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Scaling behavior and complexity of plastic deformation for a
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We explore the scaling behavior and complexity in the shear-branching process during the compressive
deformation of a bulk metallic glass Zr64.13Cu15.75Al10Ni10.12 (at. %) at cryogenic temperatures. The fractal
dimension of the stress rate signal ranges from 1.22 to 1.72 with decreasing temperature and a larger shear-
branching rate occurs at lower temperature. A stochastic model is introduced for the shear-branching process.
In particular, at a temperature of 213 K, the shear-branching process evolves as a self-similar random process.
In addition, the complexity of the stress rate signal conforms to the larger activation energy of the shear
transformation zone at lower temperatures.
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To explore the plastic deformation mechanism during
compressive deformation for bulk metallic glasses (BMGs),
the serrated flow signal is usually discussed in terms of various
methods, such as the chaotic time series analysis [1], the
statistical analysis [1–4], and the spatiotemporal dynamic
model [5–8]. The shear-band-slip avalanche is the domi-
nant mechanism of plastic deformation in BMGs, which
demonstrates the agreement between high-temporal-resolution
measurements of the slip statistics and the dynamics of the
predictions of a simple mean-field theory [9,10]. The multiple
shear-band patterns show fractal characteristics in the severely
deformed BMGs under specific loading conditions [11]. For
the BMGs with good ductility, the dynamics of the serrated
plastic flow manifests a self-organized criticality (SOC) state,
which has a power-law scaling behavior [1].

Recently, a few of studies have focused on the deformation
behavior of BMGs under extreme conditions, such as at
cryogenic temperatures or high strain rates [12–16]. The shear-
banding behavior and the plastic flow for the inhomogeneous
deformation of BMGs are considered to be affected by
deformation units [14]. The activation energy increment of
the deformation units at lower temperatures is the main factor
influencing the fracture strength of BMGs [17]. In fact, the
plasticity of BMGs is unexpectedly improved with decreasing
temperature [4,12]. However, the exact elucidation of how
the temperature influences the plastic deformation of BMGs is
still unclear. In the current work, the scale-free fractal behavior
and the complexity information in the shear-branching process
of a BMG are investigated to provide valuable information to
further characterize the evolution of the shear bands and plastic
deformation mechanism of BMGs at cryogenic temperatures
since the intermittent serrated flow is not appropriate for
the continuous system and the stress-time signal of metallic
glasses appears quite complicated and irregular.

*Corresponding author: renjl@zzu.edu.cn

A Zr64.13Cu15.75Al10Ni10.12 (at. %) BMG is compressed in
a temperature range from 133 to 305 K with a strain rate
of 2.5 × 10−4 s−1. The stress-time curves are established in
Fig. 1, which shows that as the temperature decreases from
305 to 133 K, the amplitude of serrations reduces gradually
and disappears at a temperature of 193 K. Clearly, there is a
transition from the serrated to nonserrated plastic flow with
decreasing temperature. Hence, it is required to investigate the
plastic deformation mechanism based not only on the serrated
flow but also on the nonserrated flow.

It was shown in previous works [18–21] that several degrees
of short- and medium-range order did exist in BMGs, which
means that there are self-similar characteristics hidden in
BMGs. Xi et al. found a fractal-like dimpled structure on
the fracture surface of a Ti-based BMG [22]. Sun and Wang
further quantitatively analyzed the fractal characteristic of the
two-dimensional fracture surface of Zr-based BMG [11]. The
analysis based on the two-dimensional fracture surface reflects
the local feature of the shear-branching process, for which the
actual spread is in a three-dimensional space. Considering
that it is difficult to measure shear bands distributed spatially,
we focus our research on the temporal stress rate signal
of Zr64.13Cu15.75Al10Ni10.12 BMG {dσ (i)/dt, i = 1,2, . . . ,N}
(see Fig. 2) because it reflects the global feature of the
shear-branching process.

The calculation of the fractal dimension is, according
to the box-counting method [23], based on the stress rate
signal {x(i) = dσ (i)/dt, i = 1,2, . . . ,N}. Square boxes with
a length of l can cover the total data set, which needs at least
N (l) boxes. Changing the box size l, we can obtain a series of
N (l). Fitting [l,N (l)] in a double logarithmic plot, the slope of
this fitting curve is expressed as

D = − lim
l→0

ln N (l)

ln l
, (1)

where D is the fractal dimension of the stress rate signal.
The fractal dimension D as a function of the temperature

is plotted in Fig. 3. It can be seen that the D value increases
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FIG. 1. (Color) Comparative stress-time curves for
Zr64.13Cu15.75Al10Ni10.12 glassy metal deformed at different
temperatures, 133, 153, 173, 193, 213, 233, 253, 273, and 305 K,
with a strain rate of 2.5 × 10−4 s−1.

with temperature decreasing from 305 to 133 K, suggesting
an enhanced fractal behavior at low temperature. The largest
D value appears at the temperature of 133 K, indicating the
largest shear-branching rate. In this case, numerous shear
bands with hierarchical structure can propagate in a scale-free
manner. The fractal dimension of the shear-branching structure
actually reflects the branching rates of a primary shear band
evolving to the secondary shear band. The formation of the
fractal structure results from the interactions among shear-
band hierarchies located at different places and in different
directions. For BMGs at lower temperatures with a larger
fractal dimension, the plasticity is also improved, which is
attributed to the concurrent nucleation of a large number of
shear bands throughout the sample. The higher density of
shear bands in turn can induce a hierarchical structure in
the length scales of shear banding. Thus, a large number of
shear bands usually are accompanied by the spread of the
hierarchical structure. The shear-branching process includes
short-range interactions from the intersection of the shear
bands, the consequent arrest, and the long-range interaction
of the strain fields initiated from different shear bands.
Along with the shear-branching process, the serrated flow
behavior is manifested in the plastic regime in the Zr-based
BMG. Each stress drop in the serration event corresponds
to the system surmounting the barrier and then jumping to
a neighboring metastable state, which is believed to show
SOC-type dynamics, especially at lower temperatures (the
cryogenic level) [4].

Based on the stress rate signal {x(i) = dσ (i)/dt, i =
1,2, . . . ,N}, the detrended fluctuation analysis is used to
quantify the evolution of the shear-branching structure. The
process of the detrended fluctuation analysis is described as
follows [24–27]. The signal {x(i), i = 1,2, . . . ,N} is divided
into Nq (where Nq = N/q) zones with each zone containing q

elements. In the kth zone, the local trend is defined as a linear
function of x̂k(j ), j = 1,2, . . . ,q, which is linearly fitted by
the original series xk(j ), j = 1,2, . . . ,q. The detrended time
series is xk(j ) − x̂k(j ), j = 1,2, . . . ,q, with a mean-square
error F 2(k) = 1

q

∑q

j=1 [xk(j ) − x̂k(j )]2. The root mean square

is expressed as Fq = [ 1
Nq

∑Nq

k=1 F 2(k)]1/2 in the total Nq zones,

FIG. 2. (Color online) Plot of the stress rate signal dσ/dt curves
for the Zr64.13Cu15.75Al10Ni10.12 glassy metal compressed at a strain
rate of 2.5 × 10−4 s−1 at different temperatures, 133, 153, 173, 193,
213, 233, 253, 273, and 305 K. (To clearly show the difference
between the results, here we capture part of the overall data.)

where Fq is a power function of the scale q, Fq ∼ qH , where
H is the Hurst exponent reflecting the long-range memory
dependence of the signal.

The Hurst exponent H vs temperature, according to the
above detrended fluctuation analysis, is shown in Fig. 3. The
Hurst exponent H ranges from 0.11 to 0.48 (see Table I). Here
H ∈ (0,0.5) means a negative correlation and an antipersistent
process during the shear-branching process, which implies that
the evolution trend of shear branching is opposite to the past
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FIG. 3. (Color online) Fractal dimension D [middle (red) line],
Hurst exponent H [bottom (green) line], and D + H [top (black) line]
of the stress rate signals dσ/dt for the Zr64.13Cu15.75Al10Ni10.12 glassy
metal compressed at a strain rate of 2.5 × 10−4 s−1 and at different
temperatures, 133, 153, 173, 193, 213, 233, 253, 273, and 305 K.

progress due to the absence of the long-memory dependence.
The stress rate increases persistently over a period of time
and then decreases over the next period of time. This trend is
consistent with that of the serrated flow, which increases during
the elastic energy aggregation and then decreases during the
energy release.

As the temperature decreases, the Hurst exponent in-
creases to a maximum value of 0.48 at 213 K and then
decreases (see Fig. 3). The maximum Hurst exponent at 213 K
reflects that the stress rate signal is a self-similar random
process with a weak negative correlation. The shear-branching
process behaves like a random walk, which induces homog-
enization to some degree. On the other hand, a small-H
value (such as H = 0.11 at 133 K) means a strong negative
correlation of the shear-branching process. This strong antiper-
sistent behavior is accompanied by increasing hybridization of
shear bands. In this case, the deformation caused by multiple
interactions between shear bands is characterized by a low
degree of homogenization, i.e., heterogeneity.

An inner correlation between the fractal dimension and
Hurst exponent can be described by the modified Cauchy
class [28] as a stochastic process. The modified Cauchy
class consists of stationary Gaussian random processes Z(x),
x ∈ R, which are characterized by their correlation function
c(r) = 〈Z(x),Z(x + r)〉, x ∈ R, and a correlation function

TABLE I. Fractal dimension D, Hurst exponent H , values of D +
H , and Eapprox of the signal {dσ (i)/dt, i = 1,2, . . . ,N} at different
temperatures, 133, 153, 173, 193, 213, 233, 253, 273, and 305 K with
a strain rate of 2.5 × 10−4 s−1.

Temperature 133 153 173 193 213 233 253 273 305

D 1.72 1.64 1.7 1.7 1.4 1.33 1.28 1.31 1.22
H 0.11 0.12 0.12 0.13 0.48 0.32 0.35 0.28 0.25

D + H 1.83 1.76 1.82 1.83 1.88 1.65 1.63 1.59 1.47
Eapprox 1.25 1.2 1.3 1.35 0.77 0.21 0.19 0.24 0.48

satisfying c(r) = (1 + |r|α)−(β/α)−1[1 + (1 − β)|r|α], r ∈ R,
where α ∈ (0,2] and β > 1. The fractal dimension D is given
by D = n + 1 − α/2 and the Hurst exponent H is given by
H = 1 − β/2. Considering the result that we calculated here,
H ∈ (0,0.5), we give the restriction of β > 1 in the modified
Cauchy class, which can feature the negative correlation of the
signal.

The stochastic model is suitable for the current situation
because not all of the D and H conform to the linear
relationship, i.e., D + H = 2 (see Fig. 3, the curve of D + H

vs temperature). In particular, at a temperature of 213 K, the
value of D + H is equal to 1.88 (∼2), which suggests that
the signal is close to a self-similar random process. This
result is consistent with the above analysis that the Hurst
exponent H = 0.48 at 213 K, reflecting that the stress rate
signal is a self-similar random process with a weak negative
correlation. In addition, from Fig. 2, we observe that the
signal {dσ (i)/dt, i = 1,2, . . . ,N} is smoothed as the Hurst
exponent increases. The tendency here is consistent with the
identification of the modified Cauchy class: The closer the
Hurst exponent is to 0.5, the smoother the signal curve is [28].

To further characterize the complexity of the system, the
concept of entropy is introduced. We can obtain an accurate
result about the system by using the approximate entropy
(Eapprox) method [29]. The calculated value of Eapprox is
shown in Table I and Eapprox as a function of temperature
is presented in Fig. 4. A large value of Eapprox plotted in
the low-temperature range suggests that the stress rate signal
exhibits a high complexity, which is consistent with the above
fractal analysis and the detrended fluctuation analysis. A
large fractal dimension at low temperatures reflects the high
shear-branching rate with a complex hierarchical structure.
A small Hurst exponent (i.e., a strong negative correlation)
reflects a low degree of homogenization. The heterogeneity
in the stress rate signal induces a disordered and complicated
shear-branching process, which can also be observed from the
fracture surface.

The activation energy W = (8/π2)γ 2
CG�, where G is the

shear modulus, � is the effective shear transition zone (STZ)
volume, and γc is a critical shear strain for BMGs (γc = 0.036
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FIG. 4. (Color online) Approximate entropy Eapprox at different
temperatures, 133, 153, 173, 193, 213, 233, 253, 273, and 305 K,
with a strain rate of 2.5 × 10−4 s−1.
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TABLE II. Mechanical properties of the metallic glass com-
pressed at different temperatures: T is the temperature, G0T is the
shear modulus, and τCT is the critical shear stress.

T (K) G0T (GPa) τCT (MPa)

183 30.2 1087
203 30.0 1080
213 29.9 1076
223 29.8 1073
273 28.9 1040
293 28.5 1026

is found to be a constant for BMGs at room temperature) [30].
The activation volume of the STZ can be calculated by the
formula � = kT ln(ω0/Cγ̇ )

4RG0T γ 2
Cς(1−τCT /τC0)3/2 [31], where ln(ω0/Cγ̇ ) ≈

30, R ≈ 0.25, ς ≈ 3; T is the environmental temperature, k

is Boltzmann constant (1.381 × 10−23 J/K), τC0 is the yield
shear stress at 0 K (τC0 = 1124 MPa), and G0T is the shear
modulus at the temperature of T (G0T = 31.2 GPa). The crit-
ical shear stress τCT satisfies τCT /G = γC0 − γC1(T/Tg)2/3,
where γC0 = 0.036 and γC1 = 0.016. The necessary mechan-
ical properties of the Zr64.13Cu15.75Al10Ni10.12 BMG com-
pressed at different temperatures are shown in Table II. Based
on the above information, the volume and activation energy
of the STZ can be calculated (see Fig. 5). The volume of the
STZ increases as temperature decreases from 305 to 133 K; the
activation energy of the STZ increases correspondingly. This
result is consistent with the calculation results of the Eapprox

value, i.e., the increased complexity of the shear-branching
process appearing at low temperature. The larger fractal
dimension reflects the more complex hierarchical structure of
the shear-branching process at lower temperatures. The high
complexity of the shear-branching process at low temperature
confirms theoretically that there is a large activation energy
used for activating the STZ, which facilitates the plastic flow
of BMGs.

In summary, the self-similar behavior and complexity in the
temporal scale of the stress rate signal have been investigated
at temperatures well below the glass-transition temperature.
The obvious fractal behavior suggests that the shear-banding
process is accompanied by larger branching rates from a
primary shear band to a secondary shear band. In fact, at a
temperature of 133 K, many shear bands interact with each
other and the sample contains more elastic energy, which is
facilitated to produce the good plasticity of metallic glasses. A
Cauchy class model was introduced for the stochastic shear-
branching process, which connects the fractal dimension and
Hurst exponent and features the negative correlation process.
In addition, the Hurst exponent reaches a maximum value of
0.48 at a temperature of 213 K; in particular, at a temperature
of 213 K, the value of D + H approaches 2, suggesting that

3×10−18
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FIG. 5. (Color online) (a) Volume of STZ at different tempera-
tures and (b) activation energies at different temperatures, 133, 153,
173, 193, 213, 233, 253, 273, and 305 K.

the shear-branching process evolves as a self-similar random
process, which induces a degree of homogenization in shear
bands. Furthermore, the analysis of approximate entropy
suggests that there is a complicated hierarchy structure at low
temperatures, which can be interpreted as there being many
shear bands interacting at lower temperatures, which induces a
SOC state. We have given an explanation of the superplasticity
of the BMGs from the perspective of the temporal scaling
behavior and the complexity at low temperature.
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