
PHYSICAL REVIEW E 92, 012119 (2015)

Critical and near-critical phase behavior and interplay between the thermodynamic
Casimir and van der Waals forces in a confined nonpolar fluid medium

with competing surface and substrate potentials

Galin Valchev1,* and Daniel Dantchev1,2,†
1Institute of Mechanics-Bulgarian Academy of Sciences, Academic Georgy Bonchev St. building 4, 1113 Sofia, Bulgaria

2Max-Planck-Institut für Intelligente Systeme, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany

(Received 26 November 2014; revised manuscript received 26 April 2015; published 13 July 2015)

We study, using general scaling arguments and mean-field type calculations, the behavior of the critical
Casimir force and its interplay with the van der Waals force acting between two parallel slabs separated at
a distance L from each other, confining some fluctuating fluid medium, say a nonpolar one-component fluid
or a binary liquid mixture. The surfaces of the slabs are coated by thin layers exerting strong preference
to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing
local surface potentials ensuring the so-called (+,+) boundary conditions. The slabs, on the other hand,
influence the fluid by long-range competing dispersion potentials, which represent irrelevant interactions in
renormalization-group sense. Under such conditions, one usually expects attractive Casimir force governed by
universal scaling function, pertinent to the extraordinary surface universality class of Ising type systems, to
which the dispersion potentials provide only corrections to scaling. We demonstrate, however, that below a given
threshold thickness of the system Lcrit for a suitable set of slabs-fluid and fluid-fluid coupling parameters the
competition between the effects due to the coatings and the slabs can result in sign change of the Casimir force
acting between the surfaces confining the fluid when one changes the temperature T , the chemical potential
of the fluid μ, or L. The last implies that by choosing specific materials for the slabs, coatings, and the
fluid for L � Lcrit one can realize repulsive Casimir force with nonuniversal behavior which, upon increasing
L, gradually turns into an attractive one described by a universal scaling function, depending only on the
relevant scaling fields related to the temperature and the excess chemical potential, for L � Lcrit. We present
arguments and relevant data for specific substances in support of the experimental feasibility of the predicted
behavior of the force. It can be of interest, e.g., for designing nanodevices and for governing behavior of
objects, say colloidal particles, at small distances. We formulate the corresponding criterion for determination
of Lcrit. The universality is regained for L � Lcrit. We also show that for systems with L � Lcrit, the capillary
condensation phase diagram suffers modifications which one does not observe in systems with purely short-ranged
interactions.
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I. INTRODUCTION

When a fluctuating field is confined by material bodies,
effective forces arise on them. This is due to the fact that the
bodies impose boundary conditions on the medium, depending
on their geometry, mutual position, and material properties,
which leads to a modification of the allowed fluctuations in the
medium. The last leads to a dependence of the ground state,
or the thermodynamic potential of the system (say the free
energy) on the geometry of the system and on the distances
between its (macroscopic) components. In order to change
these distances, one has to apply a force that depends on the
induced change of the allowed fluctuations. If the fluctuations
are long ranged, the corresponding forces are also long ranged.
The existence of such long-ranged fluctuation mediated forces
is called the Casimir effect and the corresponding forces,
Casimir-type forces [1–4], after the Dutch physicist Hendrik
Casimir who in 1948 predicted an attractive force between two
parallel perfectly conducting metal plates [1] separated by a
finite gap L in vacuum at zero temperature. In order for the
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force to be long ranged (i.e., to decay in a power law and not in
an exponential with the distance way), the interactions in the
system have to be mediated by massless excitations: photons,
Goldstone bosons, acoustic phonons, etc. Considered in this
general form, the Casimir effect is a subject of investigations in
condensed matter physics, quantum electrodynamics, quantum
chromodynamics, and cosmology. The results are summarized
in an impressive number of reviews [5–34].

When the fluctuating field is the electromagnetic one,
the effect is known as the quantum electrodynamical (QED)
Casimir effect. There, the Casimir force is caused by zero-point
and thermal fluctuations of the electromagnetic field. In first
approximation, it depends only on the velocity of light c,
Planck’s constant �, the temperature T , and the separation
distance between the bodies L, i.e., this force to a great extent
is universal. A more advanced theory, the so-called Lifshitz
theory, reveals the dependence of the Casimir force on the
material properties of the bodies [35–37] and geometry of
their boundary surfaces [38,39].

Thirty years after Casimir’s prediction, Fisher and de
Gennes suggested that the fluctuating medium, confined
between the bodies, can be a fluid, the fluctuating field being
the field of its order parameter, in which the interactions
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in the system are mediated not by photons but by different
type of massless excitations such as critical fluctuations or
Goldstone bosons (spin waves). The corresponding Casimir
effect is known as the thermodynamic Casimir effect [4].
When the confined fluid approaches its critical point, the
corresponding fluctuations are the critical fluctuations of the
order parameter and then the effect is usually called critical
Casimir effect. In first approximation, the thermodynamic
Casimir effect depends only on the gross features of the
system, its dimensionality d and the symmetry of the ordered
state n (both defining the so-called bulk universality class of
the system), and on the boundary conditions (determined
by the surface universality classes). Therefore, to a great extent
the thermodynamic Casimir force is also universal. So far,
the critical Casimir effect has enjoyed two general
reviews [28,29] and some concerning specific aspects
of it [30–34].

Currently, the Casimir effect is an object of intensive
studies both in its original formulation due to Casimir as
well as in its thermodynamic manifestation. In this article,
we will report theoretical results dealing with the critical
Casimir effect. Let us note that the critical Casimir effect
has been already directly observed, utilizing light scattering
measurements, in the interaction of a colloid spherical particle
with a plate [40], both of which are immersed in a binary liquid
mixture. The effect has been also studied in 4He [41,42], as
well as in 3He-4He mixtures [43] in the context of forces
that determine the properties of a film of a substance in
the vicinity of its bulk critical point. In Refs. [44,45], one
has performed measurements of the Casimir force in thin
wetting films of binary liquid mixture. On the theoretical
side, the effect has been studied via exact calculations in the
two-dimensional Ising model [46–55], the three-dimensional
spherical model [56–64], via conformal-theoretical meth-
ods [65–71], within mean-field type calculations on Ising
type [72–76] and XY models [78], through renormalization-
group studies via ε expansion [79–86], and via fixed dimension
d techniques [85–87] of O(n) models, as well as via Monte
Carlo calculations [77,88–101]. The fluctuation of importance
in all of the above mentioned models is of thermal origin
since all these models possess nonzero critical temperature. In
some systems, however, certain quantum parameters govern
the fluctuations near their critical point which is usually close
to or at the zero temperature [102–105]. In this particular case,
one speaks of a quantum critical Casimir effect [29,106,107].

The rapid progress in nanotechnology has resulted in
the growth of interest in fluctuation-induced phenomena,
which play a dominant role between neutral nonmagnetic
objects at short separation distances (below a micrometer).
The van der Waals and QED Casimir forces, both known
under the generic name dispersion forces, play a key role in
microelectromechanical and nanoelectromechanical systems
(MEMS and NEMS) [108–110] operating at such distances.
Indeed, upon scaling down devices, the dispersion forces
can induce some usually undesirable nonlinear behaviors
in such systems [111]. Irreversible phenomena appear such
as stiction (i.e., irreversible adhesion) or pull-in due to
mechanical instabilities [112,113]. Therefore, the ability to
modify the electrodynamical manifestation of the Casimir
interaction can strongly influence the development of MEMS

and NEMS. Several theorems seriously limit, however, the
possible search of repulsive QED Casimir forces [114–116].
Currently, apart from some suggestions for achieving QED
Casimir repulsion in systems out of equilibrium [21,117–125],
the only experimentally well verified way to obtain such
repulsive force is to have interaction between two different
materials characterized by dielectric permittivities ε1 and ε2

such that [35–37]

ε1 < εM < ε2 (1.1)

along the imaginary frequency axis, with εM being the
dielectric permittivity of the medium in-between them. In
Refs. [126–131], QED Casimir repulsion was indeed observed
experimentally for the sphere-plate geometry.

In this article, we study the interplay between the critical
Casimir force and the van der Waals one in a system composed
out of two flat parallel slabs both immersed in a critical fluid.
Let us note that both the critical Casimir and van der Waals
forces are fluctuation induced ones but due to the fluctuations
of different entities. For terminological clarity, let us also
remind that in colloid sciences fluid mediated interactions
between two surfaces or large particles are usually referred
to as solvation forces [46,132,133]. Thus, we study here a
particular case of such a force when the fluid is near its critical
point. In our system, we suppose that the slabs are coated by
thin layers of some substances, confining either a nonpolar
one-component fluid or a nonpolar binary liquid mixture. We
suppose that the liquid phase of the one-component fluid
or one of the components of the binary liquid mixture are
strongly adsorbed by both coating layers, i.e., they ensure the
so-called (+,+) boundary conditions. The slabs, on the other
hand, influence the fluid by long-range competing dispersion
potentials. In the case of a simple fluid, these potentials
increase the adsorption of the fluid near one of the surfaces,
leading to a preference there of its liquid phase, and decrease
it near the other one. In the case of a binary fluid mixture,
the substrates prefer one of the components near the top
and the other one near the bottom of the system. We will
demonstrate that this experimentally realizable competition
between the effects due to the coatings and the slabs can
result in interesting effects such as sign change of the Casimir
force, acting between the surfaces confining the fluid when
one changes t , μ, or L. The last facts can potentially be used
in designing nanodevices and for governing the behavior of
objects at small, below micrometer, distances.

If a fluid system possesses a surface, it breaks the spatial
symmetry of the bulk system. The quantitative effects of the
presence of a surface on the thermodynamic behavior of the
system depend on the penetration depth of this symmetry
breaking effect into the volume. There are two phenomena
which increase the surface effects: long-range interactions
and long-range correlations. They can act separately, or
simultaneously, which leads to an interesting interplay of the
effects due to any of them [74,134–137]. The penetration
depth due to the correlations is set by the correlation length
ξ of the order parameter of the system; ξ becomes large, and
theoretically diverges, in the vicinity of the bulk critical point
(Tc,μc): ξ (T → T +

c ,μ = μc) � ξ+
0 t−ν , t = (T − Tc)/Tc, and

ξ (T = Tc,μ → μc) � ξ0,μ|�μ/(kBTc)|−ν/�, �μ = μ − μc,
where ν and � are the usual critical exponents. If the system
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is made finite, e.g., by the introduction of a second wall, the
behavior of the fluid is further enriched. When ξ becomes
comparable to the characteristic system size, say L, the size
dependence of thermodynamic functions enters through the
ratio L/ξ , i.e., takes a scaling form given by the finite-size
scaling theory [29,138–142] that incorporates, inter alia, shift
of the critical point of the system [143–147]. Below Tc,
if the confining walls of the film geometry consist of the
same material, one encounters the phenomenon of capillary
condensation [74,132,147–149] where the confinement of the
fluid causes, e.g., the liquid vapor coexistence line to shift
away from the coexistence line of the bulk fluid into the
one-phase regime. We will demonstrate in this article that in the
envisaged realization of our system depending on the material
properties of the slabs the phase diagram of the finite system
might essentially differ from that one of the well studied case
of a system with short-ranged type interactions and strongly
adsorbing surfaces.

The article is arranged as follows. In Sec. II, we recall and
comment on the finite-size behavior of systems with dispersion
forces extending the known facts to the expected behavior of
the Casimir and the net forces when they act between walls
being semi-infinite slabs coated by some thin substances.
By doing so, we especially pay attention to the conditions
under which the effects stemming from these interactions
are relevant. Section III presents the corresponding lattice
gas models suitable for the investigation of fluid media with
account of the long-ranged van der Waals interactions. Here,
we identify the main coupling parameters characterizing the
interactions in the systems, and in Sec. IV the equation for
the equilibrium profile of the finite-size order parameter is
obtained, which we later use to calculate the forces of interest.
Section V presents the numerical results for the behavior
of the investigated forces followed by Sec. VI where the
phase behavior of the considered type fluid system is briefly
discussed. The experimental feasibility of the predicted effects
is discussed in Sec. VII. Here, we also comment on the
possible application of our findings in design of nanodevices
and for governing the behavior of objects, say colloidal
particles, at small distances. The article ends with a summary
and discussion section, Sec. VIII. Important technical details
concerning the Hamaker term for a van der Waals system
of two different substances separated by a fluid medium are
presented in the Appendix.

II. THERMODYNAMIC CASIMIR FORCE IN A
NONPOLAR FLUID FILM SYSTEM WITH

DISPERSION FORCES

Let us consider some fluid medium confined between two
parallel slabs of some materials S1 and S2. Any of the slabs
are coated by thin solid films of some other substances L1 and
L2, respectively (see Fig. 1). Let the slabs be situated at some
distance L from each other. We suppose that the thicknesses
of the coating films are negligible. In the remainder of the text,
we are going to designate each slab and the thin solid film that
coats it as a “wall” and refer to any of its two components
separately only when this is necessary.

If the fluid medium is in contact with a particle reservoir
with a chemical potential μ, the grand canonical potential

FIG. 1. (Color online) Schematic depiction of a finite-size fluid
system, consisting of two parallel slabs of some substances S1

and S2, coated by thin layers of some other substances L1 and
L2, respectively, confining some fluid medium M, a nonpolar
one-component fluid [as an example we depicted the carbon dioxide
molecules (CO2)] (a) or a binary mixture (b) composed out of the
molecules of the nonpolar liquids A and B [the depicted examples
include tetrachloroethene (C2Cl4), as the substance A, and benzene
(C6H6), as the substance B]. The confined fluid medium is considered
embedded on a lattice in which (a) some nodes are occupied by a
particle and others are not, thus depicting the “liquid” and “gas” states,
respectively, at some values of fluid temperature T and chemical
potential μ, or (b) some of the nodes are occupied by a molecule
from the substance A (the “liquid” state) and the rest are occupied
by the molecules belonging to the species B (“gas” state). The
confining walls impose on the fluid medium boundary conditions
of strong adsorption on the coating layers, i.e., the nearest to the
coating substances layers are entirely occupied by the particles of
the one-component fluid or if the medium is a binary liquid mixture,
by the particles of one of its components (in the presented figure we
choose the molecules of the species A).

�(τ )
ex (L|T ,μ) of this medium in excess to its bulk value

A Lωbulk(T ,μ) depends on L and, thus, one can define the
effective force F

(τ )
tot (L|T ,μ) per cross sectional area A and

kBT , due to the fluctuations of the medium and dispersion
interactions in it as

βF
(τ )
A,tot(L|T ,μ) ≡ f

(τ )
tot (L|T ,μ) = −β

∂ω(τ )
ex (L|T ,μ)

∂L
, (2.1)

where the superscript τ designates the boundary conditions
which the confining walls impose on the fluid medium
(see above), ω(τ )

ex (L|T ,μ) = ω(τ )(L|T ,μ) − Lωbulk(T ,μ) =
�(τ )

ex (L|T ,μ)/A is the excess grand canonical potential per
unit area A , �(τ )(L|T ,μ) = A ω(τ )(L|T ,μ) is the total grand
canonical potential, ωbulk(T ,μ) is the density of the bulk grand
canonical potential, and β = 1/(kBT ) [150]. Let us stress that,
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as pointed out in Ref. [74], one should keep in mind that the
force ftot(L|T ,μ) [see Eq. (2.1)] depends on how one defines
the thickness of the film. This implies that a quantitative
comparison between experimental data and theory is only
possible if the data are accompanied by a precise definition
of what L is.

Away from the critical temperature of the system it is
customary to write the force acting between the plates of the
fluid system in the form

ftot(L|T ,μ) � (σ − 1)βHA(T ,μ)L−σ ξσ−d
ret , (2.2)

where one normally considers the case d = σ and omits the ap-
parent dependence on the so-called retardation length [41,151]
ξret. Here, HA is the Hamaker term, whose dependence from the
temperature and chemical potential is given by the so-called
Hamaker constant [52,152]

AHam(T ,μ) = −12πHA(T ,μ). (2.3)

The Hamaker constant, as it is clear from above, is a constant
only in the sense that it is L independent. It depends on the
temperature, chemical potential, and on the material properties
of the fluid medium and the walls. The factor 12π in Eq. (2.3)
is introduced there due to historical reasons, according to
which the interaction energy between two substrates at a finite
separation L in the case of standard van der Waals interaction
(i.e., d = σ = 3), away from any phase transition region,
is [52,152]

ωex(L|T ,μ) = − 1

12π
AHam(T ,μ)L−2. (2.4)

The Hamaker term takes into account the leading L-dependent
parts of the (i) direct interaction between the slabs As1,s2 , (ii)
between each slab and the fluid medium As1,l and As2,l , as well
as the (iii) interactions between the portion of constituents of
the fluid medium situated within the cavity bounded by the
substrates Al , i.e.,

HA(T ,μ) = Al(T ,μ) + As1,s2 (T )

+As1,l(T ,μ) + As2,l(T ,μ). (2.5)

Note that in Eqs. (2.2)–(2.5), both the slabs and the fluid
medium are characterized by their bulk properties at the given
temperature and chemical potentials.

Near the critical temperature Tc of the bulk system, Eq. (2.2)
is no longer valid since the critical fluctuations of the order
parameter lead to new contribution to the total force called
thermodynamic (critical) Casimir force (see following). For
such a system, following Ref. [74], near the bulk critical point
Eq. (2.1) can be written in the form

ftot(L|T ,μ) � L−dXcrit[xt ,xμ,xl,{xsi
,i = 1,2},xg]

+ (σ − 1)βHA(T ,μ)L−σ ξσ−d
ret . (2.6)

In Eq. (2.6), Xcrit is dimensionless, universal scaling func-
tion, xt = t(L/ξ+

0 )
1/ν

and xμ = β�μ(L/ξ0,μ)�/ν are the
temperature and field relevant scaling variables, respectively,
while xl = (L/ξ+

0 )
−�l , xsi

= si(L/ξ+
0 )

−�s
, i = 1,2, and

xg = g� (L/ξ+
0 )

−�
are irrelevant in the renormalization-group

sense scaling variables associated with the interactions in the
system. The freedom of choosing the precise definition of what

L is in systems with boundaries leads to the formal necessity to
write L as L + L0, with L0 being a microscopic length. That
will lead to further scaling corrections proportional to L−1.
Since in this article we will keep in all calculated quantities
only their leading L dependence, we refrain from further
refinement of the scaling ansatz (2.6). By comparing Eqs. (2.2)
and (2.6) one immediately concludes that Xcrit tends to zero
away from the critical point, i.e., when at least one of the
relevant scaling parameters |xt | and |xμ| becomes large, i.e.,
when |xt | � 1 and/or |xμ| � 1.

As it is well known, the critical behavior of simple fluids
and of binary liquid mixtures is described within the Ising
universality class which determines the values of the critical
exponents � ≡ β + γ and ν ones the dimensionality of the
system d is fixed. When d = 3, this universality class is
characterized by critical exponents [153,154]

ν = 0.63002(10), β = 0.3265(3),

γ = 1.2367(15), θ = �ν = 0.524(4). (2.7)

In order to better reflect the actual properties of the nonpolar
fluids, instead of considering nearest-neighbor interactions,
we assume long-ranged pair ones between the fluid particles,
decaying asymptotically ∼J lr−d−σ for distances r between
each other, and substrate potentials ∼ J si ,lz−σ , i = 1,2, acting
on the fluid particles at a distance z from each of the
two slabs. We recall that when σ > 2 systems governed
by such long-range interactions, usually termed subleading
long-ranged interactions [155,156], also belong to the Ising
universality class characterized by short-ranged forces [157].
The last implies, among the others, that the critical exponents,
e.g., do not depend on σ for such type of interactions. An
important representative of such type of interactions are the
nonretarded dispersion interactions with d = σ = 3, which are
one of the three types of van der Walls interactions. By varying
the ratio between the strengths of the long-ranged J l and the
short-ranged J l

sr contributions, one can quantitatively probe the
importance of the long-ranged parts of the interactions within
the fluid medium and study potential experiments in colloidal
systems which allow for a dedicated tailoring of the form of
the effective interactions between colloidal particles.

In Eq. (2.6), � is the standard correction-to-scaling
exponent for short-range systems, while �l = σ − (2 − η)
and �s = σ − (d + 2 − η)/2 are the correction-to-scaling ex-
ponents due to the long-range parts of the interaction potentials
between the constituents of the fluid medium and those of
the confining walls. Further, L-dependent contributions to the
total forces ftot such as next-to-leading-order contributions
to the Hamaker terms or higher order corrections to scaling
are neglected because they are smaller than those captured in
Eq. (2.6). The exponent η, which appears in the expressions for
�l and �s , is the standard one characterizing the decay of the
bulk two-point correlation function at the critical temperature,
g� is the (dimensionless) scaling field associated with the
Wegner-type corrections, while  and si, i = 1,2, are dimen-
sionless nonuniversal coupling constants:  is proportional
to the strength J l of the long-range part of the interaction
potential between the particles of the fluid, whereas si , i = 1,2,
are proportional to the contrast between the potentials of the
bounding slabs and those in the fluid medium (see following).
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For systems belonging to three-dimensional Ising universality
class with “genuine” nonretarded van der Waals interaction,
one has d = σ = 3 and η = 0.03627(10) [153]. This leads to
�l � 1.03, �s � 0.52, and � = 0.832(6) [153]. Within the
mean-field theory with d = σ = 4 and η = 0 one has, instead,
�l,MF = 2 and �s,MF = 1. One then has

ftot(L|T ,μ)L4 � Xcrit(. . .) + 3βHA(T ,μ), (2.8)

where all critical exponents take their mean-field values β =
ν = 1

2 , γ = 1, � = 3
2 .

The peculiarities of the scaling theory for systems with dis-
persion forces are described in Refs. [59,74,134,135,155,156].
One obtains that despite that these systems do belong to the
Ising universality class with short-ranged forces, the finite-size
quantities decay algebraically with L towards their bulk values,
and not in an exponential in L way, when L � ξ ln(ξ/a0)
even for ξ,L � a0, where a0 is the characteristic distance
between the molecules of the fluid system (for more detailed
explanation, see Ref. [158] and Fig. 1 there). In this regime,
the dominant finite-size contributions to the free energy and
to the force between the walls bounding the system stem
from the long-ranged algebraically decaying parts of the
interaction potentials. One can formulate a criterion clarifying
when the long-ranged tails of the interactions can not be
disregarded even in the critical region of the finite system.
Neglecting the thickness of the coating layers, for the system
under consideration, the corresponding criterion states that the
long-range tails of the interactions can be disregarded only
when [59,74,135]

2σ (|s1| + |s2|)[L/ξ0,μ]�/ν−σ � 1. (2.9)

Using the scaling relations, the above can be formulated as
a constraint on the thickness of the system under study. One
obtains that when L � Lcrit, where

Lcrit = ξ0,μ[2σ (|s1| + |s2|)]ν/β, (2.10)

the effects of the long-ranged tails of the interaction can be
neglected within the critical region of the finite system. For
d = σ = 3 and with β and ν from Eq. (2.7) for the three-
dimensional Ising model, one obtains

Lcrit � 55ξ0,μ(|s1| + |s2|)1.923. (2.11)

We conclude that for moderate values of L, i.e., when L �
Lcrit, the behavior of the Casimir force can strongly depend
on the details of the fluid-fluid {the amplitude ξ0,μ depends on
the details of the fluid-fluid interaction [see Eqs. (4.15) and
(4.17) in Ref. [74] and the text therein]} and substrate-fluid
interactions which, as it turns out, can influence even the sign
of the force. For large L, i.e., for L � Lcrit, the behavior of
the force shall approach the one of the short-ranged system.
The last can be easily seen from Eq. (2.6) by simply expanding
then the scaling function Xcrit

ftot(L|T ,μ) � L−d
{
Xsr

crit(xt ,xμ) + xlX
l
crit(xt ,xμ)

+ 1
2

[
xs1X

s1
crit(xt ,xμ) + xs2X

s2
crit(xt ,xμ)

]
+ xgX

g
crit(xt ,xμ)

}+(σ−1)βHA(T ,μ)L−σ ξσ−d
ret .

(2.12)

Here, Xsr
crit originates from the short-range interactions [see

Eqs. (4.10)]. It is well known that Xsr
crit < 0, i.e., the force

is attractive, under (+,+) boundary conditions. Xsr
crit provides

the leading behavior of the force near the bulk critical point
(xt = 0, xμ = 0). There, Xl

crit, X
si

crit, and X
g
crit represent only

corrections to the leading L dependence. The reader can refer
for a detailed comment on that matter to Ref. [74] (see also
Ref. [59] for the properties of Xl

crit). The validity of the
proposed criterion as well as the statements made beneath
it are well illustrated on Fig. 2.

The contribution of the dispersion forces to the total
effective force ftot can be distinguished from that of the
critical Casimir force by its temperature dependence because
the leading temperature dependence of the former does not
exhibit a singularity. Thus, one has

ftot(L|T ,μ) = f
(reg)
tot (L|T ,μ) + f

(sing)
tot (L|T ,μ), (2.13)

where

fvdW ≡ f
(reg)
tot (L|T ,μ) (2.14)

and

βFA,Cas(L|T ,μ) ≡ f
(sing)
tot (L|T ,μ). (2.15)

One expects that near the bulk critical point

βFA,Cas(L|T ,μ) = L−dXCas(xt ,xμ, . . .), (2.16)

where XCas is a scaling function that for large enough L (see
following) approaches the scaling function of the short-ranged
system Xsr

Cas(xt ,xμ). From Eqs. (2.6) and (2.13)–(2.16) it
follows that the scaling function of the critical Casimir force
XCas is proportional to the sum of Xcrit and the singular part of
the Hamaker term.

We will often compare the behavior of the system with
subleading long-ranged interactions present with this one of a
system with purely short-ranged interactions which will serve
as a reference system. In such a purely short-range system, one
has HA = 0. Then, at the bulk critical point (T = Tc, μ = μc)
the leading term of the thermodynamic Casimir force between
the slabs bounding the fluid has the form

F
(τ )
A,Cas(L|Tc,μc) = (d − 1)�(τ )(d)

kBTc

Ld
, (2.17)

where Xsr
crit(0) = (d − 1)�(τ )(d). Here, �(τ )(d) = O(1) is a

universal dimensionless quantity, called Casimir amplitude,
which depends on the bulk and surface universality classes
(specified by the boundary conditions τ ). Since the Casimir
force is proportional to kBTc, the interaction between the
walls can become rather strong in a system with high critical
temperature such as, e.g., in classical binary liquid mixtures.
Note that the sign of the force depends on the sign of the
Casimir amplitude �(τ )(d) which, on its turn, depends on the
boundary conditions τ . According to the usual convention,
negative sign corresponds to attraction, while positive sign
means repulsion of the surfaces bounding the system.

The experimental and theoretical evidences accumulated
until now support the statement that the Casimir force is
attractive when the boundary conditions on both plates are the
same, or similar, and is repulsive when they essentially differ
from each other, e.g., when in the case of a one-component
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FIG. 2. (Color online) Behavior of the scaling function Xcrit(xt ,xμ) in a d = 3 dimensional confined fluid system. On (a) and (b) the
parameters reflecting the substrate-fluid interactions have values s1,c = 1.0 and s2,c = −1.0, while on (c) and (d) we took s1,c = s2,c = −1.0.
In all four cases, the parameter reflecting the role of the long-ranged fluid-fluid interaction is λ = 2.0. The considered separations between the
confining walls are L = 20 ( ), L = 90 (– – –), and L = 800 ( ). In (a) and (c), the functional dependence on the temperature scaling
variable xt at �μ = 0 is visualized while in (b) and (d) the dependence on the field one xμ at T = Tc is presented. As it can be seen for
L � Lcrit � 90, the van der Waals interactions between the walls and the fluid medium become irrelevant and the scaling function for a fluid
system with L = 800 ( ) is very similar in shape to a short-range one ( ). Due to the positive substrate-fluid parameter in cases (a)
and (b), this effect is more pronounced than in (c) and (d). For smaller separations L = 20 ( ) the effect of the long-range van der Waals
interactions becomes relevant everywhere, including the critical region of the system where the scaling function changes its sign twice [see
(b) and (c)] or even three times [see (d)]. In case (a), we observe that while for L = 20 ( ) as a function of xt at xμ = 0 the corresponding
force is everywhere repulsive, it becomes under enlarging L everywhere attractive, say, for L = 800 ( ), as in the case of a system with
completely short-ranged interactions ( ). When μ = μc, the curve for the short-ranged interactions depicts the numerical evaluation of the
exact analytical result given by Eq. (4.10), while for T = Tc this curve is evaluated within the presented mean-field theory.

fluid one of the surfaces adsorbs the liquid phase of the fluid
while the other prefers the vapor phase. It is instructive to
go back to the explicit physical units in Eq. (2.17) for the
physically most relevant case of d = 3. One has

F
(τ )
A,Cas(L) � 8.1 × 10−3 �(τ )(d = 3)

(L/μm)3

Tc

Troon

N

m2
, (2.18)

where Troom = 20 ◦C (293.15 K). Sine as discussed above, for
most systems and boundary conditions �(τ )(d) = O(1), when
Tc � Troom the thermodynamic Casimir force, for some space
separation L, will be of the same order of magnitude as the
quantum one

F
QED
A,Cas(L) = − π2

240

�c

L4
� − 1.3 × 10−3 1

(L/μm)4

N

m2
, (2.19)

and they both shall be significant and consequently measurable
at or below the micrometer length scale.

We turn now to description of the model and the procedure
under which our results have been obtained.

III. MODEL

We are going to utilize the same type of model already used
in Refs. [74,134] but amended to take into account the specific
features of the system considered in this article. Among them
is the role of the two competing substrate potentials. Here,
in order to introduce the notations needed further, we briefly
recall the basic expressions of that model paying a bit more
attention only to difference of the current model with that one
studied in Refs. [74,134].

We consider a lattice-gas model of a fluid confined between
two planar walls, separated at a distance L from each other,
with grand canonical potential �[ρ(r)] given by

�[ρ(r)] = kBT
∑
r∈M

{ρ(r) ln[ρ(r)] + [1 − ρ(r)] ln[1 − ρ(r)]}

+ 1

2

∑
r,r′∈M

ρ(r)wl(r − r′)ρ(r′)

+
∑
r∈M

[V (s1|l|s2)(z) − μ]ρ(r), (3.1)
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where M is a simple cubic lattice in the region occupied by
the fluid medium ∞d−1 × [0,L] and V (s1|l|s2)(z) is an external
potential that reflects the interactions between the confining
walls and the constituents of the fluid, given by

V (s1|l|s2)(z) = −ρs1J
s1,l
sr δ(z) − ρs2J

s2,l
sr δ(L − z)

+ vs1 (z + 1)−σ + vs2 (L + 1 − z)−σ , (3.2)

where vsi
= −G(d,σ )ρsi

J si ,l , i = 1,2, with

G(d,σ ) = 4π (d−1)/2 �
(

1+σ
2

)
σ�

(
d+σ

2

) . (3.3)

This type of functional can be viewed as a modification of
the model utilized by Fisher and Nakanishi [143,159] in their
mean-field investigation of systems governed by short-range
forces.

In Eq. (3.1), the terms in curly brackets multiplied by
kBT correspond to the entropy contributions to the total
energy, wl(r − r′) = −4J l(r − r′) is the nonlocal coupling
(interaction potential) between the constituents of the confined
medium, and μ is the chemical potential. Here and in the
remainder of this paper, all length scales are taken in units of
the lattice constant a0 (for concrete values, see Table I), so that
the particle number density ρ(r) becomes simply a number
density which varies in the range [0,1].

The variation of Eq. (3.1) with respect to ρ(r) leads to the
equation of state for the equilibrium density ρ∗(r):

2ρ∗(r) − 1 = tanh

{
−β

2

∑
r′∈M

wl(r − r′)ρ∗(r′)

+ β

2
[μ − V (s1|l|s2)(z)]

}
. (3.4)

The advantage of this type of equation is that it lends itself
to numerical solution by iterative procedures. For a given
geometry and external walls-fluid potential V (s1|l|s2)(z) its
solution determines the equilibrium order-parameter profile
ρ∗(r) in the system. Inserting this profile into Eq. (3.1) renders
the grand canonical potential of the considered system.

Denoting, as in Refs. [74,134] φ∗(r) = 2ρ∗(r) − 1 and
�μ = μ − μc, where μc = 1

2

∑
r′ wl(r − r′), the equation of

state (3.4) can be rewritten in the standard form

φ∗(r) = tanh

{
β

∑
r′∈M

J l(r − r′)φ∗(r′) + β

2
[�μ − �V (z)]

}
.

(3.5)

The bulk properties of the model are well known (see,
e.g., [160,161] and the references therein). We recall that
the order parameter φ∗ of the system has a critical value
φ∗ = 0 which corresponds to ρc = 1

2 so that φ∗ = 2(ρ∗ − ρc).
The bulk critical point of the model is given by {β = βc =
[
∑

r J l(r)]−1, μ = μc = −2
∑

r J l(r)} with the sum running
over the whole lattice. Within the mean-field approximation,
the critical exponents for the order parameter and the com-
pressibility are β = 1

2 and γ = 1, respectively. The effective
surface potential �V (z) in Eq. (3.5) is given by

�V (z) = δvs1

(z + 1)σ
+ δvs2

(L + 1 − z)σ
, (3.6)

where 1 � z � L − 1, and contributions of the order of z−σ−1,
z−σ−2, etc., have been neglected,

δvsi
= −G(d,σ )(ρsi

J si ,l − ρcJ
l), i = 1,2 (3.7)

are (T - and μ-independent) constants,

J l(r) = J l
sr{δ(|r|) + δ(|r| − 1)} + J lθ (|r| − 1)

1 + |r|d+σ
(3.8)

is a proper lattice version of −wl(r)/4 as the interaction energy
between the fluid particles, and

J si ,l(r) = J si ,l
sr δ(|r| − 1) + J si ,lθ (|r| − 1)

|r|d+σ
, i = 1,2 (3.9)

is the one between a fluid particle and a substrate particle,
δ(x) is the discrete delta function, and θ (x) is the Heaviside
step function with the convention θ (0) = 0; in Eq. (3.9)
ρsi

, i = 1,2, are the number densities of the coated slabs
in units of a−d

0 (for concrete values, see Table II). Note
that the effective potentials δvsi

, i = 1,2, result from the
difference between the relative strength of the substrate-fluid
interactions for substrates with density ρsi

, i = 1,2, and that
of the fluid-fluid interactions for a fluid with density ρc. In
Eq. (3.6), the restriction z � 1 holds because we consider the
layers closest to the substrate to be completely occupied by
the liquid phase of the fluid (which implies that we consider
the strong adsorption limit), i.e., ρ(0) = ρ(L) = 1, which is
achieved by taking the limits J si ,l

sr → ∞, i = 1,2; thus, the
actual values of �V (0) = �V (L) will play no role. In order
to preserve the monotonic behavior of wl(r) as a function of
the distance r between the particles, in Eq. (3.8) we have to
require that J l

sr � J l/(1 + 2d+σ ), i.e., λ < 1 + 2d+σ , where

λ = J l/J l
sr. (3.10)

From Eqs. (3.5)–(3.9) one can identify the dimensionless
coupling constants si , i = 1,2, appearing in Eq. (2.6):

si = −1

2
βδvsi

, i = 1,2. (3.11)

Here, si > 0, i.e., ρsi
J si ,l > ρcJ

l , corresponds to walls “pre-
ferring” the liquid phase of the fluid, while si < 0, or ρsi

J si ,l <

ρcJ
l , mirrors the one with affinity to its gas phase. The

marginal case si = 0 which corresponds to ρsi
J si ,l = ρcJ

l will
be commented further in the text.

In terms of φ, the functional defined by Eq. (3.1) takes the
form

�[φ(r)] = kBT
∑
r∈M

{
1 + φ(r)

2
ln

[
1 + φ(r)

2

]

+ 1 − φ(r)

2
ln

[
1 − φ(r)

2

]}

− 1

2

∑
r∈M

[�μ − �V (z)]φ(r)

− 1

2

∑
r,r′∈M

J l(r − r′)φ(r)φ(r′) + �reg, (3.12)
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where

�reg = −1

2

∑
r∈M

[
�μ − �V (z) −

∑
r′∈M

J l(r − r′)

]
(3.13)

does not depend on φ(r) and, therefore, is a regular background
term carrying an L dependence and thus showing up in the
corresponding force.

The only quantity in Eq. (2.6), which still has to be identified
for our model, is the value of the coupling constant .
According to Ref. [74],

 = vσ /v2, (3.14)

where vσ and v2 are coefficients in the Fourier transform
Ĵ l(k) = ∑

r exp(ik · r)J l(r) of the interaction J l(r) [see
Eq. (3.8)] (for more details see Ref. [74]). It turns out that
 depends on λ.

In accordance with Eq. (2.6), for the finite-size behavior
of the excess grand canonical potential per unit area A of a
liquid film in the case when both confining surfaces strongly
adsorb the liquid phase, one expects

ωex(L|T ,μ) � γ ns
1 + γ ns

2 + kBT

Ld−1
X�(∗)

+HA(T ,μ)L−(σ−1)ξσ−d
ret , (3.15)

where γ ns
1 and γ ns

2 are the nonsingular parts of the surface
tensions at the surfaces of the confining walls, while the
singular parts are incorporated in the scaling function X�(∗),
which arguments are as those of the function Xcrit in Eq. (2.6).

In Eq. (3.15), HA is the Hamaker term, the explicit form of
which is derived in the Appendix. The result is

HA

C(d,σ )
= −J s1,s2

(
ρs1 − J l

J s1,l
ρb

)(
ρs2 − J l

J s2,l
ρb

)
. (3.16)

Note that this result is in full agreement with the
Dzyaloshinskii-Lifshitz-Pitaevskii (DLP) theory [35,37]. It
provides, however, an easy possibility to study the T and μ

dependencies of HA by studying the corresponding dependen-
cies of ρb, say, near the critical point of the fluid system. In
accord with the DLP theory, it teaches us that the sign of the
Hamaker term depends on the contrast of material properties
of the two bounding substrates with respect to the substance
which is in-between them. Coating the substrate surfaces of
the system with some additional material does not change the
leading-order L dependence of the interactions between the
substrates and, therefore, does not change the above property.
Let us stress that when s1 ≡ s2 = s, i.e., when the bounding
substances are made from same material, the Hamaker term
will be negative, independent on the properties of the fluid
in-between them, i.e.,

HA = −C(d,σ )J s1,s1

(
ρs − J l

J s,l
ρb

)2

< 0, (3.17)

which corresponds to attraction between the confining walls.
Similar is the situation when ρb → 0, i.e., when the fluid
separating the substrates is replaced by vacuum. Then, again,
HA < 0 irrespective of the material properties of the bounding
substances since limρb→0 HA = As1,s2 < 0. Further details on
the behavior of HA are given in the Appendix.

In Sec. IV, we are going to present results for ωex(L|T ,μ)
based on the model described in the current section.

IV. FINITE-SIZE BEHAVIOR OF THE MODEL
IN A FILM GEOMETRY

Let us start by rewriting the equations presented in Sec. III
in the form suitable for studying of a system in a film geometry.
Because of the translational symmetry of the system along the
bounding surfaces, the quantities of interest depend only on the
spatial coordinate z along which the system is finite. Thus, one
can write φ(r) ≡ φ(r‖,z) = φ(z), where r = {r‖,z}, i.e., the
local order-parameter profile is given by {φ(z), 0 � z � L},
with φ(0) = φ(L) = 1. Hence, Eq. (3.5) for the equilibrium
profile becomes

arctanh[φ∗(z)] = β

2
[�μ − �V (z)] + K

{
ad,σ (λ)φ∗(z)

+ ann
d,σ (λ)[φ∗(z+1)+φ∗(z − 1)]

+ λ

L∑
z′=0

gd,σ (|z − z′|)θ (|z−z′|−1)φ∗(z′)

}
,

(4.1)

where �μ = μ − μc, �V (z) is defined in Eq. (3.6), K = βJ l
sr,

ad,σ (λ) = (2d − 1) + λ(cd,σ − d), ann
d,σ (λ) = 1.0 + λ(cnn

d,σ −
0.5) with cnn

d,σ = gd,σ (1) + gnn
d,σ (±1). The functions cd,σ ,

gd,σ (|z − z′|), and gnn
d,σ (|z − z′|) are determined in Eqs. (C10),

(C11), and (C12) of Ref. [74], respectively.
When L → ∞, the equilibrium finite-size order parameter

φ∗(z) tends to its bulk value φb = 2(ρb − ρc) ∈ [0,1]. The
corresponding equation for φb, performing the limit L → ∞
in Eq. (4.1), reads as

φb = tanh

⎧⎨
⎩β

2
�μ + K

⎡
⎣ ad,σ (λ) + 2 ann

d,σ (λ)

+ 2λ
∑
z�2

gd,σ (z)

⎤
⎦φb

⎫⎬
⎭, (4.2)

wherefrom one immediately identifies the coordinates of bulk
critical point

Kc(λ) =
⎡
⎣ ad,σ (λ) + 2 ann

d,σ (λ) + 2λ
∑
z�2

gd,σ (z)

⎤
⎦

−1

, (4.3)

and �μ = 0. Note that the position of the bulk critical point
depends on λ, i.e., on the presence and the strength of the
long-ranged tails in the fluid-fluid interactions.

For a fluid confined to a film geometry, the natural quantity
to consider is the excess grand canonical potential per unit
area A : ωex ≡ limA →∞[�/A ] − Lωbulk. Using the result
of Ref. [135] [see Eq. (3.14) there], as well as the identity
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arctanh φ = (1/2)[ln(1 + φ) − ln(1 − φ)], one can write βωex

in the form

βωex =
L∑

z=0

{
1

2
ln[1 − φ∗(z)2] − 1

2
ln

[
1 − φ2

b

]

+ 1

4
φ∗(z) ln

[
1 + φ∗(z)

1 − φ∗(z)

]
− 1

4
φb ln

[
1 + φb

1 − φb

]

+ 1

2
β�V (z)φ∗(z) − β�μ

2
[φ∗(z) − φb]

}
+ βωreg,

(4.4)

where

βωreg =
[

K

(σ − 1)Kc

(s1,c + s2,c) − 1

4
C(d,σ )Kλ

]

×L−σ+1ξσ−d
ret . (4.5)

As it is clear from Eq. (3.1), the model presented above
does not account for the direct wall-wall interaction, but
only for the walls-fluid and fluid-fluid ones. Thus, in order
to obtain the complete net force acting between the surfaces
bounding the fluid, one has to add to the force calculated from
Eq. (4.4) via Eq. (2.1) to the one due to the direct wall-wall
interaction. Then, the resulting net force will be the total force
ftot(L|T ,μ) between the plates bounding the fluid. With the
use of Eqs. (2.1), (A6), and (4.4), one can write ftot(L|T ,μ) in
the form

ftot(L|T ,μ) = −β

2
[ωex(L + 1|T ,μ) − ωex(L − 1|T ,μ)]

− 4Ks1,cs2,c

G(d,σ )K2
c λ

L−σ ξσ−d
ret , (4.6)

where the last term represents the direct wall-wall interaction.
On the other hand, if one subtracts from the potential ωex its
regular part ωreg, i.e., if we consider the quantity

�ω ≡ lim
A →∞

[(� − �reg)/A ] − Lωbulk, (4.7)

then, in accord with Eqs. (2.13)–(2.15), the L dependence of
�ω via Eq. (2.1) provides the singular part of the total force,
i.e., the critical Casimir force fCas(L|T ,μ). Explicitly, one has

βFA,Cas(L|T ,μ) = −β

2
[�ω(L + 1|T ,μ)

−�ω(L − 1|T ,μ)]. (4.8)

Obviously, near Tc the total and the Casimir force are related
via the expression

ftot(L|T ,μ) = βFA,Cas − 4Ks1,cs2,c

G(d,σ )K2
c λ

L−σ ξσ−d
ret

+
[

K

Kc

(s1,c + s2,c) − 1

4
G(d,σ )Kλ

]
L−σ ξσ−d

ret .

(4.9)

Equations (2.8) and (4.1)–(4.9) provide the basis for our
numerical treatment of the finite-size behavior of the total as
well as of the Casimir force in fluid systems governed by
van der Waals interactions. Let us briefly outline the main
steps of this numerical procedure. We start by determining

the equilibrium order-parameter profile [φ∗(z), 0 � z � L],
solving iteratively Eq. (4.1). The solution of this equation
depends, however, for a given range of parameters T and �μ,
on the choice of the initial state of the order-parameter profile.
The two basic initial states are as follows:

(i) a “liquidlike” state in which all the sites of the lattice
are occupied by a fluid particle, i.e., [φ∗(z) = 1, 0 � z � L];

(ii) a “gaslike” state where φ∗(0) = 1, φ∗(L) = 1, φ∗(z) =
0, 1 � z � L − 1.

Thus, one needs to calculate the profile starting from both
initial states. If the two final states coincide, they provide the
unique minimum of the functional [see Eq. (4.4)]. If they differ,
one has to check which one of them provides the absolute
minimum of the grand canonical potential. The simplest way
to clarify that question is to calculate βωex via Eq. (4.4). On
a given line in the (T ,�μ) plane, the values of the grand
canonical potential of the two profiles coincide. The set of
points on this line defines the phase diagram of the system.
An alternative and practically more effective approach for
determining of the phase diagram will be presented in Sec. VI.

Heretofore for systems governed by dispersion interactions
there are no closed-form analytical expressions about the
scaling function of the Casimir force even within mean-
field theory. Such expressions exist, however, for systems
governed by short-range interactions [72]. For (+,+) boundary
conditions at �μ = 0, the corresponding results are

(i) Xsr
Cas(xt � 0,xμ = 0) = −[2K(k)]4k2(1 − k2) (4.10a)

with xt = [2K(k)]2(2k2 − 1);

(ii) Xsr
Cas(0 � xt � −π2,xμ = 0) = −4K4(k) (4.10b)

with xt = [2K(k)]2(2k2 − 1);

(iii) Xsr
Cas(xt � −π2,xμ = 0) = −4K4(k)(1 − k2)2 (4.10c)

with xt = −[2K(k)]2(k2 + 1), where K(k) is the com-
plete elliptic integral of the first kind, 0 � k < 1. In
Eq. (4.10), the scaling variable of Xsr

Cas(xt ,xμ = 0) is xt =
t(L/ξ+

0 )
1/ν = t(L/ξ+

0 )
2
. We note that Xsr

Cas(xt ,xμ = 0) is
analytic for all values of xt �= 0 because the film critical point
[T = Tc,L,μ = μc,L] is located off coexistence at μc,L − μc ∼
L−3 [75,143,144,159]. For the field dependent scaling function
of the Casimir force XCas(xt ,xμ �= 0), there are no analytical
expressions even for short-range systems.

In the next section, based on the results reported in Secs. III
and IV, we present numerical results for the behavior of the
scaling functions of the critical Casimir force and of the van
der Waals term for the cases d = σ = 4 and d = σ = 3.

V. RESULTS FOR THE BEHAVIOR OF THE FORCES
IN d = 3 CONFINED FLUID SYSTEM WITH σ = 3

DISPERSION POTENTIALS

In the current section, using the results for d = σ = 4 from
the mean-field type numerical study of the system introduced
in Secs. III and IV, we will present some approximate results
for the behavior Xcrit, the Hamaker term, and the resulting
critical Casimir force, between the two surfaces confining a
van der Waals type fluid in d = 3.
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Within the mean-field theory, the dependence of the
corresponding forces from the temperature T and the chemical
potential difference �μ near the bulk critical point (T =
Tc, �μ = 0) is given through the dimensionless tempera-
ture and field scaling variables xt = t(L/ξ+

0 )
2

and xμ =
βc�μ(L/ξ0,μ)3. In our numerical treatment, we take these vari-
ables to range in the intervals xt ∈ [−242; 242] ≡ [−576; 576]
and xμ ∈ [−243; 243] ≡ [−13824; 13824]. We consider sys-
tems with fluid layers L being 20, 50, 100, 200, 400, and 800.
We fix one of the walls-fluid coupling parameters (say s1,c) to
have a value either 1.0 or −1.0, while the other one, s2,c, is
varied from 0.0 to −1.0 with a step of −0.2. The fluid-fluid
coupling parameter λ is supposed to be either 1.0 or 2.0.

In order to determine the behavior of the above mentioned
quantities in a d = 3 confined fluid system, using the presented
approximation, we proceed in the following way. First, within
the mean-field treatment of the critical behavior (d = σ =
4) we solve the equation for the equilibrium order-parameter
profile [Eq. (4.1)]. Next, with the use of Eqs. (4.4) and (4.6),
we obtain the total force of interaction between the plates.
Subtracting from Eq. (4.6) the Hamaker term (A7), we end
up with the scaling function Xcrit [see also Eq. (2.8)]. In order
that this function contributes properly to the critical Casimir
and hence to the total force of interaction in d < 4, one must
normalize it accordingly. The need of such normalization is
explained in details in Ref. [74] (see there Secs. IV A 1 and
IV A 3). For boundary conditions τ one has

X
(τ )
crit(. . .) = 2�(τ )(d = 3)

X
(τ ),MF
crit,sr (t = �μ = 0)

[
ξ+

0 (0)

ξ+
0 (λ)

]4

X
(τ ),MF
crit (. . .),

(5.1)

where X
(τ,MF)
crit,sr is the value of the scaling function for a

system within mean-field treatment governed by short-range
interactions at its corresponding bulk critical point, and
X

(τ ),MF
crit (. . .) is the scaling function of the critical Casimir force,

calculated for d = σ = 4, with λ �= 0, s1,c �= 0, s2,c �= 0.
Here, �(τ )(d = 3) is the Casimir amplitude for the d = 3 Ising
universality class with boundary conditions τ , while ξ+

0 (0) and
ξ+

0 (λ) are the amplitudes of the bulk correlation length in mean-
field systems with, correspondingly, short-ranged (λ = 0) and
long-ranged (λ �= 0) fluid-fluid interactions, as ξ+

0 (λ) = √
v2

[see Eqs. (4.15) and (4.17) in Ref. [74]]. Therefore, for
λ = 0, 1, and 2 one has v2 = 1/9, 0.1640, and 0.1998, and
hence ξ+

0 = 1/3, 0.4050, and 0.4470, respectively. Taking
into account that the value of the Casimir amplitude for
the d = 3 Ising universality class with (+,+) boundary
conditions [162] is

�(+,+) = −0.410(29) (5.2)

and that X
(τ ),MF
Cas,sr (t = �μ = 0) = −1.7315, for the

normalizing coefficients one obtains 0.217 for λ = 1
and 0.147 when λ = 2.

The dependence of the scaling function Xcrit on the
temperature xt and field xμ scaling variables is summarized in
Figs. 3 and 4 for different separations L.

Once having a good approximation of Xcrit in d = 3,
obtained in the way described above, one can determine the
scaling function of the critical Casimir force of the fluid system
by adding to Xcrit the singular part of the Hamaker term given
by Eq. (A8), i.e., that part of it that depends on φb. When
performing this procedure one must pay attention to the use of
the coupling parameters si,c, i = 1,2, because they also depend
on the dimensionality d of the system. Using Eqs. (3.3), (3.7),
and (3.11), one has

si,c(d = σ = 3) = G(3,3)

G(4,4)
si,c(d = σ = 4), i = 1,2. (5.3)

As it is clear from the above, in the system governed
by short-range interactions, Xcrit coincides with Xsr

Cas; Xsr
Cas

is negative, which corresponds to attractive critical Casimir
force, for any value of the scaling variables xt and xμ under
(+,+) boundary conditions [see Eq. (4.10) for Xsr

Cas in the
case xμ = 0, as well as Figs. 2(a) and 2(b)]. Note that under
such boundary conditions one observes an enhancement of the
order parameter due to the confinement in comparison to the
order parameter at the same distance from an individual wall.
On that ground in systems with long-ranged interactions such
that s1,c > 0 and −s1,c � s2,c � 0 we expect Xcrit to remain
again negative for any separation L and at any value of the
scaling variables, irrespective of the value of λ (which is always
non-negative). Indeed, this turns out to be true and is depicted
in Figs. 3(a) and 3(b). However, when s2,c ≈ −s1,c and the
separation between the walls is relatively small, a significant
part of the system is disordered which results in non-negative
or sign-changing scaling function [see Figs. 3(c) and 3(d)].
As the distance L is increased, the influence of the effective
surface potential �V (z) [see Eq. (3.6)] quickly decreases and
only the additional ordering effect of the fluid-fluid interactions
influences the behavior of the order parameter and hence of
Xcrit. Along with the same line of arguing, when both wall-fluid
coupling parameters are negative, Xcrit is negative for any xt

and xμ only for very large separations L where the effect of
the long-ranged interactions on the behavior of the system is
negligible. Naturally, since the short-ranged surface potentials
do support (+,+) boundary conditions, the role of the negative
substrate potentials, which oppose the order near the boundary,
will be stronger than that of the positive substrate potentials
which try to reinforce the phase preferred near the boundary.
For example, we observe that the behavior of Xcrit in a
system with s1,c = 1.0, s2,c = −1.0, λ = 1.0 and in such with
s1,c = 0.0, s2,c = −1.0, λ = 1.0 is almost identical for any L,
both as a function of xt and xμ [compare Figs. 3(c) and 3(d)
and Figs. 4(a) and 4(b)] [163]. Thus, for a fixed λ the behavior
of the scaling function is mainly determined by the interplay
between the short-ranged surface fields and the strong negative
wall-fluid coupling s2,c. If s1,c = s2,c = −1.0 and λ < 2.0 the
scaling function Xcrit exhibits an unexpected behavior as a
function of L: for moderate values of L, the maximum of the
repulsive part of the force increases with increasing L both as
a function of xt and xμ [see Figs. 4(c) and 4(d)]; for larger
values of L, the maximum decreases, as expected, and the
overall behavior of the scaling function approaches that one of
the system with completely short-ranged interactions.

The behavior of the critical Casimir force XCas is depicted
on Fig. 5. In order to illustrate only the main idea, here we
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FIG. 3. (Color online) Behavior of the scaling function Xcrit(xt ,xμ) in a d = 3 dimensional confined fluid system. On (a) and (c) the
temperature dependence of Xcrit(xt ,xμ) is shown at �μ = 0.0 (i.e., at xμ = 0.0), while on (b) and (d) the field one at T = Tc (i.e., at xt = 0.0).
In (a) and (b) the parameters characterizing the interactions in the systems have values s1,c = 1.0, s2,c = 0.0, and λ = 1.0, while in (c) and (d)
one has s1,c = 1.0, s2,c = −1.0, and λ = 1.0. The considered separations between the confining walls are L = 20 ( ), 50 ( ), 100 ( ),
200 ( ), 400 ( ), and 800 ( ) layers. On every subfigure the scaling functions are compared to one for a system with L = 800 layers
( ) governed by pure short-range interactions (λ = si,c = 0.0, i = 1,2). One observes that when s2,c = 0.0 all scaling functions of systems
with L > 20 are indistinguishable from the one for a short-range system [see (a) and (b)] and correspond to attractive force. When s2,c = −1.0
the scaling functions do trace separate curves for different film thicknesses L. For �μ = 0.0 [see (c)] one notices that for L � 100 the scaling
functions correspond to repulsive forces. For L = 200 the force changes sign twice. When L is further increased, the force becomes entirely
attractive for L � 800. At T = Tc [see (d)] some of the scaling functions change sign twice in the “gas” phase of the fluid medium (those
for L � 100). Upon increasing the separation, the change occurs only once, and is not observed for L � 800. When μ = μc the curve for
the short-ranged interactions depicts the numerical evaluation of the exact analytical result given by Eq. (4.10), while for T = Tc this curve is
evaluated within the presented mean-field theory.

restrict ourselves to the choice of parameters λ = 2.0, s2,c =
0.0 while s1,c = ±1.0. The data for the Casimir force and the
Hamaker term are presented for a system with L = 20 layers.
First, let us recall that for T > Tc at �μ = 0 one has φb = 0
and, hence, the behavior of XCas and that of Xcrit coincide in
this region [see Figs. 5(a) and 5(c)]. On the other hand, if T <

Tc one has φb �= 0, with the singular (i.e., the φb dependent)
part of the Hamaker term corresponding to repulsion for s1,c >

0 and attraction otherwise [see Eq. (A8)]. For s1,c = 1.0 the
scaling function Xcrit is negative, but the singular part of the
Hamaker term is positive, i.e., repulsive in the low-temperature
region. Thus, the Casimir force is attractive near and above Tc

but becomes repulsive below Tc. For s1,c = −1.0, one has
that Xcrit is non-negative, but with the singular part of the
Hamaker term being negative, i.e., attractive for T < Tc. Thus,
the resulting critical Casimir force XCas changes sign from

being repulsive above Tc to becoming attractive slightly below
Tc. The behavior of the Casimir force as a function of xμ

at T = Tc for the two subcases of s1,c = ±1.0 is depicted on
Figs. 5(b) and 5(d). For s1,c = 1.0, one observes that Xcrit < 0,
while the singular part of the Hamaker term changes sign from
positive to negative with �μ decreasing. Thus, the resulting
Casimir force changes sign once from being slightly positive
(repulsive) for �μ � 0 to negative (attractive) for �μ � 0.
The case s1,c = −1.0 is much more interesting. Since then
Xcrit changes sign twice for �μ < 0, while the singular part
of the Hamaker term changes sign once, the resulting Casimir
force happens to change its sign three times as a function
of xμ.

One might pose the question about the phase behavior of the
thin fluid systems with such competing surface and substrate
potentials. We consider that question in the next section.
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FIG. 4. (Color online) Behavior of the scaling function Xcrit(xt ,xμ) in a d = 3 dimensional confined fluid system. On (a) and (c) the
temperature dependence of Xcrit(xt ,xμ) is shown at �μ = 0.0 (i.e., xμ = 0.0), while on (b) and (d) the field one at T = Tc (i.e., at xt = 0.0).
In (a) and (b) the parameters characterizing the interactions in the systems have values s1,c = −1.0, s2,c = 0.0, and λ = 1.0, while in (c) and
(d) one has s1,c = −1.0, s2,c = −1.0, and λ = 1.0. The behavior of the scaling functions in a system characterized by λ = 1.0, s1,c = −1.0,
and s2,c = 0.0 is similar to that of such with λ = 1.0, s1,c = 1.0, and s2,c = −1.0 [compare with Figs. 3(c) and 3(d). For λ = 1.0 and
s1,c = s2,c = −1.0 at �μ = 0.0 [see (c)] one observes that for L = 20 ( ) the scaling function changes sign twice, having two minima and a
maximum. When the separation L is increased, the values of the minima decrease rapidly towards zero, while that of the maximum increases,
being highest for L = 100 ( ). When L = 200 ( ), the scaling function corresponds to repulsive force, now having two maxima and a
single minimum. Reaching L = 400 ( ), the scaling function changes sign twice, and corresponds to attractive force for L � 800 ( ). At
T = Tc [see (d)] for L = 20 and 50 the scaling functions change sign once for xμ > 0 [see (d′)]. Then, for L = 100 one observes triple sign
change, with a shallow minimum in the region xμ > 0 and pronounced one in xμ < 0. For L = 100, the maximum of the scaling function has
its highest value. Upon increasing the separation sign change of the scaling function occurs twice, and is not observed for L > 800. Note that
for L = 800 the scaling function still changes sign in the region xμ < 0. When μ = μc the curve for the short-ranged interactions depicts the
numerical evaluation of the exact analytical result given by Eq. (4.10), while for T = Tc this curve is evaluated within the presented mean-field
theory.

VI. PHASE BEHAVIOR OF SYSTEMS WITH
DISPERSION FORCES

The phase behavior of a confined fluid medium between
parallel walls exerting identical surface adsorption poten-
tials δμ1 ≡ J s1,l

sr = δμ2 ≡ J s2,l
sr �= 0 on both surface layers

has been studied extensively both theoretically and experi-
mentally [74,132,134,135,143,144,146,147,159,164,165]. So
far, the considerations have been made either for
fluid systems governed by pure short-range interac-
tions [132,143,144,146,147,159,165], or for systems with
surface potentials strongly preferring the same phase of the
fluid [74,134,135,164]. Here, we are going to consider the case
when at least one of the wall-fluid potentials favor a phase of
the fluid different from the one preferred by the short-ranged
surface potentials.

The phase behavior of systems with L = 20,30,40 and of
the bulk system with s1,c = 1.0, s2,c = −1.0, and λ = 2.0,
obtained within our mean-field model, is presented in Fig. 6.
A relatively detailed study of the influence of the different
values of s1,c, s2,c, and λ on the phase behavior of thin fluid
films (in the case considered L = 20) is illustrated in Figs. 7
and 8, where Fig. 8 represents blow-up views of some of the
phase diagrams very close to the capillary condensation critical
points Tc,L.

We observe that the overall phase behavior of the system is
similar to that one obtained for a short-ranged system by Fisher
and Nakanishi [144]: one has a line of a capillary condensation
shifted towards the gas bulk phase which terminates at its own
finite-size critical point Tc,L. One can identify the following
properties of the phase diagrams presented in Figs. 6–8:
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FIG. 5. (Color online) Interplay between the scaling function Xcrit(xt ,xμ) ( ) and the van der Waals term in excess of its regular
contributions 2βHA, ex(xt ,xμ) ( ), resulting in the scaling function of the critical Casimir force βFA,Cas(xt ,xμ)L3 ≡ XCas � Xcrit(xt ,xμ) +
2βHA, ex(xt ,xμ) ( ) in a d = 3 dimensional confined fluid system at �μ = 0.0, (xμ = 0.0) [(a) and (c)] and T = Tc, (xt = 0.0) [(b) and (d)].
The separation between the walls confining the fluid medium is taken L = 20 and the parameters characterizing the interactions in the systems
have the following values: λ = 2.0, s2,c = 0.0; [(a) and (b)] s1,c = 1.0; [(c) and (d)] s1,c = −1.0.

(i) The precise position of the phase diagram depends on L.
This property is well known also for systems with short-ranged
interaction.

FIG. 6. Phase diagrams of a d = 4 confined finite-size fluid
system with strong adsorption of the “liquid” phase of the fluid
medium on the confining walls, for different separations L between
them. The values of the coupling parameters characterizing the
interactions in the system are s1,c = 1.0, s2,c = −1.0, and λ =
2.0, and the coordinates of the finite-size critical points for
the different separations are bottom-up L = 20 (�) (0.98779783,

− 1.8421 × 10−3); L = 30 (�) (0.99553852, − 0.5957 × 10−3); L =
40 (∗) (0.99743470, − 0.2684 × 10−3).

(ii) For a fixed L the precise position of the phase diagram
depends on s1,c, s2,c, and λ; the smaller L, the stronger
the corresponding influence of these parameters. Negative
wall-fluid couplings s1,c and/or s2,c have disordering effect
on the system which manifests in increase of the gas phase
and decrease of the liquid one near the surfaces. Generally, the
phase diagram, as then expected, appears above the one of a
short-range systems [see Fig. 7(b)] since in order to “liquify”
the system one now needs higher “pressure.”

(iii) The position of Tc,L, thus the shift of the critical
point of the finite system with respect to that one of the bulk
one, depends not only on L, as in the short-ranged systems,
but also on s1,c, s2,c, and λ. For λ �= 0, the ordering in the
system increases and, hence, one observes increase in both the
critical temperature shifts as well as in the chemical potential
difference compared to systems governed by pure short-range
interactions. When s1,c and s2,c are both positive, this effect is
even further enhanced. If, on the other hand, for fixed λ �= 0
the parameters s1,c and s2,c are both negative or, at least, have
different signs, the shift of the finite-size critical point with
respect to that one in short-range systems can be completely
canceled or, for strong enough potentials, this shift can even
further decrease via Tc,L moving toward the corresponding
bulk critical point.

(iv) The competing effect of T , �μ, s1,c, s2,c, and λ on the
ordering in the system leads near the capillary condensation

012119-13



GALIN VALCHEV AND DANIEL DANTCHEV PHYSICAL REVIEW E 92, 012119 (2015)

FIG. 7. (Color online) Comparison between the phase diagrams
of d = 4 confined finite-size fluid systems with strong adsorption of
the “liquid” phase of the fluid medium on the confining walls, obtained
for L = 20 and various values of the coupling parameters: (a) bottom-
up ( ) s1,c = 1.0, s2,c = 0.0, λ = 2.0 ( ) s1,c = 1.0, s2,c = 0.0, λ =
1.0; ( ) s1,c = s2,c = λ = 0.0; ( ) s1,c = 1.0, s2,c = −1.0, λ = 2.0;

( ) s1,c = 1.0, s2,c = −1.0, λ = 1.0; (b) bottom-up ( ) s1,c =
s2,c = λ = 0.0; ( ) s1,c = −1.0, s2,c = 0.0, λ = 2.0; ( ) s1,c =
−1.0, s2,c = 0.0, λ = 1.0; ( ) s1,c = −1.0, s2,c = −1.0, λ = 2.0;

( ) s1,c = −1.0, s2,c = −1.0, λ = 1.0. The coordinates of the finite-
size critical points [Tc,L/Tc,(μc,L − μc)/(kBTc,L)] of the different
systems are (a) bottom-up (�) (0.98912146, − 2.6691 × 10−3);
(�) (0.99046179, − 2.1410 × 10−3); (�) (0.98779783, − 1.8421 ×
10−3); (•) (0.99376528, − 1.1101 × 10−3); (	) (0.99185806, −
1.2482 × 10−3); (b) bottom-up (♣) (0.99130666, − 1.5386 × 10−3);
(•) (0.99376528, − 1.1101 × 10−3); (♥) (0.99279091, − 1.0222 ×
10−3); (♦) (0.99303773, − 0.9915 × 10−3); ( ) (0.99468863, −
0.5085 × 10−3). The phase diagram of a bulk system (L → ∞) is
shown as thick black line ending at the bulk critical point ( ).

critical point for thin films to a nonmonotonic behavior of
the phase diagram (see Fig. 8). The behavior of the system
with at least one of the wall-fluid potentials being negative
is especially interesting [see Fig. 8(d)], where in a small
temperature interval at phase coexistence when T decreases
�μ increases.

Following, we briefly explain how the above phase dia-
grams have been calculated.

On Fig. 9, we illustrate the method used to obtain the
phase diagram and the finite-size critical point at which the
coexistence curve ends of finite systems characterized by long-
ranged fluid-wall potentials. We do that by studying within our
mean-field model the scaling functions of the total isothermal

compressibility κT L−γ /ν . When μ = μc one has that κT L−γ /ν

is a smooth function of the temperature, even in the vicinity of
the bulk critical temperature, reaching its maximum for T >

Tc. For μc,L < μ < μc the value of the maximum increases,
being still finite, and appearing at T < Tc. Upon reaching
the finite-size critical point (T = Tc,L,μ = μc,L), κT L−γ /ν

diverges, giving rise to power-law singularity. At temperatures
T < Tc,L and chemical potentials μ < μc,L, the value of
κT L−γ /ν changes with a finite jump, being an indicator of
a first-order phase transition. The points of first-order phase
transition form a line, the coexistence curve in the phase plane,
separating the observed phases: spin-“up” phase in magnetic
systems, liquid phase in one-component fluid systems, A-rich
phase in binary liquid mixtures and, correspondingly, spin-
“down” phase, gas phase, B-rich phase. At the critical point
and beyond, the differences between these phases disappear.
The resulting phase diagrams are shown in Fig. 7, where (a)
summarizes the curves with s1 = 1.0, and (b) those with s1 =
−1.0, where different combinations of values of s2 and λ are
considered. The line marked with filled (red) circles represents
the phase diagram for a system with completely short-ranged
interaction.

As it was shown in Refs. [134,135], for the total isothermal
compressibility per particle (or susceptibility, if one considers
magnetic systems), one has

κT = 1

L + 1

∑
z

κT (z) = 1

L + 1

∑
z,z∗

(R−1)z,z∗ , (6.1)

where R−1 is the inverse of the matrix R with elements

Rz,z′ = δz,z′

1 − φ2(z′)
− βJ l(z − z′) (6.2)

and

κT (z) ≡
∑
z∗

G(z,z∗) ≡
∑
z∗

(R−1)z,z∗

= 1

4

∑
r∗

[〈φ(0,z)φ(r∗
‖,z

∗)〉 − 〈φ(0,z)〉〈φ(r∗
‖,z

∗)〉]

(6.3)

is the “local” isothermal compressibility, which reflects the
response of the system from a given layer due to the change
of the external field in that layer. More precisely, in Eq. (6.3)
G(z,z∗) is the density-density correlation function, G(z,z∗) =
δφ(z)/[2δh(z∗)], where the functional derivative is taken with
respect to the field h(z∗) = β[�μ − �V (z∗)]/2.

In order to determine κT (xt ,xμ|L,{si, i = 1,2},λ) or its
“scaling function” Xκ ≡ L−γ /νκT in a fluid film with thickness
L, we first solve numerically Eq. (4.1) within our mean-field
model, which allows us to determine the matrix R with the
use of Eq. (6.2). After that, using Eq. (6.3), we obtain the
“local” isothermal compressibility κT (z), and summing over
z, the total isothermal compressibility. We recall that within
the mean-field treatment one has ν = 1

2 and γ = 1.
The phase diagrams depicted on Fig. 7 result from the

interplay between the fluid-fluid and walls-fluid interactions.
Note that the increase of λ at fixed si,c, i = 1,2, lowers β�μ

at coexistence, while the decrease of the wall-fluid coupling
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FIG. 8. (Color online) Blow-up views of some of the phase diagrams at d = 4 very close to the capillary condensation critical point Tc,L

for L = 20. The influences of the different dispersion interactions (walls-fluid and fluid-fluid) is visualized. The phase diagram of a short-range
system is given in (a) in order to serve as a reference on which the changes due to the influence of fluid-fluid interaction, i.e., on λ [see (b)], or
on the wall-fluid interaction, i.e., on si [see (c) and (d)] is studied. In (b), only the influence of the long-range fluid-fluid interactions is shown
(λ �= 0, s1,c = s2,c = 0.0), while on (c) and (d), that of a single wall fluid is investigated (s1,c �= 0, λ = s2,c = 0.0).

at one of the walls (say s2,c) keeping λ and s1,c constants,
increases it.

VII. EXPERIMENTAL FEASIBILITY OF THE
PREDICTED EFFECT

In the fast emerging field of microdevices and nanodevices,
the fluctuation induced and dispersion forces such as the
Casimir and van der Waals ones, associated with the interaction
between the individual components of such devices, play an
essential role. Due to the quantum origin of these forces,
currently there are no theoretical as well as experimentally
suggested control parameters that can be used to conveniently
and reversibly govern the sign and the strength of these forces
if the interacting objects are in vacuum. The situation changes
if these interactions take place in a fluid. Very recently, in
Ref. [166] the authors suggested controlled quantum Casimir
levitation caused by the introduction of thin film surface
coating on porous planar substrates both immersed in a suitable
fluid. More specifically, they have shown that the Casimir force
between Teflon and cassiterite (SnO2) nanosheet immersed in
cyclodecane is attractive at large separations but repulsive at
small separations, resulting in a stable equilibrium distance
where the total force is zero. In Ref. [119], the authors reported
the use of aerogels, yielding repulsion down to submicron
distances at realistic porosities. The described so far setups
are quite close in spirit to the considerations presented in this

article with the basic difference that the force will be due to
the critical fluctuations of the fluid, instead of the fluctuation
of the electromagnetic field. We suppose that the usage of low
density substrates such as aerogels can be also applied in the
thermodynamic Casimir effect since the parameters si directly
depend, as shown in Eqs. (3.7) and (3.11), on the densities of
the slabs.

In order to show with concrete examples that the exper-
imental observation of the effects theoretically predicted in
this article is possible, we consider the occurrence of critical
fluctuations in simple nonpolar fluids such as argon (Ar),
krypton (Kr), or xenon (Xe), confined between graphene
coated carbon nanotube aerogel substrate (CAS) [171] and
a silver (Ag) or gold (Au) one. Both confining surfaces
are assumed coated by monatomic (or very thin) lead (Pb)
film, ensuring the (+,+) boundary conditions. The basic data
needed for the calculations concerning the considered fluids
are presented in Table I. Furthermore, from the data reported
in Ref. [170] we have that βcJ

Ar,Pb
sr = 1.79, βcJ

Kr,Pb
sr = 1.32,

and βcJ
Xe,Pb
sr = 0.96, where βc ≡ 1/(kBTc) (see Table I) is

specific for each fluid medium. As far as the geometry of
the experimental setup matters, one can choose to study
the predicted behavior of the force either in plane parallel
geometry [172–174], or consider such where one of the plates
is flat and the other has the shape of a spherical lens with large
(>1 cm) curvature radius [175]. As pointed out in Ref. [173],
the difficulties in the usage of the plane parallel geometry
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FIG. 9. (Color online) The scaling functions of the total isother-
mal compressibility κT L−γ /ν [( ), ( ), and ( )] and the phase

diagram ( ) of a d = 4 finite-size fluid system, confined between
parallel walls both strongly adsorbing the “liquid” phase of the fluid
medium, for L = 20 and values of the coupling parameters s1,c =
1.0, s2,c = 0.0, and λ = 1.0. The bulk critical point is denoted by
the symbol , while the finite-size critical point (T = Tc,L,μ = μc,L)

is marked by the symbol �. The curve designated by ( ) shows

the behavior of κT L−γ /ν at μ = μc. This behavior at the finite-size
critical point (T = Tc,L, μ = μc,L) is depicted with the symbol ( ).
When T < Tc,L and μ < μc,L, the compressibility κT changes with
a finite jump ( ), being an indicator of a first-order phase transition.
The points of first-order phase transition form the coexistence curve,
i.e., determine the phase diagram in the phase plane.

are bigger, which leads to lower accuracy of the results in
comparison to the other configuration. The use of plates in the
form of spherical lens to study effects predicted for systems
composed out of flat parallel surfaces can be mathematically
justified, as usual, by the Derjaguin [151,176] or the gradient
expansion [177–179] approaches, which are applicable for
calculations of the interactions between curved objects.

In what follows, we evaluate the coupling parameters sc

and λ which are the basic parameters reflecting the material
properties in the theory for the behavior of the force presented

TABLE I. Physical characteristics of the considered confined
fluids (column 1), the critical density ρc in units g/cm3 (column
2), temperature Tc measured in K (column 3), pressure Pc in MPa
(column 4), the lattice constant a0 in Å (column 5), the distance rl

0

also in Å (column 6) at which the interparticle potential is zero and
the potential well depth J l

sr in units kBTc (column 7). The values
of ρc, Tc, and Pc for argon are taken from Ref. [167], for krypton
from Ref. [168], and for xenon from Ref. [169]. The value of a0 is
calculated based on the data for ρc (see the text) and the presented
values of rl

0 and J l
sr are taken from Ref. [170].

1 2 3 4 5 6 7
Fluid ρc Tc Pc a0 rl

0 βcJ
l
sr

Ar 0.536 150.663 4.86 4.98 3.867 0.798
Kr 0.908 209.480 5.53 5.35 4.165 0.790
Xe 1.113 289.765 5.84 5.81 4.512 0.794

TABLE II. Physical characteristics of the confining silver (Ag),
gold (Au), and carbon based (C) substances and of their interactions
with the fluid media, the distances rs

0 and r
l,s
0 in Å (columns 2

and 4) at which the interparticle potential within the substrate and
between it and the fluid is zero, the corresponding potential well
depths J s

sr and J l,s
sr in units kBTc (columns 3 and 5), the density

ρ of the substrates in g/cm3 (column 6), the number density ρnd

(column 7), the substrate-fluid coupling parameter evaluated at the
critical temperature sc (column 8), and the Young modulus E of the
corresponding substrate in GPa (column 9). The values of rs

0 and J s
sr

are taken from Ref. [170], while those of r
l,s
0 and J l,s

sr are calculated
via Eqs. (7.2). The density of the CAS (the bottom value in column
6) as well as its Young modulus (the bottom value in column 9) are
taken from Ref. [171].

1 2 3 4 5 6 7 8 9
Fluid
(substrate) rs

0 βcJ
s
sr r

l,s
0 βcJ

l,s
sr ρ ρnd sc E

Ar (Ag) 0.120 3.597 0.258 3.62 1.12
Kr (Ag) 3.148 0.087 3.804 0.194 10.49 4.49 1.00 83
Xe (Ag) 0.063 4.061 0.142 5.74 0.89
Ar (Au) 0.130 3.628 0.278 3.65 1.29
Kr (Au) 3.239 0.094 3.831 0.211 19.30 4.52 1.17 79
Xe (Au) 0.068 4.083 0.156 5.78 1.06
Ar (C) 0.351 3.864 0.525 0.043 −0.788
Kr (C) 3.851 0.252 4.033 0.428 0.014 0.054 −0.779 3.86
Xe (C) 0.182 4.245 0.341 0.069 −0.782

above (see Figs. 3–5). From Eqs. (3.7) and (3.11) we have
that sc ≡ 0.5G(d,σ )[ρndβcJ

l,s − ρcβcJ
l], and thus, in order

to determine sc, one needs to know the long-range interparticle
interaction energies J l,s and J l , as well as the number density
ρnd (see column 7 in Table II) of the confining substrate
relative to that of the fluid medium ρc. Since within the
mean-field theory the number density of the fluid is ρc = 1

2 , one
has ρnd = 0.5ρ[mol/cm3]/ρc[mol/cm3], with ρ[mol/cm3] =
ρ[g/cm3]/(AruNA), where Ar is the standard atomic weight
of the substance, u the atomic mass unit, and NA is the
Avogadro constant. From here one can also estimate the
lattice constant of the fluid medium at the critical point; one
has a0 [Å] = 1010 × {ρ[g/cm3]/(Aru)}−1/3 (see column 5 in
Table II). We will make the assumption that all interactions
between the constituents of the system are of Lennard-
Jones type, i.e., the interaction potential can be written in
the form

wLJ(r) = 4Jsr

[(
r0

r

)12

−
(

r0

r

)6]

= Jsr

[(
rm

r

)12

− 2

(
rm

r

)6]
, (7.1)

where rm = 21/6r0 is the distance at which the potential reaches
its minimum, r0 is such that wLJ(r0) = 0, and Jsr is the depth
of the potential well. Therefore, one has that J l,s = 2J l,s

sr (see
column 5 in Table II) and λ ≡ J l/J l

sr = 2 (see column 7 in
Table I). We evaluate the cross interaction potential parameters
J l,s

sr and r
l,s
0 based on Kong’s combining rules because of their
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appreciated accuracy [180]

J l,s
sr (rl,s

0 )6 = [
J l

sr

(
rl

0

)6
J s

sr

(
rs

0

)6]1/2
, (7.2a)

J l,s
sr (rl,s

0 )12 = J l
sr

(
rl

0

)12

213

{
1 +

[
J s

sr

(
rs

0

)12

J l
sr

(
rl

0

)12

]1/13}13

. (7.2b)

After all that we are ready to compute the key parameter sc

that influences the behavior of the force for moderate values of
L. The obtained results are reported in column 8 of Table II).
One observes that, depending on the choice of materials, one
can indeed have both positive and negative parameters sc.
The existence of combination of materials for which sc is
negative represents the main prerequisite for the experimental
relevance of the effects predicted in this article.

Although the mean-field theory gives poor quantitative
estimation of the behavior of the scaling function XCas, it is
tempting to, nevertheless, evaluate the corresponding force
FCas based on it. To do so, we consider the interaction
between a CAS planar substrate and a gold disk with radius
R = 4 μm and thickness h = 2 μm, immersed in xenon. We
will assume that the separation between the confining surfaces
is L = 20a0 � 12 nm. Then, for μ = μc one shall observe
double sign change of the force with the occurrence of two
maxima, at which the force is repulsive and a minimum, at
which it is attractive. The magnitude of the force at the maxima
is predicted to be FCas, max1 � 16 nN and FCas, max2 � 7.6 nN,
observed at T � 283.5 and 300 K, respectively. The minimum
is found at T � 291 K and its value is FCas, min � −24 nN.
Finally, we predict that the two sign changes occur at T �
288.9 and 295 K, respectively. Note that the predicted values
of FCas are significantly larger than the weight of the disk,
which is approximately 2 × 10−2 nN. We stress that the
predicted magnitude of the force is well in the range of the
one reported in Ref. [181], where the authors estimated that
an object with an effective interaction area A = 1 μm2 at a
distance L = 10 nm to a wall experiences a force FCas � 4 nN
when immersed in a fluid with Tc = 300 K (about the critical
one of a water-2,6-lutidine mixture). Let us also mention
that although the presented study is limited to the interaction
between parallel planar surfaces through some fluid medium,
it can be straightforwardly extended to objects of various
geometries, e.g., via using say the Derjaguin or the gradient
expansion approaches to calculate the interactions between
curved objects. Then, one can study also the behavior of
colloidal particles immersed in a critical fluid or in a binary
mixture close to its consulate point. Thus, another possible
application of our findings is for governing the behavior of
colloids in a critical solvent: imagine coated colloid particles.
Then, under proper choice of the core material of the colloid
and of the coating, the particles will have a stable equilibrium
distance from the bounding plate that will depend on the
temperature and the pressure of the fluid. Thus, we hope
that our result can be used as a guide to the design of new
experiments on colloid systems.

VIII. SUMMARY AND CONCLUDING REMARKS

In this article, in view of future experiments exploring
and potential devices utilizing the critical Casimir forces in
classical one- or two-component fluids confined by parallel

substrates at a distance L from each other, we studied the
behavior of the critical and the near-critical Casimir force and
its interplay with the van der Waals force, as well as the net
force due to both of them. In the envisaged setup, the walls of
the slabs are considered coated by thin layers exerting strong
preference to a given phase of the fluid modeled by strong
adsorbing local surface potentials, while the slabs, on the other
hand, influence the fluid by long-range dispersion potentials at
least one of which supports the opposite phase of the fluid. The
fluid-fluid interactions are assumed to decay as r−(d+σ ), with r

being the distance between the particles of the medium, while
the walls-fluid interactions decay as z−σ where z is the fluid
particle single wall separation. The strengths of the dispersion
interactions in the system are depicted via the dimensionless
coupling parameters λ and si, i = 1,2, accounting for the
fluid-fluid and slabs-fluid interactions, respectively. While λ is
always non-negative, for the slabs-fluid coupling parameters
s1 and s2 we assumed that s1 ≶ 0 while s2 � 0. The confined
fluid medium is modeled within the framework of the lattice
gas model defined in Sec. III. After developing a theory for
arbitrary dimension d and long-range decay exponent σ of
the dispersion interactions (see Appendix and Sec. IV), we
studied in Sec. V the forces in d = 3 systems, assuming that
the dispersion interactions are of “genuine” van der Waals
type, i.e., d = σ = 3. Away from the critical region, the total
force ftot between the plates of the bounded fluid is simply
proportional to the Hamaker constant [see Eqs. (2.2) and (2.3)],
while near (T = Tc, �μ = 0) one has additional contribution
to the force ftot which is proportional to L−dXcrit, where Xcrit is
a scaling function reflecting the role of the critical fluctuations
of the order parameter [see Eq. (2.6)].

Using general scaling arguments, as well as explicit mean-
field model calculations, we have obtained the following main
results:

(1) In terms of some critical thickness Lcrit of the thin films
[see Eqs. (2.10) and (2.11)], we have established a criterion for
the importance of dispersion forces within the critical region
of the system. For L � Lcrit the contributions of the dispersion
forces are important and cannot be neglected either within the
critical region of the system, including the bulk critical point,
or outside of that region (see Figs. 2–4 where the validity of
these statements is clearly visualized). In the opposite case,
i.e., when the separation L between the walls is much larger
than Lcrit, the dispersion forces provide only corrections to
the leading behavior of the critical Casimir and the total force
within the critical region of the system. Outside the critical
region, however, i.e., for T �= Tc, �μ �= 0, the influence of the
dispersion (van der Waals) interactions becomes essential for
the behavior of the total force between the bounding surfaces.
This is of experimental importance because it is difficult to
thermodynamically position the system right at the critical
point.

(2) In the Appendix, we have derived expressions for the
behavior of the Hamaker term in the total force between the
plates [see Eqs. (3.16) and (A6)], that allow for a study of
the temperature and the field dependencies of the Hamaker
constant including those within the critical region of the
system. The behavior of this part of the total force as a function
of the scaling variables xt and xμ for different values of s1, s2,
and λ is shown in Fig. 5.
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(3) We demonstrated that for a suitable set of slabs-fluid
and fluid-fluid coupling parameters, the competition between
the effects due to the coatings and the slabs can result in sign
change of Xcrit (see Figs. 3 and 4) as well as of the Casimir
force (see Fig. 5), when one changes the temperature T , the
chemical potential of the fluid μ, or L. The last can be used in
designing nanodevices and for governing behavior of objects
at small, below micrometer, distances.

(4) In addition to the critical behavior of the considered
forces, in Sec. VI we discussed and gave detailed explanation
for the near-critical behavior of the phase diagram (see Figs. 6–
8) of finite-size systems governed by dispersion interactions.
The influence of these interactions on the shift of the finite-size
critical point has also been commented.

(5) In the final Sec. VII in scope of possible experimental
realization of the theoretical setup, we explored the usage
of concrete substances. For each pair of substrate and fluid
we calculated the coupling parameters sc and λ, and used
this knowledge to make estimations for the critical Casimir
force FCas at several temperatures where it exhibits extrema or
changes its sign. We have demonstrated that by proper choice
of the fluid and substrate materials one can indeed achieve
sc > 0 and sc < 0, which is the main prerequisite for the
experimental feasibility of the effects predicted in this article.

Let us stress that the problem of quantitative description of
the mutual influence of the fluctuation of the electromagnetic
field and the order-parameter fluctuations of a medium when
it is close to its critical point is extremely complicated and
currently there is no general theory available to scope with
it. The Lifshitz theory, which is the basic one for studying
the QED Casimir effect, has never been meant to nor can
deal with the problem of a critical medium between two
other media. The main quantity for which knowledge is
required for practical applications of this theory is the dielectric
permittivity ε(ω). It is normally tabulated at some temperature,
usually the room temperature. It shall be noted, however,
that in a critical fluid ε(ω) is itself a singular function of
the temperature [182,183]. We are not aware even of a
theory that can reliably predict quantitatively how ε(ω) will
depend on the temperature and ω near the critical point of
the medium for a specific material characterized by some
characteristic spectrum. On the other side, when studying
critical phenomena, one normally starts with some effective
Hamiltonian where only a few basic features of the critical
medium are reflected. This article provides a uniform treatment
of the contributions due both to the van der Waals forces and
the critical Casimir forces in the framework of an, unavoidably,
relatively simple model in which, however, all the calculations
have been done on equal footing. The expression that we
derived for the Hamaker term is, nevertheless, in full agreement
with the Dzyaloshinskii-Lifshitz-Pitaevskii theory [35,37]. On
the other side, the mean-field theory is considered as a reliably
theoretical workhorse for the qualitative description of the
critical phenomena.
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APPENDIX: HAMAKER TERM FOR A VAN DER WAALS
SYSTEM OF TWO DIFFERENT SUBSTRATES SEPARATED

BY FLUID MEDIUM

In this appendix, we derive an expression for the Hamaker
term for a van der Waals system of two different substrates
separated by fluid medium. We follow the same lines of
action when performing the calculations as in Ref. [74] with
the important generalization that now, within our model (see
Sec. III), the substrates on both sides of the fluid are allowed
to be, in general, different from each other.

For the constituent components of the Hamaker constant,
one explicitly derives

Al(T ,μ) = −C(d,σ )J lρ2
b (T ,μ) < 0, (A1a)

As1,s2 (T ) = −C(d,σ )J s1,s2ρs1 (T )ρs2 (T ) < 0, (A1b)

Asi,l(T ,μ) = C(d,σ )J si ,lρsi
(T )ρb(T ,μ)>0, i = 1,2

(A1c)

where C(d,σ ) = G(d,σ )/(σ − 1), and for the direct substrate-
substrate potential we have assumed, in accordance with
Eqs. (3.8) and (3.9), that it is given again by van der Waals
type interaction

J s1,s2 (r − r′) = J s1,s2

|r − r′|d+σ
. (A2)

Let us note that Al < 0 and As1,s2 < 0, i.e., the direct substrate-
substrate interaction as well as the fluid-fluid interaction lead
to attraction between the plates bounding the system while
the fluid-substrate interactions are contributing to a repulsion
between them. Furthermore, let us stress that Al and Asi,l , i =
1,2, are singular functions on the temperature near Tc being
dependent on the bulk order parameter ρb, while As1,s2 is an
analytic function of T near T = Tc.

Using Eqs. (A1a)–(A1c), for HA one immediately derives
from Eq. (2.5) that

HA(T ,μ) = −C(d,σ )
{
J lρ2

b (T ,μ) + J s1,s2ρs1 (T )ρs2 (T )

− ρb(T ,μ)[J s1,lρs1 (T ) + J s2,lρs2 (T )]
}
. (A3)

For the sake of simplicity, in the next lines of this section we
are going to omit giving explicitly the arguments of HA, ρb,
and ρsi

, i = 1,2, as they do not change and are of no relevance
for the following discussion. Within our model Al and Asi,l ,
i = 1,2, being a part of the grand canonical potential � have
to be proportional to kBT . Obviously, a similar statement has
to hold for As1,s2 . Thus, one has that this shall be also true for
the pair potentials wX,Y between any two substances X and
Y belonging to the system. According to the general theory
of the dispersion forces between molecules [184], neglecting
the quantum effects, for the “zero frequency contribution” to
wX,Y (r) one indeed has [see Eq. (6.24) on p. 121 in Ref. [184]

wX,Y (r) = − 3kBT

2(4πε0)2r6
α0Xα0Y , (A4)

where α0X and α0Y are the static electronic polarizabilities of
each of the two substances X and Y . The last implies that the
constants Al , Asi,l , i = 1,2, and As1,s2 are not independent.
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From Eq. (A4) one derives that

J s1,s2J l = J s1,lJ s2,l . (A5)

Using this equation one can rewrite Eq. (A3) in the form
given in Eq. (3.16) in the main text. There, when calculating
the critical component of the force, we often characterize the
system by the values of the parameters λ and si,c, i = 1,2,
of the parameters si, i = 1,2, at the bulk critical point of
the fluid medium (β = βc, �μ = 0) [see Eqs. (3.7), (3.10),
and (3.11)]. Thus, it is convenient to express also HA in terms
of these variables. One obtains that

β(σ − 1)HA

= − 4K

G(d,σ )K2
c λ

∏
i=1,2

[
si,c − 1

4
G(d,σ )Kcλφb

]
. (A6)

Since si = (K/Kc)si,c, i = 1,2, with K = βJ l
sr and Kc =

βcJ
l
sr, it is clear that si , i = 1,2, are temperature dependent,

while si,c, i = 1,2, are not. When d = σ = 4, Eq. (A6)
simplifies to

3βHA = − 32K

π2K2
c λ

s1,cs2,c + K

Kc

(s1,c + s2,c)φb − π2

32
λKφ2

b,

(A7)

where we have taken into account that in mean-field ap-
proximation ρc = 1

2 . In Eq. (A7), the term proportional
to λ−1 corresponds to the direct interaction between the
confining walls, the second (proportional to λ0) corresponds
to the interaction between the confining walls and the fluid
medium, while the last one (proportional to λ) reflects the
interaction between the constituents of the fluid medium. The
corresponding result for a d = σ = 3 system is

2βHA = − 6K

πK2
c λ

s1,cs2,c + K

Kc

(s1,c + s2,c)φb − π

6
λKφ2

b,

(A8)

which, taking into account Eq. (2.3), means that the Hamaker
constant is equal to

βAHam = π2λK
∏
i=1,2

[
6si,c

πλKc

− φb

]
. (A9)

One must pay attention when using Eqs. (A7) and (A8) because
the substrate-fluid coupling parameters si,c, i = 1,2, depend
on the dimensionality d of the system and the decay exponent
σ [see Eqs. (3.7) and (3.11)]. The behavior of Eq. (A8) as a
function of the temperature and field scaling variables xt and
xμ is depicted in Fig. 5.
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