
PHYSICAL REVIEW E 92, 012126 (2015)

Continuum percolation of polydisperse hyperspheres in infinite dimensions
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We analyze the critical connectivity of systems of penetrable d-dimensional spheres having size distributions
in terms of weighed random geometrical graphs, in which vertex coordinates correspond to random positions of
the sphere centers, and edges are formed between any two overlapping spheres. Edge weights naturally arise from
the different radii of two overlapping spheres. For the case in which the spheres have bounded size distributions,
we show that clusters of connected spheres are treelike for d → ∞ and they contain no closed loops. In this
case, we find that the mean cluster size diverges at the percolation threshold density ηc → 2−d , independently
of the particular size distribution. We also show that the mean number of overlaps for a particle at criticality
zc is smaller than unity, while zc → 1 only for spheres with fixed radii. We explain these features by showing
that in the large dimensionality limit, the critical connectivity is dominated by the spheres with the largest size.
Assuming that closed loops can be neglected also for unbounded radii distributions, we find that the asymptotic
critical threshold for systems of spheres with radii following a log-normal distribution is no longer universal, and
that it can be smaller than 2−d for d → ∞.
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I. INTRODUCTION

Percolation phenomena are ubiquitous in many aspects of
natural, technological, and social sciences, and they arise when
system-spanning clusters or components of, in some sense,
connected objects form [1,2]. A quantity of much interest is
the percolation threshold, which marks the transition between
the phase in which a giant component exists and the one
in which it does not. In general, the percolation threshold
is a nonuniversal quantity, as it depends on the connectivity
properties of the specific system under consideration [3]. For
example, in continuum percolation systems, where objects
occupy positions in a continuous space, the threshold depends
on the shape of the objects [4–8], on their interactions [9–11],
as well as on the connectedness criteria [12,13].

In this article, we consider the infinite-dimensional limit of a
paradigmatic example of continuum percolation: the Boolean-
Poisson model [14,15]. In this model, penetrable spheres with
distributed radii have centers generated by a point Poisson
process, and any two spheres are considered connected if they
overlap. For a given distribution of the radii, the percolation
threshold is given by the critical concentration ηc of spheres,
or by the critical volume fraction φc = 1 − e−ηc , such that
a giant component of connected spheres first forms. Precise
numerical estimates of ηc have been obtained in two and three
dimensions for, respectively, disks and spheres with fixed or
distributed radii [16–23]. The general trend observed by these
investigations is that ηc depends on the form of the distribution
function of the radii, and that it has its minimum when the
sphere radii are monodisperse (i.e., when the spheres have
identical size). This last point has been formally confirmed in
Ref. [24], although it may not hold true in the limit of infinite
dimensions d [25,26].

Here we show that for bounded distributions of the radii,
that is, for polydisperse spheres with a maximum finite value
of the radius, the percolation threshold of the Boolean-Poisson
model tends asymptotically to a universal constant as d → ∞,
provided that the radii distribution is independent of d. This
constant coincides with the value found in Refs. [27,28] for

spheres of identical radii, ηc → 2−d , and it is independent
of the particular form of the size distribution function. We
interpret the universality of ηc as being due to the statistical
irrelevance of the spheres with smaller radii: the onset of
percolation is established effectively only by the subset of
spheres with maximum radius. Furthermore, we show that the
mean number of connected spheres per particle at percolation,
zc, is less than unity for polydisperse distributions of the
radii, while zc → 1 only in the limit of identical radii. This
finding is analogous to what simulations have shown for the
case of continuum percolation in three-dimensional space of
spherocylinders with length polydispersity [29].

These results rest on the observation that closed loops
of connected spheres can be neglected in the limit of large
dimensions, as we show explicitly for the case of bounded
radii distributions. In the hypothesis that closed loops are
irrelevant also for spheres of unbounded size, we show that ηc

for d → ∞ is not universal, as it depends on the parameters of
the distribution, and that it can be smaller than the critical
threshold of monodisperse spheres, in contrast to what is
expected for finite dimensions [24].

II. THE MODEL

To construct the Boolean model, we consider N points
placed independently and uniformly at random in a d-
dimensional volume V . Each point is the center of a sphere
with the radius drawn independently and randomly from a
given probability distribution function ρ(R). If we denote N1

the number of spheres of radius R1, N2 the number of spheres
of radius R2, and so on, we can write the following without
loss of generality:

ρ(R) =
∑

i

xiδ(R − Ri), (1)

where xi = Ni/N with i = 1,2, . . . is the fraction of spheres
of radius Ri .

Given any two spheres of radii, say Ri and Rj , we assign
a link between their centers if the spheres overlap, that is, if
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FIG. 1. (Color online) Connectedness criterion for spheres with
different radii. (a) The spheres of radii R1 and R2 overlap the sphere of
radius R3, forming links between R3 and R1 and between R3 and R2.
(b) Corresponding cluster formed by nodes (sphere centers) labeled
by the sphere radii and weighted links (solid lines) connecting the
nodes.

the distance r between their center is smaller than Ri + Rj , as
shown in Fig. 1. We express this criterion for the formation of
a link in terms of the connectedness function:

fij (r) = θ (Ri + Rj − r), (2)

where θ (x) = 1 for x � 0 and θ (x) = 0 for x < 0 is the unit
step function.

The set of sphere centers (nodes) and links (edges) forms
a type of weighted random geometric graph, in which the
probability that an edge between two nodes is formed is
weighted by the sphere radii. To see this, let us take a sphere of
radius Ri centered at the origin. The probability that a second
sphere of radius Rj forms a link with the first sphere is

vij
ex = 1

V

∫
dr fij (r) = �d

(Ri + Rj )d

V
, (3)

where dr is an infinitesimal d-dimensional volume element at
the position r of the sphere of radius Rj , �d = πd/2/	(1 +
d/2) is the volume of a sphere of unit radius, and 	 is the
gamma function. We note that v

ij
ex defines also the excluded

volume V
ij

ex = �d (Ri + Rj )d in units of V between two
spheres of different radii.

III. IRRELEVANCE OF CLOSED LOOPS FOR d → ∞
An important aspect of the topology of random geometric

graphs is represented by closed loops (or cycles) of connected
nodes. The most studied loop quantity is the three-node cycle
c

(3)
d , often denoted the cluster coefficient, which gives the

conditional probability that two nodes are connected given
that both nodes are connected to a third one. c

(3)
d has been

calculated for systems of spheres with identical radii and for
any dimensionality [28,30]. The observation that c

(3)
d vanishes

exponentially as d → ∞ indicates that random geometric
graphs in large dimensions have a locally treelike structure.

Using results from the theory of hard-sphere fluids, it is
actually possible to show that, in the limit of large dimensions,
closed loops are negligible also for any number of nodes and
for bounded radii distributions. Random and weighted random
geometric graphs have thus treelike structures when d → ∞.
To see this, let us first consider the case of monodisperse
spheres with radius RM . We define an n-chain graph as a
cluster of n � 3 nodes with n − 1 edges such that every two

consecutive edges, and only those, have a common node. We
denote as end nodes the two nodes of an n-chain that each
have only one edge. The n-cycle coefficient c

(n)
d is defined

as the conditional probability that two nodes are connected
given that they are the end nodes of an n-chain. Since the
spheres have identical radii, we omit the subscripts in Eq. (2),
and we write the connectedness function as simply f (r) =
θ (2RM − r). From the definition of c

(n)
d , we can thus write

c
(n)
d =

∫
dr (n)f (|r1 − r2|)f (|r2 − r3|) · · · f (|rn − r1|)∫

dr (n)f (|r1 − r2|)f (|r2 − r3|) · · · f (|rn−1 − rn|) ,

(4)

where dr (n) = dr1dr2 · · · drn. Besides a prefactor, the above
expression coincides with the cluster integral of a ring of n

hard spheres of radius RM [31], as the Mayer function fM(r)
for a fluid of hard spheres is just fM(r) = −f (r) [3,32]. To
evaluate Eq. (4) for d → ∞, we thus use known results from
the theory of hard-sphere fluids in infinite dimensions. Noting
that the denominator of Eq. (4) (i.e., the n-chain contribution)
is simply V V n−1

ex [33], where Vex = �d2dRd
M is the excluded

volume for spheres of identical radius RM , and introducing
the Fourier transform f̂ (q) of the connectedness function, we
rewrite Eq. (4) as

c
(n)
d = 1

V n−1
ex

∫
dq

(2π )d
f̂ (q)n. (5)

The integration in Eq. (5) for d → ∞ has been worked out in
Ref. [31] (see also Ref. [34]), so that the n-cycle coefficient
reduces to

c
(n)
d →

√
n − 2

πd(n − 1)

(
n

n − 2

)n/2[
nn−2

(n − 1)n−1

]d/2

, (6)

from which we see that closed loops of any number n of nodes
are exponentially small as d → ∞, because the quantity within
square brackets is less than unity for n � 3.

Let us now consider the n-cycle coefficient for the case
of polydisperse spheres. Using Eq. (2) for the connectedness
function, we generalize Eq. (4) as follows:

〈cd〉(n) =
〈
C(n)

i1,...,in

〉
i1,...,in〈

V (n)
i1,...,in

〉
i1,...,in

, (7)

where

C(n)
i1,...,in

=
∫

dr (n)fi1i2 (|r1 − r2|)fi2i3 (|r2 − r3|)
· · · × fini1 (|rn − r1|), (8)

V (n)
i1,...,in

=
∫

dr (n)fi1i2 (|r1 − r2|)fi2i3 (|r2 − r3|)
· · · × fin−1in(|rn−1 − rn|), (9)

and

〈(· · · )〉i1,...,in =
∑

i1,...,in

xi1xi2 · · · xin (· · · ) (10)

denotes a multiple average over the radii Ri1 ,Ri2 , . . . ,Rin . In
the appendix, we show that for bounded distributions of radii,
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the n-cycle coefficient in the limit d → ∞ is such that

〈cd〉(n) � c
(n)
d χ

(n)
d , (11)

where c
(n)
d is the n-cycle coefficient for identical radii, Eq. (6),

and χ
(n)
d ∝ da , where a is a non-negative constant. Since the

exponential decay of c(n) for d → ∞ is stronger than the
power-law increase of χ

(n)
d , we see thus that also for the

case of polydisperse spheres for bounded radii distributions,
the n-cycle coefficient vanishes for any n � 3.

IV. SIZE OF FINITE COMPONENTS

The observation made in the previous section that closed
loops are irrelevant in the large dimensional limit of the
Boolean model allows us to consider the components of the
associated weighted random geometric graph as effectively
having a treelike structure. This leads to a considerable
simplification, as we can take the formalism of the theory
of random graphs (see, e.g., Refs. [35–37]) and generalize it
to the case in which nodes have weights.

A. Multidegree distributions

We start by considering the multidegree distribution of a
node of type i, defined as the probability pi(1,k1; 2,k2; . . . )
that a sphere of radius Ri is connected to k1 spheres of radius
R1, k2 spheres of radius R2, and so on. Since the radii are
randomly and independently distributed among the N nodes,
pi(1,k1; 2,k2; . . . ) is just a product of binomial distributions
pij (kj ) (with j = 1,2, . . .), each giving the probability that kj

spheres of radius Rj overlap the sphere of radius Ri :

pi(1,k1; 2,k2; . . . ) =
∏
j

pij (kj ), (12)

with

pij (kj ) =
(

Nj − δi,j

kj

)(
vij

ex

)kj
(
1 − vij

ex

)Nj −δi,j −kj
, (13)

where Nj (with j = 1,2, . . .) is the number of spheres of radius
Rj , v

ij
ex are the overlap probabilities given in Eq. (3), and δi,j

is the Kronecker symbol.
We next consider for all i the limit Ni → ∞ such that

Ni/V = xiρ remains finite, where ρ = N/V is the total
number density. In this limit, Eq. (13) reduces to a Poisson
distribution:

pij (kj ) = z
kj

ij

kj !
e−zij , (14)

where

zij =
∑

k

kpij (k) = xjρ�d (Ri + Rj )d (15)

is the average number of spheres with radius Rj that overlap a
given sphere of radius Ri .

In addition to the node degree distribution
pi(1,k1; 2,k2; . . . ), for the following analysis we will also
need the excess node degree distribution qji(1,k1; 2,k2; . . .),
defined as the conditional probability that a sphere of radius
Rj is connected to kl spheres of radius Rl (with l = 1,2, . . .),

given that it is connected to a sphere of radius Ri . This task
is simplified by the irrelevance of closed loops in the large
dimensionality limit. In this case, indeed, if we select at
random an edge connecting a node of type j with a node of
type i, the j node attached to the edge is ki times more likely
to have degree ki than degree 1 with nodes of type i. Its degree
distribution will thus be proportional to kipj (1,k1; 2,k2; . . . ).
The excess degree distribution of a j node that has ki edges
with nodes of type i other than the edge with the node i to
which is attached is thus [38]

qji(1,k1; 2,k2, . . .) = (ki +1)pj (1,k1; . . . ; i,ki +1; . . .)∑
k(ki +1)pj (1,k1; . . . ; i,ki +1; . . .)

,

(16)

where
∑

k = ∑
k1,k2,...

. From Eqs. (12) and (14),
qji(1,k1; 2,k2, . . .) reduces simply to

qji(1,k1; 2,k2, . . .) = (ki + 1)pji(ki + 1)

zji

∏
l �=i

pjl(kl)

=
∏

l

pjl(kl), (17)

where we have used (ki + 1)pji(ki + 1) = zjipji(ki). Equa-
tion (17) states thus the well-known property that the excess
degree distribution coincides with the node degree distribution
when this is Poissonian [35].

B. Mean cluster size in the subcritical regime

We exploit now the statistical irrelevance of closed loops
discussed in Sec. III to find the mean size S of finite clusters of
connected spheres as d → ∞. In doing so, we shall first keep
the form of the degree distributions unspecified, and apply
Eqs. (14) and (17) only at the end of the calculation.

Let us start by considering a randomly selected node that
has probability xi of being occupied by a sphere of radius Ri .
Due to the general treelike structure of the graph, the cluster
to which the selected node belongs is formed by branches
attached to the node according to the degree distribution
pi(1,k1; 2,k2; . . .), as schematically shown in Fig. 2. The mean
size Si of the cluster to which the selected node belongs is thus

Si = xi + xi

∑
k

pi(1,k1; 2,k2; . . .)
∑

j

kjTij , (18)

where Tij is the mean cluster size of one of the kj branches
attached to the selected node. Since the clusters have a treelike
structure, Tij is given by the mass (unity) of one neighbor
of the selected node plus the mean cluster size of each of the
remaining subbranches attached to the neighbor. To find Tij , we
thus need the excess degree distribution qji(1,k1; 2,k2; . . .) of
a sphere of radius Rj connected to the selected node of type i:

Tij = 1 +
∑

k

qji(1,k1; 2,k2; . . .)
∑

l

klTjl . (19)

Equations (18) and (19) are quite general, as they apply
also to treelike graphs with degree distributions that are
not reducible to a multiplication of Poissonian probabilities.
Interestingly, similar equations are found in the calcula-
tion of finite-size components of multigraphs (also denoted
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FIG. 2. (Color online) Schematic representation of a finite tree-
like cluster formed by connected spheres of radii R1, R2, and R3.
Each node label corresponds to the value of the radius of the sphere
attached to the node.

multiplex networks), formed by different networks, each
having particular node properties, coupled together [38,39].
The Boolean-Poisson model with random radii can thus be
viewed also as a particular type of multigraph, in which each
individual network is constituted by nodes occupied by spheres
of a given radius.

Let us now use the results of Sec. IV A and rewrite
Eqs. (18) and (19) by substituting pi(1,k1; 2,k2; . . .) and
qji(1,k1; 2,k2; . . .) with, respectively, Eqs. (12) and (17):

Si = xi + xi

∑
j

∑
k kpij (k)Tj = xi + xi

∑
j zij Tj , (20)

Tj = 1 + ∑
l

∑
k kpjl(k)Tl = 1 + ∑

l zj lTl, (21)

where we have used Eq. (15) and the fact that Tij depends only
on the neighbor (j ) of the selected node, i.e., Tij = Tj .

The mean cluster size is given by S = ∑
i Si , which from

Eq. (20) reduces to S = 1 + ∑
ij xizij Tj . This relation is

obtained also if we multiply both sides of Eq. (21) by xj

and sum over j . We can thus write

S =
∑

j

xjTj , (22)

which states that S is just the average over the sphere radii of
the mean cluster size of the branches.

C. Equivalence with the Ornstein-Zernike equation
for the pair-connectedness

In continuum percolation theory, cluster statistics are often
studied using the formalism of pair-connectedness correlation
functions [3,40,41], which exploits well-developed techniques
of liquid state theory. This method was recently used to
studying the percolation of monodisperse spheres in large
dimensions [28].

As long as closed loops can be neglected, the network for-
malism discussed above and the pair-connectedness function

method give identical results, provided that the second-virial
approximation is taken. To see how this equivalence holds
true for the Boolean model in large dimensions, let us first
consider the pair-connectedness function Pij (r − r′), defined
such that xixjρ

2Pij (r − r′)dr dr′ is the probability of finding
two spheres of radii Ri and Rj within the volume elements
dr and dr′ centered, respectively, in r and r′, given that they
belong to the same cluster. The mean cluster size S is given in
terms of Pij (r − r′) by the following relation [42]:

S = 1 + ρ
∑
i,j

xixjPij , (23)

where Pij = ∫
dr Pij (r). Pij is the solution of the pair

connectedness analog of the Ornstein-Zernike equation of the
liquid state theory of fluids:

Pij = Cij + ρ
∑

l

xlCilPlj , (24)

where Cij = ∫
dr Cij (r) is the volume integral of the direct

pair-connectedness function Cij (r), which describes short-
range connectivity correlations. Let us introduce the quantity
T̃i defined as

T̃i = 1 + ρ
∑

j

xjPij . (25)

The use of the above expression reduces Eq. (23) to

S =
∑

i

xi + ρ
∑
i,j

xixjPij =
∑

i

xi

⎛⎝1 + ρ
∑

j

xjPij

⎞⎠
=

∑
i

xi T̃i , (26)

while inserting Eq. (24) into Eq. (25) leads to

T̃i = 1 + ρ
∑

j

xj

(
Cij + ρ

∑
l

xlCilPlj

)

= 1 + ρ
∑

j

xjCij + ρ
∑

j

xjCij (T̃j − 1)

= 1 + ρ
∑

j

xjCij T̃j . (27)

We see that Eqs. (26) and (27) are identical to Eqs. (22)
and (21), respectively, if we identify ρxjCij with zij . From
Eq. (15), therefore, we obtain

Cij = zij

ρxj

= �d (Ri + Rj )d, (28)

which corresponds to taking the volume integral of the second-
virial approximation Cij (r) = C

(2)
ij (r) = fij (r) for the direct

pair-connectedness function. This is not surprising, because
in the density expansion of the direct pair-connectedness
function, Cij (r) = ∑

n�2 ρn−2C
(n)
ij (r), the terms with n � 3

contain at least one closed loop.

V. UNIVERSALITY OF THE PERCOLATION THRESHOLD

We proceed to find the percolation threshold for the
Boolean-Poisson model of polydisperse spheres in the large
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dimensionality limit. We shall consider the case of bounded
distributions of the radii, for which we have shown in Sec. III
that closed loops of connected particles can be neglected for
d → ∞, and Eqs. (21) and (22) are valid. To measure the
sphere concentration, we introduce the dimensionless density

η = ρ�d〈Rd〉R = ρ�d

∑
i

xiR
d
i . (29)

The percolation threshold ηc is defined as the smallest value of
η such that S diverges. This definition is equivalent to finding
the smallest pole of Eq. (21), if it exists.

A. Discrete radii distributions

We first consider the case in which the spheres have a finite
number M of radii:

ρ(R) =
M∑
i=1

xiδ(R − Ri), (30)

so that using Eqs. (15), (21), and (22), we rewrite the equations
for the mean cluster size as

S = ∑M
i=1 xiTi, (31)

Ti = 1 + ρ�d

∑M
j=1 xj (Ri + Rj )dTj . (32)

Without loss of generality, we assume that RM is strictly the
largest radius out of the M possible values of the radii, and we
introduce qi = Ri/RM , which takes values smaller than unity
for all i �= M . For large d, the dimensionless density η reduces
to

η = ρ�d

M∑
i=1

xiR
d
i = ρ�dR

d
M

[
xM +

M−1∑
i=1

xiq
d
i

]
→ ρ�dR

d
MxM, (33)

because qd
i goes exponentially to zero as d → ∞ when i �= M ,

and Eq. (32) becomes

Ti = 1 + 2dη
1

xM

∑
j

xj

(
qi + qj

2

)d

Tj . (34)

We note that ( qi+qj

2 )
d

is vanishingly small as d → ∞ unless
i = j = M , for which it takes the value 1. The smallest pole
of Eq. (34) for large d is thus the solution of

Ti = 1 + 2dηTMδi,M, (35)

where δi,j is the Kronecker delta. Equation (35) is solved by
TM = 1/(1 − 2dη) and Ti = 1 for i �= M , so that the mean
cluster size (31) becomes

S =
M−1∑
i=1

xi + xMTM = xM

1 − 2dη
, (36)

which diverges when

η → ηc = 1

2d
. (37)

The above expression for ηc holds true for any sequence
of occupation fractions xi , independent of dimensionality,

provided that xM �= 0. In particular, Eq. (37) confirms and
extends to M > 2 the finding of a previous report that spheres
with two different radii have a universal critical threshold
in infinite dimensions [26]. Note that ηc = 1/2d is also the
limit for infinite dimensions of the percolation threshold of
monodisperse spheres with radius RM , whose mean cluster
size is given by Eq. (36) with xM = 1.

The origin of the universality of ηc can be traced back to
the divergence of TM , which indicates that the onset of a giant
component of connected polydisperse spheres is established
only by the subset of spheres with the maximum radius
when d → ∞. In other words, at d → ∞ the contribution to
percolation of the smaller spheres vanishes, and the resulting
ηc is the critical threshold for a system of monodisperse spheres
of radius RM . Following the observation that systems of poly-
disperse spheres with M different radii can be interpreted as a
multinetwork of coupled M subnetworks (see Sec. IV B), we
see that Eq. (35) is equivalent to decoupling the subnetworks
associated with each radius, and that long-range connectiv-
ity arises only from the network formed by spheres with
radius RM .

One interesting consequence of the irrelevance of smaller
radii at percolation is that the critical average connectivity per
particle,

zc =
∑
i,j

xixjρc�d (Ri + Rj )d , (38)

reduces for d → ∞ to

zc = 2dρc�dR
d
M

∑
i,j

xixj

(
qi + gj

2

)d

→ 2dηcxM = xM,

(39)

where ρc is the critical number density. For xM < 1, the critical
average connectivity is thus less than unity for d → ∞, which
must be contrasted to zc � 1 for systems constituting only of
monodisperse spheres in any dimension [28].

For the binary case (M = 2), Eq. (32) reduces to a system
of two linear equations that can be solved exactly for any
d. The resulting ηc and zc are shown in Figs. 3(a) and 3(b),

0 10 20 30 40 50
d

0.9

0.95

1

2d η c

0 10 20 30 40 50
d

0

0.2

0.4

0.6

0.8

1

z c

(a) (b)

FIG. 3. (Color online) (a) Percolation threshold ηc in units of the
asymptotic value 2−d as a function of dimensionality for a discrete
distribution of radii with M = 2 and R1/R2 = 1/2. In this case,
Eq. (32) is a system of two linear equations so that ηc can be calculated
exactly for any d . x2 = 0.8, 0.6,0.4, and 0.2 from the uppermost
to the lowermost curves. (b) Corresponding values of the critical
coordination number zc. As d → ∞, zc tends asymptotically to x2.
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respectively, for R2 = 2R1 and different values of the fraction
x2 of spheres of radius R2. The asymptotic limits ηc = 2−d

and zc = x2 are recovered for sufficiently large values of d.

B. Continuous radii distributions

Let us now consider the case in which the radii distribution
ρ(R) is a continuous bounded function independent of d. We
again denote by RM < ∞ the maximum allowed radius, so
that ρ(R) = 0 for R > RM , and we rewrite the equations for
the mean cluster size in terms of continuous variables of the
radii:

S = 〈T (R)〉R, (40)

T (R) = 1 + ρ�d〈(R + R′)dT (R′)〉R′ , (41)

where 〈(· · · )〉R = ∫ RM

0 dRρ(R)(· · · ). We expand the binomial
power (R + R′)d and use η = ρ�d〈Rd〉R to write

T (R) = 1 + η

d∑
k=0

(
d

k

)
Rd−k

〈Rd〉R 〈RkT (R)〉R. (42)

If we multiply both sides of Eq. (42) by Rn/〈Rn〉R , with n = 1,
2, . . ., d, and average over R, we arrive at

t(n) = 1 + η

d∑
k=0

(
d

k

) 〈Rn+d−k〉R〈Rk〉R
〈Rd〉R〈Rn〉R t(k), (43)

where

t(n) = 〈RnT (R)〉R
〈Rn〉R . (44)

From Eqs. (40) and (44) we see that the mean cluster size can
be obtained from S = t(0).

To solve Eq. (43), we note that for large d the binomial
coefficient is strongly peaked at k = d/2 and takes the
asymptotic form(

d

k

)
	 2d

√
2

πd
e− 2

d
(k−d/2)2 = 2d+1

d
g

(
2k

d
− 1,

1√
d

)
, (45)

where g(x,σ ) = exp(−x2/2σ 2)/
√

2πσ 2 is the Gaussian func-
tion. Provided that the radii distribution is bounded, the
binomial coefficient dominates the k dependence of the
kernel. To see this, let us consider the mth moment 〈Rm〉R =
Rm

M

∫ 1
0 dy ρ(y)ym, where y = R/RM . For large m, the main

contribution to the integral comes from y close to 1. Thus
we make the quite general assumption that for y → 1, the
radii distribution behaves as ρ(y) ∝ (1 − y)α−1, with α > 0.
Setting t = m(1 − y) for large m, we find

〈Rm〉R ∝ Rm
M

mα

∫ m

0
dt tα−1(1 − t/m)m

	 Rm
M

mα

∫ ∞

0
dt tα−1e−t = Rm

M

mα
	(α), (46)

so that for large k the term 〈Rn+d−k〉R〈Rk〉R in Eq. (43)
is proportional to Rn+d

M /[(n + d − k)k]α , which has a much
weaker k dependence than Eq. (45). Next, we introduce s =
2n/d and s ′ = 2k/d, which we treat as continuous variables
for d → ∞, and we replace the sum over k by an integral

over s ′:
∑d

k=0 → d
2

∫ 2
0 ds ′. If we denote t̃(s) = t(ds/2) and

t̃(s ′) = t(ds ′/2), Eq. (43) becomes

t̃(s) = 1 + 2dη

∫ 2

0
ds ′

[
g

(
s ′ − 1,

1√
d

)
× 〈Rd[1+(s−s ′)/2]〉R〈Rds ′/2〉R

〈Rd〉R〈Rds/2〉R t̃(s ′)
]
. (47)

Since g(s ′ − 1,1/
√

d) → δ(s ′ − 1) for d → ∞, the above
expression reduces to

t̃(s) = 1 + η2d 〈Rd(1+s)/2〉R〈Rd/2〉R
〈Rd〉R〈Rds/2〉R t̃(1), (48)

from which we obtain the mean cluster size:

S = t̃(0) = 1 + η2d 〈Rd/2〉2
R

〈Rd〉R t̃(1). (49)

Setting s = 1 in Eq. (48), we find t̃(1) = (1 − 2dη)−1, so that
we arrive finally at

S = 1

1 − 2dη

〈Rd/2〉2
R

〈Rd〉R , (50)

which, as found for the case of discrete distributions, diverges
at

η → ηc = 1

2d
, (51)

independently of the particular form of the bounded distribu-
tion ρ(R).

Using Eq. (45) and considering the weak dependence of the
moments of R, we readily obtain the large dimensional limit
of the critical average connectivity per particle:

zc = ρc�d〈(R + R′)d〉R,R′ = ηc

d∑
k=0

(
d

k

) 〈Rk〉R〈Rd−k〉R
〈Rd〉R

→ 〈Rd/2〉2
R

〈Rd〉R , (52)

from which we see that zc � 1 for any bounded distribution of
the radii. Note that from Eq. (52) we recover zc = xM when
ρ(R) is given by Eq. (30).

We complete this section by showing how the perco-
lation threshold obtained from Eqs. (40) and (41) evolves
toward the asymptotic value ηc = 2−d as d increases. Toward
that end, we consider radii distributions of rectangular,
semicircular, and triangular shapes, given, respectively, by
ρ(R) = 1/RM , ρ(R) = 4

√
(RM/2)2 + (R − RM/2)2/π , and

ρ(R) = 2(RM − R)/R2
M for R � RM and zero otherwise. We

calculate ηc from the smallest pole of S = t(0) obtained from
a numerical solution of Eq. (43). The resulting thresholds are
very close to 2−d for all d considered, and they approach
the asymptotic limit from below, as shown in Fig. 4(a). For
the same cases of Fig. 4(a), we have calculated also the d

dependence of zc, shown in Fig. 4(b) by solid lines, which we
compare with the asymptotic limits (dashed lines) zc = 4/d,
zc = 32/(

√
πd3/2), and zc = 32/d2 obtained from Eq. (52)

for rectangular, semicircular, and triangular distributions of
the radii, respectively.
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FIG. 4. (Color online) (a) Dimensional dependence of the per-
colation threshold ηc in units of the asymptotic value 2−d obtained
from a numerical solution of Eq. (43) for rectangular (upper curve),
semicircular (middle curve), and triangular (lower curve) distributions
of the sphere radii. (b) Corresponding critical average connectivity
per particle zc (solid curves). Dashed lines are the asymptotic results
for d � 1: zc = 4/d (rectangular distribution), zc = 32/(

√
πd3/2)

(semicircular distribution), and zc = 32/d2 (triangular distribution).

VI. THE CASE OF UNBOUNDED DISTRIBUTION
OF THE RADII

Having established that ηc is universal as d → ∞ for
bounded (and independent of d) distributions of the radii, it
is natural to ask if universality holds true also when ρ(R) is
unbounded. Although we have shown the irrelevance of closed
loops limited to the case of bonded distributions, we shall
nevertheless assume that n-cycle coefficients are negligible
also for unbounded ρ(R), and that graph components have
a treelike structure. Let us consider the specific case of a
log-normal distribution function:

ρ(R) = 1√
2πσR

exp

[
− ln2(R/R0)

2σ 2

]
, (53)

where R ∈ [0,∞), R0 is the median radius, and σ is the
standard deviation of ln(R). Equation (53) is an interesting
case study, as the resulting ηc and zc for asymptotically
large d can be found analytically. Using the kth moment
〈Rk〉R = Rk

0 exp(σ 2k2/2), Eq. (43) becomes

t(n) = 1 + η

d∑
k=0

(
d

k

)
e

1
2 σ 2[(n+d−k)2+k2−n2−d2]t(k), (54)

from which we express the mean cluster size as

S = t(0) = 1 + η

d∑
k=0

(
d

k

)
eσ 2k(k−d)t(k). (55)

For sufficiently large d, the only nonvanishing terms of the
summation are those with k = 0 and k = d, so that

S = 1 + η[S + t(d)], (56)

where from Eq. (54) t(d) is given by

t(d) = 1 + η

d∑
k=0

(
d

k

)
eσ 2(d−k)2

t(k). (57)

For d → ∞, t(d) tends asymptotically to t(d) = 1 +
ηeσ 2d2

t(0), as the term with k = 0 dominates the sum over

k in Eq. (57). We thus find that the mean cluster size, Eq. (56),
reduces to

S = 1 + η

1 − η − η2eσ 2d2 , (58)

which diverges at the asymptotical critical value,

η → ηc = e− 1
2 σ 2d2

. (59)

The corresponding critical coordination number is

zc = ηc

d∑
k=0

(
d

k

) 〈Rk〉R〈Rd−k〉R
〈Rd〉R

= ηc

d∑
k=0

(
d

k

)
eσ 2k(k−d) → 2ηc, (60)

where we have again used the fact that for large d only the
terms k = 0 and k = d contribute to the summation.

As evidenced in Eq. (59), the percolation threshold for
infinite dimensions is no longer universal, as it depends on the
parameter σ of the log-normal distribution. Interestingly, from
Eq. (59) we also see that ηc can be smaller than the critical
threshold of monodisperse spheres (ηc = 2−d ), contrary to
what is expected in finite dimensions [24]. We note that a
critical threshold smaller than the monodisperse sphere limit
in large dimensions has been found also for the case of radii
distributions with d-dependent weights [25,26].

To verify the accuracy of Eq. (59), we compare it with
the threshold obtained by solving numerically Eq. (54). As
d increases, the asymptotic limit ηc = e− 1

2 σ 2d2
is reached

more rapidly when σ is larger, as shown in Fig. 4(a). From
inspection of Eq. (55) we see that this behavior is due to
the competition between eσ 2k(k−d) and the maximum value
∼ 2d of the binomial coefficient at k = d/2: the latter is
suppressed by the exponential function when d > 4 ln(2)/σ 2.
From numerical calculation of zc, shown in Fig. 5(b) for the
same σ values of Fig. 5(a), we see that also the asymptotic
formula for zc, Eq. (60), is verified.
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)η
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FIG. 5. (Color online) (a) Dimensional dependence of the perco-
lation threshold ηc in units of the asymptotic value exp(−σ 2d2/2)
for a log-normal distribution of the radii obtained from a numerical
solution of Eq. (54); σ = 0.25, 0.3, 0.4, and 0.5 from the lowermost to
the uppermost curves. (b) Critical average connectivity per particle zc

for σ = 0.25, 0.3, 0.4, and 0.5 from the uppermost to the lowermost
curves. All curves tend to zc/ηc → 2 as d → ∞.
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VII. LOWER BOUND ON THE PERCOLATION
THRESHOLD

Having established that Eqs. (21) and (22) give asymptotic
limits of the critical threshold ηc as d → ∞, we show now
that the same equations provide also a lower bound on
ηc for any dimensionality. Toward that end, we take the
pair-connectedness function Pij (r) considered in Sec. IV C,
and we extend to the polydisperse sphere case the inequality
formulated in Ref. [43]:

Pij (r) � fij (r) + ρ
∑

l

xl

∫
dr′fil(|r − r′|)Plj (r′), (61)

where fij (r) is the connectedness function given in Eq. (2). The
above expression applies to any dimensionality, and following
Ref. [28], where Eq. (61) has been used for the monodisperse
sphere case, it enables us to find a lower bound on the
percolation threshold. To see this, we take the volume integral
of Eq. (61),

Pij � V ij
ex + ρ

∑
l

xlV
il

exPlj , (62)

where V
ij

ex = ∫
drfij (r) = �d (Ri + Rj )d , and we use

Eqs. (25) to find

T̃i � 1 + ρ
∑

j

xjV
ij

ex T̃j = 1 +
∑

j

zij T̃j , (63)

which together with Eq. (26) gives an upper bound for the
mean cluster size:

S =
∑

i

xi T̃i �
∑

i

xiTi, (64)

where Ti is the solution of Eq. (21). From the inequality
of Eq. (64), we see that the value of η such that

∑
i xiTi

diverges identifies a lower bound on the percolation threshold
for any d. The solid lines plotted in Figs. 3(a)–5(a) represent
thus lower bounds on ηc for the different radii distribution
functions considered in this work. As d increases, these lower
bounds tend asymptotically to the infinite-dimensional limit
2−d for bounded radii distributions and to exp(−σ 2d2/2) for
log-normal radii distributions. Finally, we note that Eq. (64)
implies also that the values of zc shown in Figs. 3(b)–
5(b) are lower bounds on the critical connectivity for any
dimensionality.

VIII. SUMMARY AND DISCUSSION

We have considered random dispersions of penetrable d-
dimensional spheres with distributed radii in terms of weighted
random geometric graphs, where nodes represent sphere
centers and edges connect nodes of overlapping spheres with
probability weighted by the sphere radii. For bounded distribu-
tion of the radii, we have shown that closed loops of connected
spheres can be neglected in the limit d → ∞ and that graph
components have thus treelike structure. Analysis of the mean
cluster size reveals that the asymptotic percolation threshold
is universal and coincides with the threshold ηc = 2−d found
for the case of monodisperse spheres in high dimensions.
This result confirms and extends a previous finding on the
percolation of d → ∞ spheres with two different radii [25,26].

Furthermore, we show that the asymptotic critical connectivity
per particle zc, though dependent on the shape of the radii
distribution function, is less than unity and approaches zc → 1
for spheres of identical radii.

We have also studied critical connectivity for spheres with
radii distributed according to a d-independent log-normal
function, which is a treatable example of unbounded distribu-
tion. Assuming that clusters have a treelike structure, we find
that the percolation threshold ηc depends on the shape of the
log-normal distribution and, interestingly, that ηc for d → ∞
can be smaller that the threshold for monodisperse spheres, in
contrast to what is expected at finite dimensions [24].

Before concluding, let us speculate on the percolation
threshold in homogeneous fluids of polydisperse spheres with
impenetrable cores (cherry-pit model [3]). In finite dimen-
sions, correlations between the cores preclude writing the
multidegree distribution as a product of Poisson distributions,
as done in Sec. IV A, because the N -particle distribution
function gN (r1,r2, . . . ,rN ) depends on the relative positions of
the core centers [32]. However, in the limit of infinite dimen-
sions and for small densities, gN (r1,r2, . . . ,rN ) asymptotically
factorizes into a product of θ functions that are unity for pair
distances beyond the hard-core diameter [44]. The multidegree
distribution for d → ∞ can thus still be written as a product
of Poisson distributions, with the average number of contacts
unaltered by the presence of the hard cores if the penetrable
shells are nonvanishing. With the same reasoning, closed loops
are expected to be negligible and graphs are still dominated by
treelike components. For nonzero penetrable shells, therefore,
we expect the same asymptotic results for ηc as those obtained
for the case of penetrable hyperspheres.
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APPENDIX: IRRELEVANCE OF 〈cd〉(n) for d → ∞
In this appendix, we show that when the radii distribution

is independent of d and bounded [that is, when ρ(R) = 0
for any R > RM , with RM < ∞], the n-cycle coefficient for
polydisperse spheres, defined in Eqs. (7)–(9), vanishes for
d → ∞.

Since RM is the maximum radius of the distribution, the
connectedness functions in the integrand of Eq. (8) are such
that fij (r) � f (r) = θ (2RM − r) for any i and j . We can thus
write

C(n)
i1,...,in

�
∫

dr (n)f (|r1 − r2|)f (|r2 − r3|) · · · f (|rn − r1|),
(A1)

which, when substituted in Eq. (7), gives

〈cd〉(n) � c
(n)
d

V V n−1
ex〈

V (n)
i1,...,in

〉
i1,...,in

, (A2)

where Vex = 2d�dR
d
M , and c

(n)
d is the n-cycle coefficient

for identical radii given in Eq. (6). Next, we perform the
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integrations over r1, . . . ,rn in Eq. (9) to find

V (n)
i1,...,in

= V

n−1∏
j=1

V
ij ,ij+1

ex = V �n−1
d

n−1∏
j=1

(Rij + Rij+1 )d

= V �n−1
d

n−1∏
j=1

⎡⎣ d∑
kj =0

(
d

kj

)
R

kj

ij
R

d−kj

ij+1

⎤⎦, (A3)

where in the last equality we have expanded the binomial
powers. In performing the average over Ri1 , . . . ,Rin , we must
group the contributions with equal radius variables and average
them independently of the other radii. Denoting a general mth
moment as 〈Rm〉R , we obtain

〈
V (n)

i1,...,in

〉
i1,...,in

= V �n−1
d

d∑
k1=0

(
d

k1

)
· · ·

d∑
kn−1=0

(
d

kn−1

)
×〈Rk1〉R〈Rd−k1+k2〉R〈Rd−k2+k3〉R
· · · 〈Rd−kn−2+kn−1〉R〈Rd−kn−1〉R. (A4)

Following Sec. V B, we approximate for large d the binomial
coefficients by Gaussian functions centered at d/2, and we re-
place the sums by integrals so that for d → ∞,

∑d
kj =0

(
d

kj

) →
2d

∫ 2
0 dsj δ(sj − 1), where sj = 2kj/d and j = 1, . . . ,n − 1.

Equation (A4) reduces in this way to〈
V (n)

i1,...,in

〉
i1,...,in

→ V �n−1
d 2(n−1)d〈Rd/2〉2

R〈Rd〉n−2
R , (A5)

so that Eq. (A2) becomes

〈cd〉(n) � c
(n)
d χ

(n)
d , (A6)

where

χ
(n)
d = R

(n−1)d
M

〈Rd/2〉2
R〈Rd〉n−2

R

. (A7)

For continuous radii distributions, we assume that
ρ(R) ∝ (RM − R)α−1 with α > 0 for R → RM , as done
in Sec. V B. Using Eq. (46), we thus find χ

(n)
d ∝ dnα . For

discrete distributions as in Eq. (30), it is straightforward to
show from Eq. (A7) that χ

(n)
d → 1/(xM )n for large d. We have

thus arrived at the result that χ
(n)
d increases with d at most

as a power law, leading to 〈cd〉(n) → 0 as d → ∞, due to the
exponential vanishing of c

(n)
d .
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