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Susceptibilities for the Müller-Hartmann-Zitartz countable infinity of phase
transitions on a Cayley tree
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We obtain explicit susceptibilities for the countable infinity of phase transition temperatures of Müller-
Hartmann-Zitartz on a Cayley tree. The susceptibilities are a product of the zeroth spin with the sum of an
appropriate set of averages of spins on the outermost layer of the tree. A clear physical understanding for these
strange phase transitions emerges naturally. In the thermodynamic limit, the susceptibilities tend to zero above
the transition and to infinity below it.
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I. INTRODUCTION

Forty years ago, Müller-Hartmann and Zitartz (MHZ) [1–3]
showed that the Ising ferromagnet on a Cayley tree has a
countable infinity of phase transitions of an unusual type.
Specifically, in the low temperature ordered phase, when
one traverses vertically across the zero-field region in the
magnetic field-temperature phase diagram, they showed that
the order of the phase transition can be anything between
1 and ∞ depending on the value of the temperature at
that point. Therefore, they dubbed them phase transitions of
continuous order. By identifying the values of temperature at
which the order acquires integer values, they also extracted a
countable infinity of phase-transitions in the low-temperature
phase. The MHZ work constitutes one of the classic examples
of a strange phase transition. Most of their work is rather
technical and mathematical, though, and a transparent physical
understanding of the meaning of these strange phase transitions
would be useful.

Although criticized as unphysical, the Cayley tree (or the
close cousin called Bethe lattice) is a popular geometric
structure on which innumerable studies continue to be carried
out in current times [4–10]. One reason is, of course, the avail-
ability of exact solutions for some models. Another important,
not often emphasized reason is that it simultaneously con-
tains one-dimension-like properties and infinite-dimension-
like properties, thus providing an interesting framework for
theoretical explorations. For example, the partition function
of the ferromagnet on a Cayley tree [11,12] is identical to
that of the one-dimensional chain (barring an inconsequential
constant factor), and yet a phase transition exists in the Cayley
showing infinite-dimensional character.

MHZ extract the order of the phase transition at various
points in the low-temperature phase by studying the leading-
order singularities of the full free-energy as a function of
field as it is taken to the zero limit. Here we show that a
direct transparent understanding of these phase transitions
may be obtained by the consideration of the pure zero-field
model, building on a “memory approach” that we emphasized
in recent work [13]. We were also partially propelled by
the recent exact solution of a one-dimensional long-range
ferromagnet, which admits an unusual phase transition of a
different type, namely mixed-order, which can simultaneously
show a discontinuous jump in magnetization (first-order-like)
and a diverging correlation-length (second-order-like) [14,15].

II. THE COUNTABLE INFINITY OF PHASE
TRANSITIONS OF MHZ

Figure 1 carries a schematic of the phase diagram of MHZ.
The gist of their approach is to make a careful detailed study
of the free energy F (H,T ). In a generic ferromagnetic system
with a phase transition, F (H,T ) is analytic at all points except
in the region shown in red: [H = 0,0 � T � TBP]. In this limit
the free energy is given by [2]

F (H,T )=F (0,T )+freg(H 2,T )+A(T )|H |κ , H → 0, (1)

where the regular part is a function of H 2 because of symmetry,
and the leading singular part A(T ) shows a power law behavior.
The unusual aspect of the Cayley tree lies in the fact that the
critical exponent κ varies continuously from 1 at T = 0 to
∞ [2] at the usual phase transition called the Bethe-Peierls
transition TBP. This behavior is in sharp contrast to most
commonly encountered phase transitions where κ remains a
constant (=1 for a first-order transition, 2 for a second-order
transition, and so on). By studying the points at which κ

takes integer values, they identify a countable infinity of phase
transitions that fit into the Ehrenfest classification of phase
transitions of integer power-order.

Here we point out that in fact a simple (albeit unusual)
set of susceptibilities identify the countable infinity of phase
transitions, and indeed a clear physical picture of the meaning
behind the phase transitions comes naturally out of them. The
susceptibilities turn out to be a product of the zeroth spin
with the sum of averages of appropriately grouped spins in the
outermost layer of the tree. Furthermore, we can work entirely
with the zero-field model, with no requirement of complicated
procedures or mathematical methods related to the application
of a tiny field followed by taking the zero-field limit.

III. THE MODEL

Following the notation of a recent piece of work involving
the author [13], we consider the following Hamiltonian:

H = −J
∑
〈i,j〉

σiσj + H
∑

j

σj , (2)

where the sum involves pairs of spins that are adjacent on
the tree (Fig. 2) with coordination number z and depth n. σi

are Ising variables that can take values ±1, and J is taken
to be positive to make it a ferromagnet. The solution, when
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FIG. 1. (Color online) Schematic of the countable infinity of
phase transitions of MHZ. The dots correspond to the countable
infinity of phase transitions (as one traverses vertically by varying
H through 0 at a given temperature in the ordered phase) of integer
order.

the external field is H = 0, is trivial and we quickly recall it.
We introduce new bond variables θij = σiσj . The θij can take
values ±1, which make them effectively spin variables too.
Specifying all the θij , and the spin at the root of the tree σ0,
completely defines the system. The Hamiltonian then takes the
following simple form:

H = −J
∑
〈i,j〉

θij . (3)

With the problem now rehashed into one with noninteracting
spins under the influence of an external magnetic field, the
partition function is readily written down [12]:

Z(J )Cayley = 2[2 cosh(βJ )]Nb = 2[2 cosh(βJ )]N−1, (4)

where Nb is the number of bonds and N is the number of spins,
and β = 1/T is the inverse temperature as usual in equilibrium
statistical mechanics. It follows directly [13,16–19] that the
correlation function between any two spins σi, σj is given by

〈σiσj 〉 = tanh(βJ )dij = adij , (5)

where we define a ≡ tanh(βJ ) for convenience, and dij is the
distance of the (unique) shortest path between the points i,j .

When the external field H is nonzero, there is no simple
closed-form expression; however, MHZ [1] write down an
infinite-series expansion for the free energy F (H,T ), and by
a careful, elaborate study of the order in field at which the
leading singularity occurs as one crosses zero-field at low-

FIG. 2. A Cayley tree of depth n = 3 and coordination number
z = 3.
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FIG. 3. (Color online) A plot of the magnetization m= 1
N

∑
i〈σi〉

versus magnetic field from Monte Carlo simulations of a finite-
sized system of coordination number z = 3 and depth n = 8.
Data are shown for different runs at the MHZ transition temper-
atures T2, T10, T1000, T∞ ≡ TBP. At higher transition temperatures,
the curve becomes smoother and smoother, indicating that in the
thermodynamic limit the singularity would occur at a higher-order
differentiation with respect to H . Since our system is finite, the data
are practically indistinguishable for T1000 and T∞.

temperature, they obtain the following countable infinity of
transition temperatures:

Tl = J

tanh−1
[

1
γ (l−1)/l

] , (6)

l = 1,2, . . . ,∞, with l being identified as the order of the
phase transition within the Ehrenfest scheme. T1 = 0 has a
first order phase transition and T∞ = TBP with order infinity
is the so-called “Bethe-Peierls” phase transition, which is the
temperature at which the system first orders as it is cooled
down from high temperature. Figure 3 shows a Monte Carlo
simulation carried out on a finite-sized system of depth n = 8
and coordination number z = 3. We studied the dependence
of magnetization as one crosses from negative to positive
magnetic field at some of the transition temperatures of
MHZ. It seems plausible that in the thermodynamic limit,
at a higher transition temperature, a greater derivative of the
magnetization with respect to field would diverge at H = 0.
Although the simulations were run on a finite-system the data
at T2 display a considerably sharp drop near H = 0 indicative
of the diverging derivative, since it is a second-order phase
transition.

Here we show that the above countable infinity of transition
temperatures may be directly obtained from the zero-field
model bypassing the elaborate complicated methods of study-
ing the infinite series and the order of divergence of the free
energy in the limit of H → 0. We do this by an explicit
construction of a special set of “susceptibilities” for the
transitions Tl .
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IV. CONSTRUCTION OF THE SUSCEPTIBILITIES
FOR THE MHZ TRANSITION TEMPERATURES

In order to construct the susceptibilities for the MHZ
transition temperatures, we choose the depth of the lattice to
be of the form n = lp, where l can take values 1, 2, 3, . . . ,∞.
Since we are interested in the p → ∞ limit, no loss of
generality is incurred. The number of spins in the nth layer
of the tree is Nn = z(z − 1)n−1 ≡ (1 + 1

γ
)γ n, where we have

defined γ ≡ (z − 1) for convenience. Let us denote the nth
layer spins by σn,1, σn,2, . . . , σn,Nn

in order from left to
right, as can be visualized in Fig. 2. Next, we group the
first Mp ≡ γ p spins of the nth layer and call their average

σ̃n,1 = 1
Mp

∑Mp

i=1 σn,i ; we then group the second Mp spins of the

nth layer and call their average σ̃n,2 = 1
Mp

∑2Mp

i=Mp+1 σn,i , and

so on. By this procedure we form Kn,p ≡ Nn

Mp
spin averages:

σ̃n,j = 1

Mp

jMp∑
i=(j−1)Mp+1

σn,i , j = 1,2,3, . . . ,Kn,p. (7)

Now we are ready to write down the susceptibilities.
Recalling that σ0 is the spin at the root node, the susceptibilities
are simply given by

Xl = σ0

Kn,p∑
j=1

σ̃n,j , (8)

which is our main result. To see that this leads to the MHZ
transition temperatures, let us invoke the two-point correlation
functions from the last section to compute the expectation
value:

〈Xl〉 =
〈
σ0

Kn,p∑
j=1

σ̃n,j

〉
(9)

=
Kn,p∑
j=1

1

Mp

jMp∑
i=(j−1)Mp+1

〈σ0σn,i〉

=
Kn,p∑
j=1

1

Mp

jMp∑
i=(j−1)Mp+1

an

= Kn,pan

=
(

1 + 1

γ

)
[γ (l−1)al]p. (10)

Therefore, we see that as p → ∞,

〈Xl〉 →
{

0 if γ (l−1)al < 1,

∞ if γ (l−1)al > 1.
(11)

γ a
l

(l−1) = 1 thus defines the lth transition temperature. These
are precisely the transition temperatures of MHZ as given in
Eq. (6) [1,20]. It is worth pointing out that for l = 2, this yields
the so-called (because of the appearance of the same in the
disordered version of the same Hamiltonian [13]) “spin-glass”
transition temperature TSG = J

tanh−1( 1√
γ

)
, and the l → ∞ limit

yields the Bethe-Peierls transition temperature TBP = J

tanh−1( 1
γ

)
.

V. CONCLUSIONS

We have introduced a set of “susceptibilities” that help
identify the mysterious MHZ transition temperatures on the
Cayley tree in a transparent manner. They are given by the
product of the zeroth spin with an appropriately averaged
sum of spins from the outermost layer in a Cayley tree. A
clear physical understanding of the phase-transitions emerges
naturally. We observe that our susceptibilities have the feature
that in the thermodynamic limit, they are zero above the phase
transition, but tend to infinity below it. We are able also
to identify the second-order phase transition T2 as the phase
transition known as the spin-glass phase transition in the
literature.

Furthermore, although we have concentrated on the Ising
ferromagnet here, the susceptibilites defined here are primarily
attached to the geometry of the lattice. Therefore, they should
be applicable much more generally; for example, with m-
component vector spins and the bonds could be ferromagnetic
or antiferromagnetic or disordered. Quantum models should
display similar transitions as well; a detailed investigation of
various models from this perspective would be desirable.

Finally, we remark that the statistical mechanics problem on
the tree has been connected with the problem of reconstruction
of information on trees in formal, extensive studies [21,22].
It would be interesting to understand if and how the MHZ
countable infinity of phase transitions would fit into this
generalized problem, which might be of interest to a broader
community.
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