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Construction and optimization of a quantum analog of the Carnot cycle
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The quantum analog of Carnot cycles in few-particle systems consists of two quantum adiabatic steps and
two isothermal steps. This construction is formally justified by use of a minimum work principle. It is then
shown, using minimal assumptions of work or heat in nanoscale systems, that the heat-to-work efficiency of such
quantum heat engine cycles can be further optimized via two conditions regarding the expectation value of some
generalized force operators evaluated at equilibrium states. In general the optimized efficiency is system specific,
lower than the Carnot efficiency, and dependent upon both temperatures of the cold and hot reservoirs. Simple
computational examples are used to illustrate our theory. The results should be an important guide towards the
design of favorable working conditions of a realistic quantum heat engine.
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I. INTRODUCTION

The big energy challenge of this century calls for diversified
energy research, including a bottom-up approach towards
energy efficiency. Apart from two stimulating implementations
of microscale heat engines [1,2], some theoretical aspects as
well as possible realizations of nanoscale heat engines [3–17]
have been studied. For purely quantum heat engines at the
nanoscale where the working medium may consist of few
particles only (e.g., few trapped ions) [6], both quantum fluc-
tuations and thermal fluctuations become significant. General
understanding of the design of such energy devices are also of
fundamental interest to nanoscale thermodynamics [18–22].
In particular, as the size of the working medium shrinks to
a quantum level, one must reexamine the implications of the
second law of thermodynamics for the efficiency of quantum
heat engines [23]. To that end, we construct and look into the
quantum analog of Carnot cycles [24,25].

The construction of the quantum analog of a Carnot cycle
is not as straightforward as it sounds. Consider first the
two quasistatic isothermal steps during which the working
medium is in thermal equilibrium with a reservoir. There,
regardless of its size, the quantum medium has well-defined
thermodynamic properties. As such isothermal steps can be
directly carried over to the quantum case. However, translating
the two adiabatic steps of a Carnot cycle into a quantum analog
is by no means obvious. One intuition [3,9,10] is to replace
quasistatic adiabatic steps in thermodynamics (without heat
exchange) by quantum adiabatic processes (as defined in the
celebrated quantum adiabatic theorem [26]). The starting point
of this work is to formally justify such an intuitive construction
by revealing a fundamental reason related to energy efficiency.

Below we simply call the above-defined quantum analog
of a classical Carnot cycle (two quantum adiabatic processes,
plus two isothermal quasistatic steps during which the system
is at thermal equilibrium) as a quantum Carnot cycle. It
is yet fundamentally different from a conventional Carnot
cycle. During the two adiabatic steps, the working medium
implementing the quantum Carnot cycle is generically not at
equilibrium conditions (exceptions to be elaborated below).
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Thus, it becomes important to lay out general designing
principles concerning how the efficiency of a quantum Carnot
cycle can be optimized, preferably using standard definitions
of work and heat. The explicit optimization conditions will be
presented in this work. Our theory also shows that in general
the optimized efficiency attained by a quantum Carnot cycle
is (i) lower than the standard Carnot efficiency, (ii) not a
simple function of Tc/Th but a function of both Tc and Th, the
temperatures of cold and hot reservoirs, and (iii) depends on
the detailed spectrum of the working medium. These features
will guide us in the design of favorable working conditions
of a realistic quantum heat engine. Simple computational
examples are used to illustrate our theory. Throughout this
work we do not use recent microscopic interpretations or
definitions of work or heat proposed for quantum systems,
such as those introduced in Refs. [9,10,12,27]. Instead, we
assume only that heat exchange is zero if the working medium
is thermally isolated and work is zero if the system parameters
of the working medium are fixed. This assumption is fully
consistent with the understandings discussed in recent review
articles [21,22].

II. EFFICIENCY OF QUANTUM HEAT ENGINE CYCLES
AND THE SECOND LAW

We start with general considerations of a quantum heat
engine cycle consisting of two steps of an isothermal system
and two processes of a thermally isolated system. Figure 1
schematically depicts such a cycle. There A → B and C → D

represent two isothermal processes during which the quantum
medium is always at equilibrium with a reservoir, λ is assumed
to be the only system parameter tunable in a cycle opeation,
〈E〉 is the mean energy of the system (that is, the quantum
expectation value of the energy of the system obtained by many
energy measurements), and B → C ′ and D → A′ represent
two thermally isolated and hence unitary processes. The
symbols A′ and C ′ indicate that right after a unitary process,
the quantum medium is in general not at thermal equilibrium.
States of A′ and C ′ will reach thermal equilibrium states A and
C after relaxation with a reservoir under fixed values of λ.

When the system at the nonequilibrium state C ′ starts heat
exchange with the cold reservoir under fixed λ = λC , no work
is done. Hence 〈EC ′ 〉 − 〈EC〉 is simply the heat dumped (which
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FIG. 1. (Color online) A quantum heat engine cycle consisting
of two isothermal steps and two thermally isolated and hence unitary
steps. A, B, C, and D represent four equilibrium states, and C ′ and
A′ represent two nonequilibrium states at the end of two unitary
steps, approaching, respectively, equilibrium states C and A after a
relaxation step initiated by contact with the reservoirs. As shown in
the text, for a quantum analog of the Carnot cycle, the two thermally
isolated steps should be two quantum adiabatic processes.

could be negative). This thermal relaxation process is followed
by the isothermal process from C to D. The total heat Qout

dumped to the cold reservoir (Qout > 0 indicates heat flowing
from system to cold reservoir) is hence contributed by two
terms, with

Qout = Tc(SC − SD) + 〈EC ′ 〉 − 〈EC〉, (1)

where SC and SD describe entropy of equilibrium states C and
D. In the same fashion, the total heat absorbed from the hot
reservoir, denoted by Qin (Qin > 0 indicates heat flowing from
hot reservoir to system), is given by

Qin = Th(SB − SA) + 〈EA〉 − 〈EA′ 〉. (2)

The efficiency of such a general quantum engine cycle is
therefore ηq = 1 − Qout/Qin, i.e.,

ηq = 1 − Tc(SC − SD) + 〈EC ′ 〉 − 〈EC〉
Th(SB − SA) + 〈EA〉 − 〈EA′ 〉 . (3)

To compare the above efficiency ηq with the Carnot efficiency
ηc ≡ 1 − Tc/Th, we first define �S total

B→C and �S total
D→A, namely,

the total entropy increase of the universe for the overall process
D → A and B → C. It is straightforward to obtain

�S total
B→C = (SC − SB) − 1

Tc

[〈EC〉 − 〈EC ′ 〉],

�S total
D→A = (SA − SD) − 1

Th

[〈EA〉 − 〈EA′ 〉]. (4)

By the second law of thermodynamics, both �S total
B→C and

�S total
D→A cannot be negative. Let us now rewrite Eq. (3) as

ηq = 1 − Tc(SB − SD) + Tc�S total
B→C

Th(SB − SD) − Th�S total
D→A

. (5)

Evidently then, if �S total
D→A and �S total

B→C in Eq. (5) is zero, then
ηq would reduce exactly to the Carnot efficiency ηc. In general,
ηq in Eq. (5) is seen to be always lower than ηc. In short, the

second law of thermodynamics requires that the efficiency of
a quantum heat engine cycle described above should be in
general lower than, and can only reach in exceptional cases,
the Carnot efficiency.

III. CONSTRUCTING A QUANTUM CARNOT CYCLE

To construct a quantum Carnot cycle, one must specify the
two unitary processes B → C ′ and D → A′. Reference [3]
first proposed to consider quantum adiabatic processes for this
purpose, mainly based on certain qualitative reversibility con-
siderations [28]. Here we show that this intuitive construction
is correct for a quantitative, and more fundamental, reason
related to heat-to-work efficiency.

Before proceeding, we emphasize that adiabaticity in a
quantum unitary process does not have the key feature of a
thermal quasistatic adiabatic process in the Carnot cycle; i.e.,
the former does not result in equilibrium states in general but
the latter does. As a result, quantities such as temperature and
thermodynamic entropy are usually ill-defined for states C ′
and A′. Consider then the expression of ηq in Eq. (3). With
four equilibrium states A, B, C, and D specified as in Fig. 1,
only 〈EC ′ 〉 and 〈EA′ 〉 may be varied by choosing different types
of unitary processes B → C ′ and D → A′. For processes of
a thermally isolated system, there is no heat exchange, and as
such, we have

〈EC ′ 〉 = 〈EB〉 + 〈W 〉B→C ′ ,

〈EA′ 〉 = 〈ED〉 + 〈W 〉D→A′ , (6)

where 〈W 〉B→C ′ and 〈W 〉D→A′ represent the average work
associated with B → C ′ and D → A′. The meaning of the
average work used here is fully consistent with the definition
of average work discussed earlier for thermally isolated sys-
tems [21,22]. Remarkably, the minimal work principle [29,30]
then takes us to a definite choice. In particular, for a quantum
state initially prepared as a Gibbs equilibrium distribution (this
specific requirement can be loosened) and for fixed initial and
final λ values, a quantum adiabatic process (if implementable)
is the one with the minimal average work. So if D → A′ and
B → C ′ are indeed quantum adiabatic processes, the minimal
work principle ensures that the final mean energies 〈EC ′ 〉 or
〈EA′ 〉 are minimized for fixed states B and D. Returning to the
expression of ηq in Eq. (3), minimized 〈EC ′ 〉 and 〈EA′ 〉 then
yield the highest possible efficiency ηq . It is for this efficiency
consideration that the quantum analog of Carnot heat engines
must consist of two quantum adiabatic steps in addition to two
isothermal steps. To our knowledge, this is an important and
previously unknown insight [28].

IV. OPTIMIZING EFFICIENCY OF QUANTUM
CARNOT CYCLES

With quantum Carnot cycles constructed and justified as
above, we next seek specific design principles to further
optimize ηq . The Hamiltonian of the working medium (when
thermally isolated) is assumed to be Ĥ (λ) with energy levels
En(λ). The values of λ at B and D, namely, λB and λD , are
assumed to be given. The focus question of this study is to
show how to choose λ at states A and C, namely, λA and λC ,
such that ηq may be optimized.
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It is interesting to first illustrate this optimization issue in
systems possessing scale invariance [31,32] with λ. In such an
exceptional case,

[En(λ1) − Em(λ1)] = S(λ1,λ2)[En(λ2) − Em(λ2)]. (7)

Examples of this situation include a harmonic oscillator,
with λ being the harmonic frequency, a particle in an
infinitely deep square-well potential [3], where λ can be the
width of the potential well, or simply a two-level quantum
system [9]. Consider then the adiabatic step from B to C ′. The
initial state populations are given by PB(n) = e−βhEn(λB )/ZB

(throughout Z represents equilibrium partition functions and
β represents the inverse temperature). Upon reaching C ′, the
final populations are still given by PC ′ (n) = e−βhEn(λB )/ZB due
to the assumed quantum adiabaticity. Now given the assumed
scale-invariance in Eq. (7), one can always define an effective
temperature Teff to reinterpret PC ′ (n), namely,

PC ′ (n) = e−βhEn(λB )/ZB = e−βeffEn(λC )/ZC, (8)

where βeff ≡ 1/(kBTeff) = S(λB,λC)βh; that is, state C ′ has
no difference from an equilibrium state with temperature Teff

under Hamiltonian Ĥ (λC). If we now choose λC to guarantee
that Teff = Tc, then state C ′ is already in thermal equilibrium
with the cold reservoir at Tc. The relaxation process from C ′
to C as illustrated in Fig. 1 is no longer needed, resulting
in SC = SB , 〈EC〉 = 〈EC ′ 〉 and hence �S total

B→C = 0. Exactly
the same analysis applies to the adiabatic process D → A′.
That is, by choosing an appropriate value of λA, we can set
�S total

D→A = 0. According to the expression of ηq in Eq. (5),
ηq then yields the standard Carnot efficiency. This result
also offers a clear perspective to explain why the Carnot
efficiency can be obtained in some early studies of quantum
heat engines [3,13].

We next lift the above scale-invariance assumption and
proceed with optimizing ηq , by optimizing Qout and Qin. We
first rewrite Qout and Qin in Eqs. (1) and (2) as the following:

Qout = 〈EC ′ 〉 − 〈ED〉 − kBTc ln
ZD

ZC

,

Qin = 〈EB〉 − 〈EA′ 〉 + kBTh ln
ZB

ZA

. (9)

Interestingly, with states B and D fixed, only λC may affect
Qout via 〈EC ′ 〉 and ZC ; while only λA may affect Qin via
〈EA′ 〉 and ZA. That is, to optimize ηq , minimizing Qout

and maximizing Qin can be executed separately, which is
a considerable reduction of our optimization task. For this
reason, below we focus on minimizing Qout and the parallel
result concerning Qin directly follows.

Accounting for quantum adiabaticity that maintains popu-
lations on each quantum level, one has

〈EC ′ 〉 = 1

ZB

∑
n

e−βhEn(λB )En(λC). (10)

Note again that the level populations 1
ZB

e−βhEn(λB ) used above
are in general not an equilibrium Gibbs distribution associated
with Ĥ (λC) (because in general a system does not possess

scale invariance). Using Eqs. (9) and (10), we arrive at

∂Qout

∂λC

=
∑

n

[
e−βhEn(λB )

ZB

− e−βcEn(λC )

ZC

]
∂En(λC)

∂λC

. (11)

The minimization of Qout requires the condition ∂Qout/∂λC =
0, which indicates that

∑
n

[
e−βhEn(λB )

ZB

− e−βcEn(λC )

ZC

]
∂En(λC)

∂λC

= 0. (12)

Viewing the linear response in energy to a variation in λ as
a generalized force, we define a general force operator F̂λ ≡
− ∂Ĥ (λ)

∂λ
. Then the condition in Eq. (12) can be cast in the

following compact form,

〈F̂λC
〉C = 〈Û †

B→CF̂λC
ÛB→C〉B, (13)

where ÛB→C is the unitary transformation that transforms
an arbitrary nth eigenstate of Ĥ (λB) to the nth eigenstate of
Ĥ (λC). That is, the expectation value of a generalized force
operator at λC over equilibrium state C should be identical with
that of a mapped force operator over equilibrium state B. Need-
less to say, the condition for Qin to be maximized is given by〈

F̂λA

〉
A

= 〈
Û

†
D→AF̂λA

ÛD→A

〉
D
, (14)

where ÛD→A transforms an arbitrary nth eigenstate of Ĥ (λD)
to the nth eigenstate of Ĥ (λA).

Unlike a previous interesting suggestion [33], the two
explicit conditions in Eqs. (13) and (14) to optimize ηq

are not about matching the mean energy between states C ′
and C (A′ and A). Attempts to match information entropy
between states C ′ and C (A′ and A) do not optimize ηq , either.
Rather, the conditions found here are about a more subtle and
more involving matching of the expectation values of some
generalized force operators through equilibrium states. We
now take Eq. (12) as the example to digest the optimization
conditions. For the exceptional case of a scale-invariant
medium, due to the existence of a βeff = βc at C ′, one can
achieve e−βhEn (λB )

ZB
− e−βcEn(λC )

ZC
= 0 for arbitrary n. Then Eq. (12)

can be easily satisfied, independent of the details of ∂En(λC )
∂λC

.
For a general working medium, the condition of Eq. (12)
may be still satisfied after setting the sum of all the terms
∂En(λC )

∂λC
[ e−βhEn(λB )

ZB
− e−βcEn(λC )

ZC
] to zero.

V. NUMERICAL EXAMPLES

We adopt a simple model system that is not scale-variant
with λ, with En(λ) = λn + αn2 + const (all variables in
dimensionless units). For our purpose here there is no need to
specify the explicit form of the Hamiltonian. If α is comparable
to λ, then the ratio [En(λ1) − Em(λ1)]/[En(λ2) − Em(λ2)]
does depend strongly on n and m, a clear sign of breaking
the scale invariance. Cases of a very small α would resemble
the behavior of a harmonic oscillator at low temperatures. To
guarantee quantum adiabaticity, we exclude cases with level
crossings. This is achieved by requiring λ > −α such that
En > Em if n > m. Other physical considerations for the cycle
to operate as a meaningful heat engine suggests that λA should
be the largest and λC the smallest among λA, λB , λC , and
λD . Our computational details confirm that (i) minimization
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FIG. 2. (Color online) Behavior of heat-to-work efficiency ηq

optimized under given λB , λD , Tc and Th, with λA and λC chosen
according to Eqs. (13) and (14). (a) ηq vs λD if λB = 6.0 for three
sets of Tc and Th and (b) ηq vs λB if λD = 6.0, also for three sets of
Tc and Th. In all the shown cases the Carnot efficiency ηc = 0.5 (top
dashed curve). All variables are in dimensionless units. The energy
levels of the working medium are assumed to be En(λ) = λn + αn2

with α = 0.1.

of Qout and maximization of Qin indeed occur precisely at
those locations predicted by Eqs. (13) and (14), and (ii) the
optimized ηq can be markedly higher than that obtained by
matching the mean energy or information entropy between
states C ′ and C (A′ and A). Optimization of ηq as outlined
above is hence indeed doable and necessary.

The rather specific conditions to optimize ηq (under fixed
λB and λD) indicates that the ηq thus optimized will be highly
system specific. To see this, we present in Fig. 2 optimized ηq

as a function of λD (λB) with fixed λB (λD), under different
temperatures Tc and Th. From Fig. 2(a) it is seen that the
optimized ηq can be way below, but nevertheless quickly
approaches, the Carnot efficiency ηc as λD increases. This
is because a larger λD leads to an even larger λA due to the

optimization requirement, both facts pushing the system closer
to a scale-invariant system under fixed temperatures. Note also
that even though the three ηq curves in Fig. 2(a) are for the
same ratio Tc/Th, their ηq values are much different. This
shows that the optimized ηq is no longer a simple function of
Tc/Th, but a function of both Tc and Th. Figure 2(b) shows that
our optimized ηq may not be always a monotonous function
of λB with a fixed λD . Interesting effects of Tc and Th under a
common Tc/Th are again observed there. The shown ranges of
λB or λD in Fig. 2 vary with the chosen temperatures because
we exclude level crossing situations. The sharp change of ηq in
Fig. 2(a) [Fig. 2(b)] with a decreasing (increasing) of λD (λB)
under a given λB (λD) is simply because the optimized cycle
is about to cease to operate as a heat engine (which requires
Qin > Qout > 0).

VI. DISCUSSIONS AND CONCLUSIONS

Several previous studies investigated quantum Otto cy-
cles [6,11,16,34] consisting of two thermally isolated steps and
two isochoric processes that are simply relaxation processes
with a hot or a cold reservoir. Such cycles can be regarded as
a special case of the quantum heat engine cycles considered
here, by removing the isothermal process A → B or C → D.
That is, by setting λA = λB and λC = λD in Fig. 1, we obtain
the quantum Otto cycles. One can now also justify the use of
quantum adiabatic steps to construct energy efficient quantum
Otto cycles via the minimum work principle again [29].
Because in our efficiency optimization under fixed λB and
λD , the obtained λA (λC) in general differs from λB (λD), one
deduces that the optimized ηq here is generically higher than
the efficiency of the corresponding quantum Otto cycles. This
fact strengthens the importance of quantum Carnot cycles we
have optimized.

Our analysis does not really demand the two adiabatic steps
to be executed slowly, so long as the final-state populations
agree with those given by the quantum adiabatic theorem.
This understanding encourages the use of shortcuts to adia-
baticity [32,34–37] or even an optimal control approach [38]
to implement quantum Carnot cycles within a shorter time
scale, thus boosting the heat engine power.

In conclusion, using minimal assumptions about work and
heat in nanoscale systems, we have shown how to construct
and optimize the quantum analog of Carnot cycles. The
heat-to-work efficiency can be optimized if two conditions
regarding some generalized force operators evaluated at some
equilibrium states are met. In general the optimized efficiency
is system specific and lower than the Carnot efficiency.
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