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Nonlocal quartic interactions and universality classes in perovskite manganites
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A modified Ginzburg-Landau model with a screened nonlocal interaction in the quartic term is treated via
Wilson’s renormalization-group scheme at one-loop order to explore the critical behavior of the paramagnetic-
to-ferromagnetic phase transition in perovskite manganites. We find the Fisher exponent η to be O(ε) and the
correlation exponent to be ν = 1

2 + O(ε) through epsilon expansion in the parameter ε = dc − d , where d is the
space dimension, dc = 4 + 2σ is the upper critical dimension, and σ is a parameter coming from the nonlocal
interaction in the model Hamiltonian. The ensuing critical exponents in three dimensions for different values
of σ compare well with various existing experimental estimates for perovskite manganites with various doping
levels. This suggests that the nonlocal model Hamiltonian contains a wide variety of such universality classes.

DOI: 10.1103/PhysRevE.92.012123 PACS number(s): 05.70.Jk, 05.10.Cc, 75.40.Cx

I. INTRODUCTION

The analytical investigation of the critical behavior of
the paramagnetic-to-ferromagnetic (PM-FM) phase transition
near the critical point using Wilson’s renormalization-group
(RG) scheme [1,2] has been a topic of much interest among
researchers for a long time [3–8]. Most of these investigations
considered a short-range (SR) interaction in the quartic term in
the Ginzburg-Landau model Hamiltonian, and they describe
the universality classes that depend on the space dimension d

and the number of components n of the order parameter. It was
Fisher, Ma, and Nickel [9] who analytically investigated, via
Wilson’s RG scheme, the critical behavior of an n-component
Ginzburg-Landau (GL) model in d space dimensions in the
presence of a long-range (LR) interaction incorporated in
the quadratic part of the Hamiltonian as

∫∫
ddx ddy

�(x) �(y)
|x−y|d+σ ′ .

Their analysis identified different regimes characterized by
the LR exponent σ ′. The results for the critical exponents
were obtained via an ε′ expansion about the mean field (where
ε′ = 2σ ′ − d).

Over the past couple of decades, the critical properties of
PM-FM phase transitions in perovskite manganite compounds
(R1−xAxMnO3) have been explored by various experiments
[10–23]. [R stands for trivalent rare-earth elements (e.g.,
La, Nd, or Pr) and A stands for divalent alkaline-earth
elements (e.g., Ca, Ba, or Sr)]. Although an initial experimental
investigation [11] suggested inconclusive results with regard
to the universality class, a number of subsequent experimental
studies on some perovskite manganite samples [13,18,19,21]
showed that the critical exponents were close to those of the
tricritical mean-field theory (β = 1

4 , γ = 1, and δ = 5) [24].
However, there are other perovskite manganite compounds
[11,14–17,23] for which the critical exponents deviate from
those of the tricritical mean-field values.

In some of these experimental works [11,15,19], the
estimates for critical exponents were compared with those of
the existing theoretical models, namely the mean-field, three-
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dimensional (3D) Ising, and 3D Heisenberg models. However,
these existing models were unable to reproduce the critical
exponents over a range of experimental samples. In fact, the
above experiments indicated the existence of a wide range of
universality classes with different choices for R and/or A as
well as different levels of doping, x. It was found that a change
in the doping level x in the same compound led to different
critical exponents [11–13,15,18]. For instance, different sets
of critical exponents were obtained for La1−xCaxMnO3 when
x = 0.2 [12] and x = 0.4 [13]. Similar behavior was noted
for La1−xSrxMnO3 when x = 0.3 [11] and x = 0.125 [15].
This was also observed in Ref. [18] for a different compound,
namely Nd1−xSrxMnO3 with x = 0.33 and 0.4.

As we noted in the outset, a model with a long-range
interaction in the quadratic term of the GL Hamiltonian
was suggested by Fisher, Ma, and Nickel [9]. Motivated
by their model, the corresponding critical behaviors were
further investigated in a number of theoretical [25–32] as
well as numerical [33–38] studies. Most of these studies
were devoted to the investigation of a crossover between the
LR and SR regions, mainly concentrating on the resolution
of a jump discontinuity of the critical exponent η at the
crossover value σ ′ = 2 [26,28–31,33,35,36]. Sak [26] showed
via RG calculations that the jump discontinuity is smoothed
out and the crossover takes place at σ ′ = 2 − ηSR, where ηSR

is the SR value of the exponent η. In an attempt to find
a representative theory for the PM-FM phase transition in
perovskite manganites, we verified whether this LR theory
can capture the critical behavior predicted by experiments
on perovskite manganites. Table I shows the upper and
lower bounds of various critical exponents obtained via RG
calculations of Fisher, Ma, and Nickel incorporating Sak’s
correction for the continuity between the LR and SR regimes
[9,26]. For d = 3, the tricritical values β = 1

4 and δ = 5 lie
outside the ranges shown in Table I. Further, for d = 2, these
values cannot be generated for any value of σ ′; the exponent γ

turns out to be unexpectedly higher (compared to the tricritical
value γ = 1) for a matching value of β = 0.25. Moreover,
the experimental values for the critical exponents away from
tricriticality for a range of perovskite manganite samples
cannot be realized consistently with the same theoretical
estimates. Numerical simulations based on the same LR model
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TABLE I. Allowed ranges for the critical exponents for different values of d and n between lower and upper bounds, [σ ′
min,σ

′
max], of the

long-range exponent σ ′, as predicted by the RG calculations of Ref. [9] incorporating the correction due to Sak [26]. The rows with single
entries correspond to the best possible values nearest to the tricritical values as predicted by the same RG theory. The experimental ranges for
the critical exponents (with error bars) obtained for samples given in Table II are also displayed in the last row for comparison.

d n σ ′ α β γ δ

1 [1.5,1.981] [0.0,0.082] [0.5,0.338] [1.0,1.240] [3.0,4.076]
3 2 [1.5,1.980] [0.018, − 0.013] [0.5,0.359] [1.0,1.296] [3.0,4.083]

3 [1.5,1.979] [0.003, − 0.092] [0.5,0.375] [1.0,1.341] [3.0,4.084]

1 [1.0,1.926] [0.058, − 0.003] [0.5,0.183] [1.0,1.636] [3.0,5.320]
2 2 [1.0,1.920] [0.013, − 0.254] [0.5,0.232] [1.0,1.790] [3.0,5.358]

3 [1.0,1.917] [0.0, − 0.462] [0.5,0.272] [1.0,1.917] [3.0,5.367]

1 1.646 0.012 0.251 1.485 4.812
2 2 1.830 −0.237 0.250 1.737 5.209

3 1.917 −0.462 0.272 1.917 5.367

Exptl.
Range [0.23(2),0.404(1)] [0.948(8),1.45] [4.12(33),5.17(2)]

[36,39,40] were also focused on the crossover, particularly
for d = 2, and a smooth interpolation was obtained between
the SR and LR regimes. However, they found ηSR ≈ 0.25,
which is much higher than that predicted by Sak [26], thus
excluding the possibility of explaining the exponents near
and away from tricriticality. Thus a wide range of exponents
observed for perovskite manganites near as well as away
from tricriticality remain unexplained. This necessitates an
alternative theoretical model capable of capturing the wide
range of critical behavior of perovskite manganites, including
their (nearly) tricritical behavior.

A common feature of the above-mentioned analytical
as well as numerical works was the incorporation of the
long-range effect in the quadratic (�2) term of the model
Hamiltonian, which did not affect the quartic (�4) interaction
term. The original �4 term in the Ginzburg-Landau functional
is equivalent to a contact or short-range interaction of the
order-parameter field �(x). However, as suggested by Ma [5],
this term can be generalized to a nonlocal interaction term
as

∫
ddx

∫
ddx ′ �2(x)u(x − x′)�2(x′), where u(x − x′) is a

coupling function that modifies the interactions among the
different modes in Fourier space. In this paper, we analytically
treat this nonlocal model for an n-component order parameter
�(x), expressed by the Hamiltonian

H [�] =
∫

ddx

[
c0

2
|∇�(x)|2 + r0

2
�2(x)

+
∫

ddx ′�2(x)u(x − x′)�2(x′)
]
, (1)

where �2 = ∑n
i=1 φ2

i and |∇�|2 = ∑n
i=1 ∇φi · ∇φi , with a

screened nonlocal interaction represented by the coupling
function

u(k) = λ0

[k2 + m2]σ
(2)

in the Fourier space, where λ0 is a coupling constant and m is
a screening parameter.

It may be noted that a different kind of nonlocality in the �4

term was found to originate in the case of an elastic isotropic
system, as a consequence of LR strain interactions [41].

Tröster performed a numerical simulation on the compressible
nonlocal �4 model and found convincing evidence for a
tricritical point [41]. We may thus expect that our above-
mentioned nonlocal model given by Eqs. (1) and (2) may
capture the tricritical property as well as the features near a
tricritical point. It would be interesting to explore this model
via an RG analysis and compare the ensuing critical expo-
nents with those of the experimental perovskite manganites
samples that exhibit critical behavior near and away from
tricriticality.

In this paper, we carry out a Wilson-type RG scheme at one-
loop order and calculate the critical exponents in the leading
order of ε = dc − d, where the critical dimension turns out
to be dc = 4 + 2σ . We find that the critical exponents for
various values of σ for n = 3 in three dimensions with small
screening are in good agreement with experimental estimates
for a wide range of perovskite manganites as displayed in
Table II. Thus, it is evident that the model Hamiltonian with
such nonlocal mode-coupling interactions [Eqs. (1) and (2)]
contains a wide range of universality classes including the
tricriticality in perovskite manganites.

The paper is organized as follows. In Sec. II, we carry out
the renormalization-group scheme with the nonlocal model
Hamiltonian at one-loop order. The critical exponents are
calculated in the leading order of ε in Sec. III, where a
comparison of our analytical results with experimental findings
is also given. Finally, Sec. IV presents discussions and the
conclusions of the work.

II. RENORMALIZATION-GROUP SCHEME

Our starting point is the modified Ginzburg-Landau Hamil-
tonian given by Eq. (1), where we incorporated the effect of
long-range interactions in the quartic term. To carry out the
Wilsonian momentum shell RG scheme [1,4,8], we Fourier-
transform the order parameter field �(x) in d dimensions
as

φi(x) =
∫

ddk

(2π )d
φi(k) eik·x (3)
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TABLE II. Comparison of the critical exponents β, γ , and δ following from Eqs. (30), (31), and (32) for n = d = 3 and w = 0.001 with
experimental estimates obtained for various perovskite manganite compounds.

σ Experimental sample Ref. β γ δ

−0.499 0.250 1.000 4.999
La0.6Ca0.4MnO3 (PCa) [13] 0.25 ± 0.03 1.03 ± 0.05 5.0 ± 0.8
La0.6Ca0.4MnO3 (PC) [21] 0.248 0.995 4.896

Nd0.67Sr0.33MnO3 (PC) [18] 0.23 ± 0.02 1.05 ± 0.03 5.13 ± 0.04
La0.1Nd0.6Sr0.3MnO3 (PC) [19] 0.248 ± 0.006 1.066 ± 0.002

−0.463 0.257 1.015 4.936
La0.1Nd0.6Sr0.3MnO3 (PC) [19] 0.257 ± 0.005 1.12 ± 0.03 5.17 ± 0.02

−0.325 0.288 1.080 4.633
La0.5Ca0.3Ag0.2MnO3 (PC) [22] 0.288 ± 0.002 0.948 ± 0.008 4.90 ± 0.02

−0.300 0.295 1.094 4.577
La0.7Sr0.3MnO3 (SC b) [10] 0.295 ± 0.002

−0.243 0.311 1.129 4.454
La0.5Ca0.4Ag0.1MnO3 (PC) [22] 0.311 ± 0.003 1.146 ± 0.006 4.83 ± 0.01

−0.203 0.324 1.157 4.371
La0.67Sr0.16Ca0.17MnO3 (PC) [23] 0.324 ± 0.005 1.176 ± 0.03 4.415 ± 0.02

−0.193 0.328 1.164 4.351
La0.8Ca0.2MnO3 [20] 0.328 1.193 4.826

−0.150 0.344 1.199 4.268
Pr0.77Pb0.23MnO3 (SC) [17] 0.344 ± 0.001 1.352 ± 0.006 4.69 ± 0.02

−0.115 0.360 1.231 4.203
La0.8Ca0.2MnO3 (SC) [12] 0.36 1.45 5.03

−0.094 0.370 1.251 4.164
La0.7Sr0.3MnO3 (SC) [11] 0.37 ± 0.04 1.22 ± 0.03 4.25 ± 0.2

−0.095 0.370 1.250 4.166
La0.875Sr0.125MnO3 (SC) [15] 0.37 ± 0.02 1.38 ± 0.03 4.72 ± 0.04

−0.087 0.374 1.258 4.152
Nd0.6Pb0.4MnO3 (SC) [16] 0.374 ± 0.006 1.329 ± 0.003 4.54 ± 0.10

−0.039 0.400 1.311 4.067
La0.75Sr0.25MnO3 (SC) [14] 0.40 ± 0.02 1.27 ± 0.06 4.12 ± 0.33

−0.036 0.404 1.314 4.062
Pr0.70Pb0.30MnO3 (SC) [17] 0.404 ± 0.001 1.357 ± 0.006 4.73 ± 0.09

aPC stands for polycrystalline samples.
bSC stands for single-crystal samples.

leading to the expression for the model Hamiltonian as

H [�] =
n∑

i=1

∫
ddk

(2π )d
c0k2 + r0

2
|φi(k)|2

+
n∑

i=1

n∑
j=1

∫∫∫
ddk1

(2π )d
ddk2

(2π )d
ddk3

(2π )d

× u(−k1 − k2)φi(k1)φi(k2)

×φj (k3)φj (−k1 − k2 − k3), (4)

with the nonlocal coupling function u(−k1 − k2) given by
Eq. (2).

Following Wilson’s scheme, we eliminate the “fast” modes
in the momentum shell �/b � q � �, where b > 1 and �

is an ultraviolet cutoff to the momentum integrations. This
mode elimination process modifies the parameters of the
original Hamiltonian and yields an effective Hamiltonian in
terms of the “slow” degrees of freedom in the reduced range
0 � q � �/b. A subsequent rescaling procedure restores the
momentum to the full range 0 � q � �.

In carrying out this shell elimination procedure, we write
the two-point correlation function of the order parameter

as [5,6]

〈φi(q)φj (q′)〉0 = G0(q)δij (2π )dδd (q + q′), (5)

where

G0(q) = 1

c0q2 + r0
(6)

is the (bare) propagator in the momentum shell �/b � q � �.
Elimination of these short-wavelength fluctuations gener-

ates the Feynman diagrams shown in Fig. 1. The corresponding
self-energy integrals, obtained from their amputated parts
(excluding the external legs), are given by

�a(0) = 2n

∫
ddq

(2π )d
u(0) G0(q) (7)

and

�b(k) = 4
∫

ddq

(2π )d
u(−k − q) G0(q), (8)

where the prefactors are combinatorial factors, and the in-
tegrals are restricted to the momentum shell �/b � q � �.
These self-energy integrals yield the relevant corrections �r

and �c to the bare parameters r0 and c0, given by the expansion

�a(0) + �b(k) = 1
2�r + 1

2�c k2 + · · · (9)
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FIG. 1. Feynman diagrams representing the self-energy correc-
tions to r0 and c0. The wiggly lines represent u(0) in (a) and u(−k − q)
in (b); the internal solid lines represent correlation G0(q) between the
fast modes.

in the limit q � k. Employing the expansion

u(−k − q) = λ0

[(k + q)2 + m2]σ
= λ0

q2σ

[
1 − 2σ

k · q
q2

− σ
k2 + m2

q2
+ 2σ (σ + 1)

(k · q)2

q4
+ · · ·

]

(10)

in the same limit, we obtain from Eqs. (7), (8), and (9)

�r = 4nλ0

m2σ

Sd

(2π )d

[
(b2−d − 1)�d−2

c0(2 − d)
− r0

c2
0

(b4−d − 1)�d−4

(4 − d)

]

+ 8λ0
Sd

(2π )d

[
(b2σ+2−d − 1)�d−2σ−2

c0(2σ + 2 − d)

−
(

r0

c2
0

+ σm2

c0

)
(b2σ+4−d − 1)�d−2σ−4

(2σ + 4 − d)

]
(11)

and

�c = 8λ0

c0

Sd

(2π )d
σ (2σ + 2 − d)

d

(b2σ+4−d − 1)�d−4−2σ

(2σ + 4 − d)
.

(12)
It may be noted that the n-dependent correction to the bare
parameter r0 comes only from �a given by the first Feynman
diagram [Fig. 1(a)].

We also obtain the relevant corrections to the four-point bare
interaction vertex u(−k1 − k2). The corresponding one-loop
Feynman diagrams are shown in Fig. 2, and their amputated
parts (excluding the four external legs) are represented by the

FIG. 2. Feynman diagrams representing corrections to the vertex
u(−k1 − k2) at one-loop order.

integrals

�a(k1,k2) = −4n u2(−k1 − k2)
∫

ddq

(2π )d
G0(q)

×G0(−k1 − k2 − q), (13)

�b(k1,k2,k3) = −16u(−k1 − k2)
∫

ddq

(2π )d
u(q − k3)

×G0(q) G0(−k1 − k2 − q), (14)

and

�c(k1,k2,k3) = −16
∫

ddq

(2π )d
u(−k1 − q) u(q − k2)

×G0(q) G0(−k1 − k3 − q), (15)

where k1, k2, k3, and k4 = −k1 − k2 − k3 are the external
momenta carried by the four external legs in Fig. 2.

From Eqs. (13), (14), and (15), we see that �a and �b

share the form of the bare vertex u(−k1 − k2) in the original
Hamiltonian given by Eq. (4). Consequently, they contribute
as a correction �λ to the bare parameter λ0. On the other hand,
�c is irrelevant as it does not share the form of the bare vertex
u(−k1 − k2). This situation is quite unlike the SR case, in
which all three diagrams are found to be relevant. It is because
of this that the resulting expressions for the LR interaction
cannot directly lead to the SR results by substituting σ = 0.

To eliminate the short-wavelength fluctuations belonging
to the high momentum shell �/b � q � �, we expand the
integrands in the limit of vanishing external momenta, ki � q.
The relevant corrections to λ0, coming from the integrals �a

and �b, yield the correction �λ as

�λ = −4nλ2
0

m2σ

Sd

(2π )d

[
(b4−d−1)�d−4

c2
0(4 − d)

−2r0

c3
0

(b6−d − 1)�d−6

(6 − d)

]

− 16λ2
0

Sd

(2π )d

[
(b2σ+4−d − 1)�d−2σ−4

c2
0(2σ + 4 − d)

−
(

σm2

c2
0

+ 2
r0

c3
0

)
(b2σ+6−d − 1)�d−2σ−6

(2σ + 6 − d)

]
. (16)

Assuming self-similarity and powerlike falloff of the
correlation function at the critical point [5,6] and incorporating
the one-loop corrections, given by Eqs. (11), (12), and (16),
we obtain the recursion relations for the parameters r , c, and
λ as

r = b2−η(r0 + �r), c = b−η(c0 + �c),

λ = b4−d−2η+2σ (λ0 + �λ). (17)

Taking b = eδl , we construct the RG flow equations in the limit
δl → 0 from Eq. (17) for the scale-dependent parameters r(l),
c(l), and λ(l), and we arrive at

dr

dl
= (2 − η)r + 4nλSd

m2σ (2π )d

(
�d−2

c
− r

c2
�d−4

)

+ 8λSd

(2π )d

[
�d−2−2σ

c
−

(
r

c2
+ σm2

c

)
�d−4−2σ

]
, (18)

dc

dl
= −ηc + 8σ (2σ + 2 − d)λSd

d(2π )d
�d−4−2σ

c
, (19)
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and

dλ

dl
= (4 − d − 2η + 2σ )λ − 4nλ2Sd

m2σ (2π )d

(
�d−4

c2
− 2r

c3
�d−6

)
− 16λ2Sd

(2π )d

[
�d−4−2σ

c2
−

(
2r

c3
+ σm2

c2

)
�d−6−2σ

]
. (20)

Solving the above flow equations for the nontrivial fixed point (r∗,λ∗,c∗ = c), we obtain

r∗

c
= − (4 − d − 2η + 2σ )

{
4n
wσ + 8(1 − σw

c
)
}
�2

(2 − η)
{

4n
wσ + 16(1 − σw)

} − (4 − d − 2η + 2σ )
(

4n
wσ + 8

) (21)

and

λ∗

c2
= (4 − d − 2η + 2σ )�4−d+2σ

Sd

(2π)d
{

4n
wσ + 16(1 − σw)

} , (22)

where w = m2/�2 is a redefined dimensionless screening
parameter. A linear stability analysis around the nontrivial
fixed point yields the eigenvalues y1 and y2 as

y1 = 2 − η − (4 − d − 2η + 2σ )

(
4n
wσ + 8

)
[

4n
wσ + 16(1 − σw)

] (23)

and

y2 = d − 4 + 2η − 2σ. (24)

Here y1 and y2 correspond, respectively, to unstable and
stable eigendirections in the RG flow. We identify the upper
critical dimension dc from the marginal stability of the stable

eigenvalue y2, giving

dc = 4 + 2σ. (25)

The stability analysis coupled with the conditions y1 ≥ 0 and
y2 ≤ 0 impose restrictions on the allowed values of σ . For
d = n = 3, we find that the value of σ is restricted in the range
−0.50 ≤ σ ≤ 0.51 and, for d = 2 and n = 3, it is restricted in
the range −1.00 ≤ σ ≤ 0.16 for small values of the screening
parameter w. These stability ranges are somewhat insensitive
to the values of n and w. We shall see that the critical exponents
for many experimental perovskite manganite samples are
obtained in the negative range of σ for d = 3. In the following
section, we calculate the critical exponents in an ε expansion
scheme with the identification

ε = dc − d. (26)

III. CALCULATION OF CRITICAL EXPONENTS

We obtain the critical exponent ν, occurring in the corre-
lation length ξ ∼ |T − Tc|−ν , from the unstable eigenvalue y1

[given by Eq. (23)] using the relation ν = 1/y1, so that

ν = 1

2
+ ε

(
n

wσ + 2
)

2
[

n
wσ + 4(1 − σw)

]
{

1

2
+ 2σ

(σ + 2)
[

n
wσ + 4(1 − σw)

] − 4σ

}
− σε

2(σ + 2)
[

n
wσ + 4(1 − σw)

] − 8σ
+ O(ε2), (27)

with the expansion parameter ε = 4 − d + 2σ . The Fisher exponent η is obtained from Eq. (19) by setting dc/dl = 0, and we
find

η = − 2σε

(σ + 2)
[

n
wσ + 4(1 − σw)

] − 4σ
+ O(ε2). (28)

It is interesting to note that we obtain a nonzero value for the exponent η in the first order of ε. This is in contrast with the
calculation of Fisher, Ma, and Nickel [9], where η does not get any correction even up to O(ε′3), where ε′ = 2σ ′ − d.

Using Eqs. (27) and (28) and the well-known Fisher, Widom, Rushbrooke, and Josephson scaling laws [5,6,8,42], we calculate
the other critical exponents, namely the specific-heat exponent α, the spontaneous magnetization exponent β, the susceptibility
exponent γ , and the critical isotherm exponent δ, and we obtain

α = ε + 4

2
−(σ + 2)

[
1 + ε( n

wσ + 2)
n

wσ + 4(1 − σw)

{
1

2
+ 2σ

(σ+2)
[

n
wσ + 4(1−σw)

]−4σ

}
− σε

(σ + 2)
[

n
wσ + 4(1 − σw)

] − 4σ

]
+O(ε2),

(29)

β = σ+1

2
− ε

4

[
1+ 2σ (σ + 2)

(σ+2)
[

n
wσ + 4(1−σw)

] − 4σ
−

(
n

wσ +2
)
(2σ+2)

n
wσ +4(1−σw)

{
1

2
+ 2σ

(σ+2)
[

n
wσ + 4(1 − σw)

] − 4σ

}]
+O(ε2), (30)

γ = 1 + ε
(

n
wσ + 2

)
n

wσ + 4(1 − σw)

[
1

2
+ 2σ

(σ + 2)
[

n
wσ + 4(1 − σw)

] − 4σ

]
+ O(ε2), (31)

δ = σ + 3

σ + 1
+ ε

σ + 1

[
1

σ + 1
+ 2σ (σ + 2)

(σ + 1)
[
(σ + 2)

{
n

wσ + 4(1 − σw)
} − 4σ

]
]

+ O(ε2). (32)
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(a) (b)

FIG. 3. (Color online) Critical exponents (a) ν, η, α, β, and (b) γ , δ for n = 3 and d = 3 for three different values of the screening parameter
w. The solid, dashed, and dotted curves correspond to w = 0.0001, 0.001, and 0.01, respectively. The curves can be distinguished only for the
exponent α; they cannot be distinguished for the other exponents due to insufficient resolution.

We see that the analytical forms of the critical exponents,
given by Eqs. (27)–(32), depend on the parameters n, d, σ ,
and w. In these expressions, the terms containing w and n

do not vary strongly for different values of w and n. This is
demonstrated in the graphical plots in Fig. 3, where the critical
exponents show slow variation with respect to w for a range
of σ relevant to the experimental samples given in Table II.
In addition, we see that although the exponents ν, α, and β

undergo slight variation with respect to n (in the vicinity of
σ = 0), the exponents η, γ , and δ show insignificant variation,
as displayed in Fig. 4.

From our results, we see for the marginal case of ε = 0 in
d = 3 that the values of the critical exponents match almost
exactly with those of tricritical mean-field exponents [24],
namely α = 1

2 , β = 1
4 , γ = 1, and δ = 5. It may be noted

that this result for the tricritical point is independent of the
screening parameter w because it occurs in the O(ε) terms
in the ε expansions. The analytical results for the critical
exponents, following from Eqs. (30), (31), and (32), are
compared with the experimental estimates [10–23] in Table II.
To compare the experimental estimates with our theoretical
results for the critical exponents β, γ , and δ, we first match
the value of β. For a particular sample, we obtain from
Eq. (30) the experimental β value (up to three significant
figures) for a particular value of σ . Using this value of σ ,
we calculate the values of γ and δ (for the same sample)

from Eqs. (31) and (32), respectively. We find that for a range
of experimental values of β, the corresponding values of γ

and δ are comparable to those of the experimental values for
n = 3 in three dimensions for w = 0.001. The agreement of
our results with the experimental values indicates that the
nonlocal model Hamiltonian is capable of capturing a wide
range of universality classes for a wide variety of perovskite
manganite samples.

It may also be noted that if we had not taken the screening
explicitly into account in the model, the agreement for the
critical exponents would be greatly reduced over the wide
range of experimental samples. In particular, for samples away
from the tricritical mean-field behavior, we found that the
values of γ and δ obtained from a model without screening,
as in Ref. [52], would deviate farther from the experimental
numbers. This signifies that screening plays a fundamental role
in determining the critical exponents in perovskite manganites.

IV. DISCUSSION AND CONCLUSION

Employing Wilson’s RG scheme, we investigated the crit-
ical behavior of a modified Ginzburg-Landau model [Eq. (1)]
incorporating a nonlocal interaction in the quartic (�4) term
as suggested by Ma [5]. We modeled the interaction term
with a nonlocal character coupled with a screening parameter
m and an exponent σ [Eq. (2)]. As a result, we obtained

(a) (b)

FIG. 4. (Color online) Critical exponents (a) ν, η, α, β and (b) γ , δ for w = 0.001, and d = 3 for three different values of n. The dotted,
dashed, and solid curves correspond to n = 1, 2, and 3, respectively. The curves can be distinguished only for the exponents ν, α, and β; they
cannot be distinguished for the other exponents due to insufficient resolution.
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the renormalization corrections to the bare parameters r0,
λ0, and c0 in the model Hamiltonian. The ensuing RG flow
equations led to the existence of a nontrivial fixed point, and
the marginal stability of the stable eigenvalue gave the upper
critical dimension as dc = 4 + 2σ . We calculated the critical
exponents ν, η, α, β, γ , and δ at O(ε) via an ε expansion
in the parameter ε = dc − d, and we found that the screening
parameter w = m2/�2 plays some role in determining the
critical exponents. However, the variations of the critical
exponents with respect to w are slow, as is evident from the
graphical plots of the exponents in Fig. 3. In addition, although
the exponents ν, α, and β undergo slight variations with n in the
neighborhood of σ = 0 (as shown in Fig. 4), these variations
are insignificant compared to those of the short-range models,
namely the 3D Ising and 3D Heisenberg models.

We have compared our results with the experimentally
available estimates for the critical exponents β, γ , and δ, and
we found that our analytical estimates are in good agreement
with those of the experiments for a wide variety of perovskite
manganite samples, including those showing tricritical mean-
field exponents. We can consider the agreement to be very good
when we look at the nature of the approximation involved
in our RG calculations in that it is only at O(ε) and the
higher-order terms in ε are neglected. We have thus shown
that the leading order in ε captures the correct trend of
the critical exponents both near and away from tricriticality,
as observed experimentally in a wide range of perovskite
manganite samples. We expect more exact agreement with the
experimental numbers if we include the higher-order terms in
the ε expansion. However, that would require a vast amount of
calculations, probably up to four- or five-loop orders, so that
a meaningful Borel summation of the ε expansion could be
performed. We deem such a detailed and exact calculation
of critical exponents unnecessary at this stage as we are
interested in identifying the correct form of the Hamiltonian
capable of explaining the wide variety of universality classes
of perovskite manganites. Since our RG results, at O(ε),
have been able to capture a wide range of critical exponents
comparable with experiments, it is fair to guess that the
corresponding model Hamiltonian, given by Eqs. (1) and (2),
contains a wide diversity of universality classes relevant to
perovskite manganite samples.

It is interesting to note from the experiments that a change
in doping level x as well as the elements (R and/or A) in the
composition in perovskite manganites R1−xAxMnO3 lead to
different critical exponents. Different choices for R and A have
different atomic sizes and therefore produce different internal
stresses on the Mn-O-Mn bond [43–45]. This is characterized
by the tolerance factor f = (〈rA〉 + rO)/[

√
2(rMn + rO)] that

compares the Mn-O separation with the separation of the oxy-
gen atom and the A-site occupant. Thus, a change in either the
doping level (x) or the tolerance factor (f ) is found to lead to
different universality classes. Our analytical calculations with
the nonlocal model Hamiltonian are capable of reproducing
the experimental results for different values of the nonlocal
parameter σ , as shown in Table II. It appears that the model
parameter σ has a close connection with the experimental
parameters x and f . However, finding this connection seems
to pose further challenges because it requires the derivation
of the nonlocal model Hamiltonian from a more microscopic

Hamiltonian containing finer details that are to be eliminated as
irrelevant degrees of freedom to arrive at the (less microscopic)
nonlocal model Hamiltonian. This will be similar to the case
of justifying the GL model for superconductivity from the
microscopic BCS theory [46]. However, since our nonlocal
model Hamiltonian captures a wide range of experimental
observations, we shall not delve into such a justification of the
Hamiltonian from a more microscopic theory. This is in line
with the notions and practices in condensed-matter physics,
where the detailed microscopic origins of model Hamiltonians
are usually deemed unnecessary.

We would also like to note that the experiments performed
to study PM-FM phase transitions in perovskite manganites
were based on four different techniques, namely neutron
scattering [10], dc magnetization [11], ac susceptibility [15],
and specific-heat [13] measurements, followed by scaling
analysis with the Arrot plot, the modified Arrot plot [12,13], the
Kouvel-Fisher formalism, and the study of critical isotherms
[15,19]. However, measurably different results were ob-
tained from such experiments on the sample La0.7Sr0.3MnO3

[10,11,47,48]. Notably, four different sets of values for the crit-
ical exponents in the experiments were β = 0.295 ± 0.002 in
Ref. [10]; β = 0.37 ± 0.04, γ = 1.22 ± 0.03, and δ = 4.25 ±
0.2 in Ref. [11]; β = 0.45 ± 0.01, γ = 1.2, and δ = 3.901 in
Ref. [47]; and β = 0.45 ± 0.02 and γ = 1.08 ± 0.04 in Ref.
[48], showing significant variations in the critical exponents
for the same experimental sample. Similar disagreements
between experimental results were also observed in the sample
La0.8Ca0.2MnO3 [12,20] for which β = 0.36, γ = 1.45, and
δ = 5.03 in Ref. [12] and β = 0.328, γ = 1.193, and δ =
4.826 in Ref. [20]. Such disagreement was also observed
for the case of La0.7Ca0.3MnO3 [47,49] for which β = 0.14,
γ = 1.2, and δ = 1.22 ± 0.02 in Ref. [49] and β = 0.36
and γ = 1.2 in Ref. [47]. This indicates that additional
experimental studies with high-purity samples accompanied
by more refined data analysis are required to rectify such
experimental discrepancies.

In addition, we observe that the results β = 0.5 ± 0.02,
γ = 1.08 ± 0.03, and δ = 3.13 ± 0.20 for La0.8Sr0.2MnO3

[50] are close to the mean-field results (β = 1
2 , γ = 1, and

δ = 3) [5]. We note that the mean-field results cannot be
reproduced by the present nonlocal theory. Since the present
theory is an expansion about the tricritical point, it captures
the critical behavior near and around the tricritical point.
Moreover, the results of Ref. [49] cannot be explained by the
present theory as they deviate strongly from the Widom scaling
law, where the δ value is too low (δ = 1.22), with β = 0.14 and
γ = 0.81. Additionally, Ref. [51] presents the results for the
Griffith phase in La1−xCaxMnO3 for x = 0.21 with unusual
exponents β = 0.09 ± 0.01, γ = 1.71 ± 0.1, and δ = 20 ± 1.
In contrast, it may be mentioned that for a slightly different
value x = 0.2, this compound exhibits the usual behavior of
perovskite manganites as observed in Refs. [12,20].

Finally, we would like to conclude by noting that the
wide diversity in the critical behavior observed in perovskite
manganites poses a challenging task for its description by
means of a theoretical framework. As we have shown,
within the context of a phenomenological model Hamil-
tonian with a nonlocal screened coupling in the quartic
interaction term, it is possible to capture such diversity
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in the critical behavior for a wide range of experimental
samples. We hope that our results would inspire further
experimental work for further verification of the critical
exponents.
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(1996).
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