12 112 64 64 1 1 162 162 80092 80092

(b)
4 Polynomial HZIV Gﬁv
0 1=z 1 0
1 (1 — 1) 25 0
2 £2(1 — 1) 244 0
3 31 —1)° 1195 16
4 t*(1 -1y 3145 246
5 51— 1) 4431 1149
6 191 — 1) 3161 1868
7 (1 — 1) 1007 935
8 B0 —1) 11 11
9 ° 2 2

view. From there on, the finite-scaling theory can be invoked to
determine the percolation threshold and the critical exponent
v with a reasonable accuracy [1,26,27].

The deposition in the numeric case is done as it follows,
where we consider the tortuous case as an example. A site (i, j)
is randomly chosen. Then we randomly select any of the four
equivalent neighboring positions (factor 1/4). At this point
the analysis forks in two equivalent possibilities: horizontal
or vertical occupancy (multiplicity 2). Let us pick the former
one. Then any of these two occupied sites has three equivalent
sites to be selected to complete the trimer giving a total of six
equivalent possibilities (factor 1/6). From them, two lead to an
horizontal trimer equivalent to K = 1 in Fig. 2 (degeneracy 2),
while each of the other four trimers lead to each of the angular
trimers, K = 1 through 5 (degeneracy 1). When we go back
to the fork point above we can do exactly the same analysis
for the vertical occupancy, getting now two possibilities for the
vertical trimer K = 6 and one additional possibility for each of
the angular trimers, thus completing a degeneracy 2 for any of
the shapes in Fig. 2. If we now combine the probabilities for any
of the depositions they yield (1/4) x 2 x (1/6) x 2 =1/6,
exactly as assumed in the renormalization cell method above.
This makes the two methods equivalent which allows one to
compare their results towards the thermodynamic method.

In the case of renormalization deposition the exhaustive
enumeration of configurations allows one to assign a weight
to each one corresponding to its share of the total universe of

possible configurations. In the case of numerical calculations
a large number of random depositions will assign the weight
to each configuration. Our hypothesis is that these two
approaches should converge towards the thermodynamic limit
and the results presented next seem to prove it.

III. RESULTS

We will present below results for percolation thresholds and
critical exponents v for all deposition cases choosing / and
111 as examples to give the details of the procedures. We will
also report the universality class of this kind of percolation.
The presentation is arranged so the results obtained by the
renormalization cell (analytical techniques) go first and they
are immediately followed by the results of the numerical
calculations.

A. Percolation threshold

Analytical. Let us go back to the analytical approach
based on renormalization cells of increasing sizes. Following
Eq. (1) it is possible to obtain the percolation function for any
deposition case and size M. The coefficients for the deposition
cases [ and 1] and M = 36 are given in Table I(a). The
corresponding curves as functions of p are given in Fig. 5.

Once the percolation function is obtained we can use two
different methods to obtain the corresponding percolation
threshold for each case and size [20]: (A) inflection point of the
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FIG. 5. Percolation functions for cell of size M = 36 and deposi-
tion cases X = [ and X = I7]. The inset shows the first derivatives
of the corresponding percolating functions maximizing at the critical
concentration pj_,, where the subindex i refers to the inflection
method discussed in the text as method A.

percolation function py ; and (B) renormalization techniques
Ple

Method A is based on the idea that the percolation function
tends to a step function in the thermodynamic limit; hence its
first derivative should tend to diverge there. This is represented
in the inset of Fig. 5 for cell of size M = 36.

Method B is based on the assumption that at the critical
concentration the function is equal to the probability of
occupancy of a single object (renormalization techniques).
Then,

i (ples) = ples )

Alternatively, py. . can be determined upon constructing a

composed function which is called P}¥(p) by means of suc-
cessive approximations based on the functions f;*(p) [28,29]:

k=n

PXpy =[] A5 (n— o0, 3)
k=1

with
5 = AP ...))  (ktimes), (@)

where the index k means the number of iterations for the
function f{*(p). In this way, P}(p) is a function that goes to
zero for values of p below the percolation threshold and tends
to unity over the percolation threshold.

The rationale here is simple: powers of numbers less than
one tend to zero as the power increases, so P;*(p) should go
to zero for p values less than a fixed point p ;. But, this point
happens precisely at the step function for percolation in the
thermodynamic limit; then pf, = py. This approach is based
in well-known renormalization techniques [30,31] adapted to
the present case in a way analogous to the treatment presented
in Fig. 11 of Ref. [1]. Such composed function was obtained
numerically for size M = 36 as presented in Fig. 6 after 50
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FIG. 6. Accumulated function constructed after 50 iterations in
the way described by Eq. (3) in the text. Values for which this
function vanishes yield the corresponding percolation thresholds for
depositions 7 and 111.

iterations, for cases I and [11. The points at which these
functions vanish correspond to the percolation thresholds:
pém = 0.842 and péc{’r = 0.933.

The same procedure employed in Figs. 5 and 6 can now be
applied to the other three deposition cases. This was done for
M = 30, 36, 42, and 49 for all five deposition cases and their
results will be discussed below.

With the values of the percolation thresholds for different
L values we attempt a scaling approach valid for small cells
by means of [20,32]:

X X (X X 7-1, X 7-2
PLeri) = Poceriy T L v (ar(i) + bl + L
+dr)§i)L73 + st )7 (5)

where afii), bf{(i), cfm, dﬁin, ... are adjustable parameters.
If we define

X —1 X X —1
Xieriy = L™ (as + b)) L7") (6)

and neglect upper order terms we get the approximate
expression

X X X
Preriy ™ Poce,riy T XLe,r(i)» )

which are the regressions shown in Fig. 7 for cases  and 111,
where we have used the expected value 4/3 for the exponent
v. The linear regressions allow one to estimate the following

values: pl . ; = 0.5553, pl .. = 0.5540, p!!!. = 0.5534,and
11

Peoc.r = 0.5521. Similarly, we also obtained Pééc,i = 0.5581,
pll. . =0.5583, péovcj =0.5513, pl¥ . =0.5583, pc‘;m =

0.5529, and pc‘fw = 0.5528.

As it can be seen there are no great differences between
results obtained by method A or method B. For the rest of
the paper we will use just one percolation threshold for each
size and deposition case corresponding to the mean value
between the results given by these two methods: pX . (see
second column of Table II).

Numerical. As already explained percolation is determined
for 10° runs for each concentration p, on each lattice size L,
for each deposition case (X = [-V), and for each percolation
criterion (Y = R,D,I,U,A). Functions Rf,y(p) are reported
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FIG. 7. Linear regressions to obtain percolation thresholds in the
thermodynamic limit for case / at the top and for case /1] on the
bottom. We have used the analytical value v = 4/3 to construct these
plots.

in Fig. 8, for X = I (empty symbols) and X = 1] (solid
symbols); percolation criteria are identified in the figure.

In order to express R} ,(p) as a function of continuous
values of p, it is convenient to fit R} ,(p) with some
approximating function through the least-squares method. The
fitting curve is the error function because deqy(p)/dp is

TABLE II. Analytical and numerical results of the parameters
pg(oc and v¥ for site percolation corresponding to cases I, 11, I11,
IV,and V.
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0.8

R,

0.2 1

0.0 f T T T T T
0.520 0.525 0.530

L
0.565  0.570

FIG. 8. Fraction of percolating lattices as functions of the con-
centration p for cases / (empty symbols) and /I (solid symbols) and
different values of L: 384, squares; 768, circles; 1152, up triangles;
1536, down triangles; 1920, diamonds. Criteria I, A, and U are
indicated in the figure.

expected to behave like the Gaussian distribution [26]

dR} y(p)
dp

— ;exp{—l[p_—pfc’yir} 8)
\/E A;iy 2 Ai(,Y ’
where pi(cyy is the concentration at which the slope of R fyy( p)
is the largest and A}  is the standard deviation from p}, ,.

Table III collects the values of p)’. , obtained for criterion
A and different lattice sizes L as indicated. Similar tables
were obtained for the other percolation criteria; they are not
included here for space reasons but the corresponding values
will be used right below.

With previous results for pf. ,, a scaling analysis can be
done by the same approach used in the case of the analytical
method, namely by means of Egs. (6) and (5). However,
since the lattices used in the numerical calculations are large
enough we can avoid the small size corrections, keeping
only coefficient aff as different from zero. This leads to the
relationship [1]

Afy(p) =

Prey=pX .y +ayL'", )

TABLEIIL Values of pf, , obtained for criterion A and different
lattice sizes L as indicated in the text.

Analytical Numerical
Case pX. v Ple v Case/L = 384 768 1152 1536 1920
1 0.554 1.52 0.5279(1) 1343) I 052786 052798 0.52792 0.52793  0.52792
I8 0.558 1.53 0.5748(1) 134(1) 11 0.57499 057499 0.57500 0.57497 0.57498
1 0.552 1.58 0.5708(1) 133(1) 111 0.57081 0.57089 0.57086 0.57085 0.57087
v 0.555 1.54 0.5527(1) 13220 IV 055275 055273 055273 0.55272 0.55269
v 0.553 1.41 0.5514(1) 134(1) Vv 055135 055138 055142 0.55142 0.55140
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FIG. 9. Extrapolation of p}. , towards the thermodynamic limit
according to the analytical prediction given by Eq. (9) for the data
in Fig. 8. Triangles, circles, and squares denote the values of pi(c, v
obtained by using the criteria /, A, and U, respectively.

where ajf is a nonuniversal constant and v is the critical

exponent of the correlation length which will be taken as 4/3
for the present analysis, since, as it will be shown below,
our model belongs to the same universality class as random
percolation [1].

Figure 9 shows the plots towards the thermodynamic limit
of p¥., according to Eq. (9) for the data in Fig. 8. Cases
1 (emf)ty symbols) and 771 (solid symbols) are presented,
combined with criteria I (triangles), A (circles), and U
(squares). From extrapolations it is possible to obtain pX
for the criteria I, A, and U. Combining the three estimates
for each case, the final values of pX _ can be obtained. They
are reported in the fourth column of Table II. Additionally, the
maximum of the differences between |p%., — pL. 4| and
|PLoe.s — PX.. 4l gives the error bar for each determination of
pX .. This error is given in parentheses in Table II.

The procedure of Fig. 9 was repeated for cases 11, IV,
and V. As it can be observed from the inspection of Table II,
both analytical and numerical methods yield similar values
for the percolation threshold, with differences under 5%.
Small deviations can be attributed to the small size used in
the analytical method and the possible error in the sample
generation for the numerical studies.

B. Exponent v

Analytical. Critical exponents are of importance because
they describe the universality class of a system and allow
for the understanding of the related phenomena. This is
particularly true for exponent v, which is where we focus
our attention now. We can make use of the expression [21]

InL =v¥Inrk, (10)

where X represents the maximum value of the first derivative
of the percolation function at p = p, in the limit of a cell of
infinite dimensions, for the different deposition cases.

PHYSICAL REVIEW E 92, 012129 (2015)
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FIG. 10. Analytical results for exponent v in cases / and /11.

In the case of finite dimensions both v and the maximum A
are size dependent, namely,

InL = v A} (pk;). (11)
We can follow the approach of Reynolds et al. [33] to write
oo = ALM(Ps): (12)

where A} is a parameter and A} (pJ,) is the maximum value of
the derivative at p; for lattices of size L and deposition case

X, which we simply denote by [A] max, dropping the index i
since the inflection method is the only one used here:

InL =v(InAL +In[A]] (13)

max) ’

which by means of Eq. (10) and reordering terms and factors
leads to
1 InA;, 1

- - 14
vy InL +v (14)

This expression is a straight line when plotting VLX Vs
L

ﬁ, giving % as the intercept on the ordinate axis in the
thermodynamic limit. This is represented in Fig. 10 for the
cases I and 11, while all values of v obtained in this way are
given in the third column of Table II.

Numerical. The standard theory of finite-size scaling allows
for various efficient routes to estimate v from numerical data.
One of these methods is from the maximum of the function in
Eq. (8) [1],

[Af y(P)],, o< LY. (15)

In Fig. 11, ln{[AfA(p)]max} has been plotted as a function
of In{L} (note the log-log functional dependence) for cases
I-V as indicated. According to Eq. (15) the slope of each line
corresponds to 1/v. As it can be observed, the slopes of the
curves remain constant (and close to 3/4) for all studied cases.

An alternative way for evaluating v is given through the
divergence of the root-mean-square deviation of the threshold
observed from their average values, A)L(’Y in Eq. (8) [11,

A}L(,Y o L7V, (16)
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FIG. 11. In {[AZ,A(p)]max} as a function of In(L) for cases /-V as
indicated. According to Eq. (15) the slope of each line corresponds to
1/v. Inset: In (A ,) as a function of In(L) for cases I-V as indicated.
According to Eq. (16), the slope of each curve corresponds to —1/v.

The insetin Fig. 11 shows In{ Af’A} as afunction of In{L} (note
the log-log functional dependence) for cases /—V. According
to Eq. (16), the slope of each line corresponds to —1/v. As in
the main figure, the slopes of the curves remain constant (and
close to —3/4) for all studied cases.

The procedure in Fig. 11 was repeated for [/ and U
percolation criteria. Thus six values of v were obtained for
each case: for either Eq. (15) or Eq. (16) we can have at
least three possible percolation ways: ¥ = I,U, A. Averaging
these six estimates, the final values of v were obtained and
collected in the fifth column of Table II. The results for
the five deposition cases coincide within numerical errors
with the exact value of the critical exponent of the ordinary
percolation, namely, v = 4/3. This finding clearly indicates
that this problem belongs to the universality class of random
percolation regardless of the trimer shape considered.

The scaling behavior can be further tested by plotting
RYy(p) vs [p— pX. L' and looking for data collapse.
Using the values of pX_ previously calculated and the exact
value v = 4/3, an excellent scaling collapse was obtained for
all trimer shapes. Figure 12 shows the curves corresponding
to criterion A for cases I and I71. This leads to independent
control and consistency check of the numerical value for the
critical exponent v found above.

IV. CONCLUSIONS

Percolation thresholds for site trimer depositions were cal-
culated by both analytical and numerical techniques. Critical
concentration for percolation is close to 0.55, which is lower
than dimer site percolation (0.56 [20]) and even smaller that
monomer site percolation (0.59 [20,34]), showing a tendency:
the percolation threshold decreases with the size of the k-mer.

The case of trimers under study allows one to consider
different shape depositions. Extensive numerical methods
allow one to find slightly different percolation thresholds

PHYSICAL REVIEW E 92, 012129 (2015)
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FIG. 12. Data collapse of the fraction of percolation samples
RY¥ ,(p) as a function of the argument [p — pX ]L'". Curves on
the left(right) correspond to case I (I11). For each case, different
lattice sizes have been considered: 384, squares; 768, circles; 1152,
up triangles; 1536, down triangles; 1920, diamonds.

depending on the shape of the site trimer. The largest
percolation threshold is for the nematic case (0.5748) and
the lowest one is for the straight case (0.5297). The analytical
methods render a much lower dispersion around 0.55 probably
due to the smallness of the cell sizes. The tendency commented
here had been anticipated for some numerical depositions of
long k-mers [8,9]; here we have established it for all possible
trimer deposition possibilities by both analytical and numerical
methods

Previous results open new lines of research as follows.
Do all k-mer shapes always tend to the same percolation
parameters? What is the percolation threshold as k& grows?
The answers to previous questions are almost impossible when
considering all the growing shapes as k increases. However, we
are already beginning calculations of percolation thresholds
for straight and nematic cases which are the most general
of all, since these shapes are present for any length of the
polymer. From numerical calculations [12] the initial tendency
is a decrease in the percolation threshold with an interesting
return to higher values for £k < 13. These behaviors have not
been explored theoretically yet.

Another aspect of this problem which should deserve joint
numerical and theoretical studies is jamming: at a certain
coverage the filling of the lattice saturates and this phenomenon
should be shape and size dependent for the k-mer. We are in the
middle of extensive calculations including dimers and trimers
which already sustain previous hypothesis.

Critical exponent v obtained by numerical methods is close
to4/3:1.34, 1.34, 1.33, 1.32, and 1.34 for cases [ through V,
respectively. In the analytical treatment some deviations are
found due to the small size of the cells. Thus for instance 1.52
is obtained for case I, 1.58 for case 111, and 1.41 for case V.

Generally speaking exponent v is always close to 4/3 inde-
pendently of the deposition case as determined by numerical
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calculations. This result shows that this problem belongs to the
universality class of random percolation. The determination
of the exponent v by means of the analytical method gives
consistently values a bit larger than 4/3, but this was already
the situation when this same method was used for monomers
(1.41) [20] and for dimers (1.49) [20]. This is apparently a size
effect since, as the k-mer gets larger for cells of similar L, the
discrepancy with the expected value 4/3 increases.

The analytical methods used below point to the under-
standing of the phenomenon. However, the percolation results
thus obtained are very close to those obtained by means of
the extensive numerical calculations presented here giving
consistency to the approach.

Moreover, in the case of the analytical approach two
methods were used to obtain the percolation threshold and
the results obtained are very similar between themselves.
The values for the percolation threshold obtained by the
renormalization cell are all very similar among them and close
to 0.55.

PHYSICAL REVIEW E 92, 012129 (2015)
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