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We consider partially directed walk models of polymers undergoing inhomogeneous adsorption. The
inhomogeneity can be in the polymer, in the surface, or in both. For the cases where the polymer is either
a homopolymer or a strictly alternating copolymer and where the surface is either homogeneous or has stripes
of width 1, we calculate detailed order parameters and show that these provide important information about the
ways in which the polymer adsorbs.
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I. INTRODUCTION

The theory of polymer adsorption at an impenetrable
surface has a long history [1]. Various models have been
considered, including random walks [1–3] for which we have
essentially complete solutions available. Self-avoiding walk
models are considerably more difficult, but some rigorous
results are available [4,5] and there are many numerical
studies [6,7] including recent and very precise estimates by
Beaton et al. [8]. Other types of models that have proved to be
very useful are directed and partially directed walks [9–11].
These models have the distinct advantage that they are often
exactly solvable by combinatorial techniques.

Originally the models considered were for homopolymers
adsorbing on homogeneous surfaces but these can be extended
to heterogeneous systems where the heterogeneity can be in
the polymer or in the surface or in both. The heterogeneity can
be random [12–15] or regular [16–18]. When the heterogeneity
is random it can be annealed or quenched [14].

Some theoretical work has been carried out on copolymer
adsorption on inhomogeneous surfaces [13,16,17,19–28] and
this situation serves as a simple model of the biological process
of recognition [15,18–20]. The basic idea is that a particular
monomer sequence leads to more favorable adsorption on a
surface with a particular pattern of adsorption sites so that
the polymer is recognized by the surface. This is connected
with the phenomenon of frustration where other monomer
sequences are not easily adsorbed on the patterned surface.
This raises questions about the conformation of the adsorbed
polymer and how the conformation depends on the details of
the copolymer sequence and the surface heterogeneity. This
question can be addressed by considering how the adsorbed
polymer responds to the application of a force, desorbing
the polymer [3,29–34], especially when the angle at which
the force is applied can be varied [35–40]. An alternative
way to investigate this question is to compute more detailed
information about the adsorbed polymer and this is the
approach that we take in this paper. The adsorbed polymer can
be regarded [41,42] as a sequence of trains (or incursions [4])
where the successive edges are all in the surface, loops where
the first and last vertices, but no others in the sequence,
are in the surface, and tails which have exactly one vertex
in the surface. We calculate various train statistics and, for
our model, we also obtain loop statistics from these results.
At temperatures above the critical adsorption temperature,

essentially all of the monomers are in tails, while below
this temperature trains and loops dominate. In the adsorbed
phase the fraction of monomers in tails goes to zero in the
thermodynamic limit and, as the temperature decreases further,
the proportion of monomers in trains increases. In the infinite-n
limit it can be shown that the limiting free energy of walks that
start and end in the surface is the same as that of walks that
start in the surface but are not restricted to end there. This
follows from some very general arguments [4].

In addition, for the case of a copolymer with two types of
monomers or for a striped surface with two types of stripes, we
compute the statistics of the different possible types of visits
to the surface. These quantities are sensitive to the energy
parameters associated with the various types of visits and give
information about the conformation of the adsorbed polymer.

Any such calculations will, unavoidably, be model de-
pendent in a quantitative way. In earlier work [17,39] we
compared results for the partially directed walk model and
for the self-avoiding walk model and showed that the behavior
is qualitatively very similar. As a result, the general features
of the behavior of the partially directed walk model studied
here are expected to be very close to those of the self-avoiding
walk model.

In Sec. II we define the models that we consider and outline
the techniques by which these models can be solved exactly.
In Sec. III we describe our principle results and we discuss our
results further in Sec. IV.

II. MODELS AND METHOD OF SOLUTION

The basic conformational model that we use throughout this
paper is a partially directed walk (PDW) on the simple cubic
lattice. With the obvious coordinate system (x1,x2,x3) (so that
vertices of the lattice have integer coordinates) we consider
walks that start at the origin, are confined to the half space
x3 � 0, and have their last vertex in the plane x3 = 0. The plane
x3 = 0 represents an impenetrable surface at which adsorption
can occur. We write xi(j ) for the ith coordinate of the j th
vertex, i = 1,2,3, j = 0, . . . ,n, so x1(0) = x2(0) = x3(0) = 0
and x3(j ) � 0, j = 0, . . . ,n. Partially directed walks are a
subset of self-avoiding walks with the added restriction that
they cannot take steps in the negative x1 or x2 directions. The
restriction of having the last vertex in x3 = 0 does not affect our
results for the adsorbed phase since it can be shown that tails
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FIG. 1. (Color online) Schematic examples of the three different models studied in this paper: (a) the HS model, (b) the CH model, and (c)
the CS model. For clarity, the steps in the x1 and x2 directions are coloured red and blue, respectively.

are negligible in this phase in the thermodynamic (n → ∞)
limit.

We shall be primarily concerned with three types of
heterogeneity [17] (see Fig. 1).

(i) A homopolymer interacting with a striped surface (the
HS model). The polymer is homogeneous but the surface has
stripes of two types a and b. The type of stripe is determined
by the parity of the x2 coordinate. A monomer on an a

stripe contributes an energy εa and a monomer on a b stripe
contributes an energy εb. We sometimes write −εa/kBT = α

and −εb/kBT = β, where kB is Boltzmann’s constant and T

is the absolute temperature.
(ii) A strictly alternating copolymer interacting with a

homogeneous surface (the CH model). The polymer has two
comonomers A and B that strictly alternate along the polymer.
The surface is homogeneous. Each A monomer in the surface
contributes energy εA and each B monomer on the surface
contributes energy εB . We sometimes write −εA/kBT = α

and −εB/kBT = β.
(iii) A strictly alternating copolymer interacting with a

striped surface (the CS model). The polymer is strictly
alternating as in the CH model and the surface is striped as
in the HS model. Here A monomers on a stripes contribute
energy εAa , etc. To simplify the situation we set εAb = εBa = 0
and we sometimes write −εAa/kBT = α and −εBb/kBT = β.

We extract the thermodynamic quantities from these models
by considering the singularity structure of the generating
function for all walks in a particular class. In general, we
write

G =
∑

n

Znz
n, (1)

where Zn is the n-step partition function for the model given
by

Zn =
∑
vμ,vν

cn exp(−H/kT ), (2)

where cn = cn(vμ,vν) is the number of n-step walks with vμ

(vν) interactions of type μ (ν), respectively, and

H = vμεμ + vνεν. (3)

Here μ can be A or a or Aa and ν can be B or b or Bb depending
on which model we are considering. Irrespective of the model,
we note that the thermodynamic limit limn→∞ n−1 ln Zn ≡ κ

exists and the generating function can be written as

G =
∑

n

eκn+o(n)zn. (4)

The generating function converges when zeκ < 1, diverges
when zeκ > 1, and so is singular when z = e−κ . As a result, if
zc is the dominant singularity of G then κ = − ln zc.

We can further decorate the generating function with
variables conjugate to the number of edges in the surface t ,
out of the surface l, and the number of loops lN in a particular
walk. Depending on the model of the inhomogeneity and
the associated geometry, we also make use of a number of
auxiliary generating functions that keep track of the parity of
the total number of steps, as well as steps in the x2 direction.
In order to obtain these functions, as well as the solutions to
the full problem, we employ methods related to wasp-waist
factorization. (This term seems to have been first used by
Bousquet-Mélou [43].)

When dealing with inhomogeneous walk models we shall
use a set of coupled equations satisfied by the different gener-
ating functions, but we start with the case of a homopolymer
interacting with a homogeneous impenetrable surface. Due to
the nature and geometry of the inhomogeneous models, we
shall need to keep track of the parity of the total number of
steps and steps in the x2 direction. As a result, we introduce
variables s1 and s2 that are conjugate to steps in the x1 and x2

directions, respectively. In this case, the generating function
P (s1,s2,z) satisfies the equation

P = 1 + (s1 + s2)zP + z2P ∗ + (s1 + s2)z3P ∗P, (5)

where P ∗(s1,s2,z) = P (s1,s2,z) − 1 represents all PDWs with
at least one step.

The factorization scheme above partitions all possible
PDWs according to their first steps. The walk can be a single
vertex, contributing 1, or its first step can be in either the x1 or
x2 direction along the x3 = 0 surface and then be continued as
any loop, or its first step can be out of the surface. In this case
the walk can return to the surface for the first time on its last
step, contributing z2P ∗, or after returning to the surface for
the first time, it can take a step in either the x1 or x2 direction
and then be continued in all possible ways. The factorization
scheme is sketched in Fig. 2.

Solving the resulting quadratic equation for P (s1,s2,z), one
finds that the physically relevant solution (i.e., the solution
with positive coefficients in its z expansion) has a square root
singularity at

z = z1 =
−1 − s12 +

√
s2

12 + 6s12 + 1

2s12
, (6)

where s12 = s1 + s2. When s1 = s2 = 1, this quantity reduces
to z1 = (

√
17 − 3)/4, which agrees with a result of Orlandini

et al. [31]. The singularity z1 dominates in the desorbed phase
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FIG. 2. (Color online) General factorization argument for loops interacting with a surface.

where the walk has a zero density of visits to the surface in the
n → ∞ limit.

As part of the factorization scheme used for the remaining
models considered in this paper we make use of several
auxiliary generating functions. When considering the CH
model (alternating copolymer and a homogeneous surface),
we need to keep track of the parity of the total number
of steps. We write QE(s1,s2,z) = [P (s1,s2,z) + P (s1,s2, −
z)]/2 and QO(s1,s2,z) = P (s1,s2,z) − QE(s1,s2,z) for the
generating functions of walks having an even or odd total
number of steps. On the other hand, for the HS model (a
homopolymer and a striped surface), we need to keep track
of the parity of the steps that cross stripes. In this case we
can write Qe(s1,s2,z) = [P (s1,s2,z) + P (s1, − s2,z)]/2 and
Qo(s1,s2,z) = P (s1,s2,z) − Qe(s1,s2,z) for the functions with
an even or odd number of steps in the x2 direction, respectively.
For the CS model (alternating copolymer and a striped surface)
we combine this procedure to determine the functions that keep
track of the parity of the total number of steps as well as the
parity of the steps in the x2 direction. Here we get

QEe(s1,s2,z) = QE(s1,s2,z) + QE(s1, − s2,z)

2
, (7)

QEo(s1,s2,z) = QE(s1,s2,z) − QEe(s1,s2,z), (8)

QOe(s1,s2,z) = QO(s1,s2,z) + QO(s1, − s2,z)

2
, (9)

and

QOo(s1,s2,z) = QO(s1,s2,z) − QOe(s1,s2,z), (10)

where QMs is the generating function of walks with parity
M ∈ {E,O} with respect to total number of steps and parity
s ∈ {e,o} with respect to steps in the x2 direction.

With these auxiliary functions in hand, we can start to
build up the equations for the various models that include
an inhomogeneity. We start with the CH model, where we
consider a strictly alternating copolymer interacting with a
homogenous surface. We define PA and PB to be the generating
functions for walks that start with an A vertex and a B vertex,
respectively. In this scenario, the set of coupled equations
satisfied by the generating functions can be written as

PA = 1 + (s1 + s2)btzPB + alN l2z2(Q̄E − 1)[1 + (s1 + s2)btzPB] + blN l2z2Q̄O[1 + (s1 + s2)atzPA], (11)

PB = 1 + (s1 + s2)atzPA + blN l2z2(Q̄E − 1)[1 + (s1 + s2)atzPA] + alN l2z2Q̄O[1 + (s1 + s2)btzPB], (12)

where Q̄E = QE(1,1,lz) and Q̄O = QO(1,1,lz) are the generating functions of loops with even and odd total step parity,
respectively. This factorization argument follows a modification of the scheme sketched in Fig. 2 in that we are now keeping
track of the parity of steps for the portion of the walk that is out of the surface, as well as keeping track of more than just the
total number of steps. In this scheme, we also introduce the variables a, b, l, lN , and t , as defined above, and obtain solutions
PA = PA(a,b,l,lN ,t,z) and PB = PB(a,b,l,lN ,t,z). Both PA and PB have the same singularity structure, namely, a square root
singularity that we have already seen in (6) along with a simple pole at z = zCH

2 (a,b,l,lN ,t).
In a similar way we can obtain the generating functions for the HS model. This time the generating functions that we use will

keep track of walks that start on an a stripe and b stripe, respectively, via Pa and Pb. The full set of equations, including auxiliary
functions and variables that keep track of contacts with the various stripes, as well as the remaining parameters that appear in the
model, can be written as

Pa = 1 + s1atzPa + s2btzPb + alnl
2z2(Q̄e − 1)[1 + s1atzPa + s2btzPb] + blnl

2z2Q̄o[1 + s2atzPa + s1btzPb], (13)

Pb = 1 + s2atzPa + s1btzPb + alnl
2z2Q̄o[1 + s1atzPa + s2btzPb] + blnl

2z2(Q̄e − 1)[1 + s2atzPa + s1btzPb], (14)

where Q̄s = Qs(1,1,lz) for s ∈ {e,o} represent the generating function of loops with an even or odd number of steps in
the x2 direction. We can solve this system of equations to obtain the generating functions Pa = Pa(a,b,l,lN ,t,z) and Pb =
Pb(a,b,l,lN ,t,z). Both of these functions are singular for z = z1 and along z = zHS

2 (a,b,l,lN ,t), with the first singularity arising
due to a square root and the second from a zero of the denominator in Pa and Pb.

Following this line of thinking, we can see that for the CS model we require four generating functions PMs , where M ∈ {A,B}
and s ∈ {a,b} represent the nature of the starting vertex and the type of stripe under that vertex, respectively. These generating
functions will be a part of system of four coupled equations that depend on the usual variables along with four auxiliary generating
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functions Q̄Ms = QMs(1,1,lz),

PAa = 1 + s2btzPBb + s1tzPBa + alnl
2z2(Q̄Ee − 1)(1 + s2btzPBb + s1tzPBa) + blnl

2z2Q̄Oo(1 + s2atzPAa + s1tzPAb)

+ lnl
2z2Q̄Eo(1 + s2tzPBa + s1btzPBb) + lnl

2z2Q̄Oe(1 + s2tzPAb + s1atzPAa), (15)

PAb = 1 + s2tzPBa + s1btzPBb + lnl
2z2(Q̄Ee − 1)(1 + s2tzPBa + s1btzPBb) + lnl

2z2Q̄Oo(1 + s2tzPAb + s1atzPAa)

+ alnl
2z2Q̄Eo(1 + s2btzPBb + s1tzPBa) + blnl

2z2Q̄Oe(1 + s2atzPAa + s1tzPAb), (16)

PBa = 1 + s2tzPAb + s1atPAa + lnl
2z2(Q̄Ee − 1)(1 + s2tzPAb + s1atzPAa) + lnl

2z2Q̄Oo(1 + s2tzPBa + s1btzPBb)

+ blnl
2z2Q̄Eo(1 + s2atzPAa + s1tzPAb) + alnl

2z2Q̄Oe(1 + s2btzPBb + s1tzPBa), (17)

PBb = 1 + s2atzPAa + s1tzPAb + blnl
2z2(Q̄Ee − 1)(1 + s2atzPAa + s1tzPAb) + alnl

2z2Q̄Oo(1 + s2btzPBb + s1tzPBa)

+ lnl
2z2Q̄Eo(1 + s2tzPAb + s1btzPAa) + lnl

2z2Q̄Oe(1 + s2tzPBa + s1btzPBb). (18)

This system of equations can be solved to produce a set
of generating functions that all share the same singularity
structure: a square root singularity at z = z1 and a simple
pole along z = zCS

2 (a,b,l,lN ,t).
For each of the models considered here, we can study the

change in the dominant singularity as the contact parameters
a and b are varied. The result is a curve in the (ln a, ln b)
plane along which the singularities are equal. We refer to
this collection of points as the phase boundary between
the adsorbed and desorbed regimes. The associated phase
boundaries for the HS, CH, and CS models can be seen in
Fig. 3. See Ref. [17] for a more detailed discussion on the
nature and shape of these curves.

III. RESULTS

A. Train and loop statistics

Every walk can be regarded as a sequence of trains, loops,
and tails [41,42]. The models considered in this paper are
required to start and end in the same plane and as such they
are composed of a sequence of trains and loops, exclusively.

FIG. 3. (Color online) Phase diagram of the HS, CS, and CH
models. The rays along which walk statistics are collected are shown
as dashed lines.

From this we can see that the number of trains and the number
of loops are either equal or differ by ±1 and the fraction of
edges in loops plus the fraction of edges in trains is 1.

For our models, we obtain the required walk statistics by
evaluating exactly various first derivatives of the free energy.
For example, the mean fraction of edges in a train and edges
in a loop can be calculated from

ρtrain = ∂κ

∂ ln t
, ρloop = ∂κ

∂ ln l
, (19)

where κ = − ln zc for the dominant singularity zc. In a similar
way we can also calculate the number of trains per edge ρtN

in the n → ∞ limit from ρlN = ∂κ
∂ ln lN

and the fact that in the
thermodynamic limit ρtN = ρlN . We have exact expressions for
these quantities, though they are too complex to report here in
detail.

In Figs. 4(a)–4(l) we show the α dependence of various
quantities along the three rays β = 0, β = α/2, and β = −α.
In Figs. 4(a), 4(e), and 4(i) we show the α dependence of the
limiting fraction of edges in trains in the n → ∞ limit, ρtrain,
for three cases: β = 0, β = α/2, and β = −α. The last case
corresponds to a type of frustration. Each of the figures has
three curves, one for each of the HS, CH, and CS models. In
each case ρtrain is zero for values of α below the critical value
(i.e., in the high-temperature desorbed phase) and increases
monotonically above this critical value. Of course, the critical
value of α and the rate of increase depends on the model and
on how β depends on α. For β = 0, β = α/2, and β = α (not
shown), ρtrain approaches unity as α goes to infinity, i.e., as the
temperature goes to zero. (When β = α both the HS and CH
models reduce to homopolymer adsorption on a homogeneous
surface.) For β = −α the limiting behavior is the same for
the HS and CS models, but for the CH model the limiting
value of ρtrain is 1/3. This reflects the fact that while it is
energetically advantageous for A monomers to adsorb on the
homogeneous surface, it is disadvantageous for B monomers
to adsorb on the surface. Because of the geometry of the walk,
an A visit implies a B visit for the CH model and we have a
kind of frustration. Contrast this with the HS model, where the
adsorbed walk can follow an a stripe and the CS model where
the walk can follow an a stripe and avoid Bb contacts, so
avoiding disadvantageous energy contributions. These results
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FIG. 4. (Color online) Order parameters along various rays in the (α,β) plane for the HS (dotted lines), CH (solid lines), and CS (dashed
lines) models for the rays (a)–(d) β = 0, (e)–(h) β = α/2, and (i)–(l) β = −α: (a), (e), and (i) mean fraction of edges in a train; (b), (f), and (j)
mean number of trains; (c), (g), and (k) mean fraction of A-type contacts; and (d), (h), and (l) mean fraction of B-type contacts.

suggest that the (degenerate) ground state of the CH model
when β = −α is an alternating sequence of loops with four
edges and trains with two edges. See Fig. 5 for a sketch. We
shall see further evidence for this in the next section.

In Figs. 4(b), 4(f), and 4(j) we show the α dependence of
the scaled number of trains, i.e., the number of trains per edge
in the n → ∞ limit. For all of the cases this quantity is zero
until after the adsorption transition and, except for the CH
model when β = −α, the curve is then unimodal, going to
zero as α → ∞. For the CH model when β = −α the curve

FIG. 5. (Color online) Sketch of the proposed ground state for
the CH model. Steps perpendicular to the x3 direction can be in either
the x1 or the x2 direction so the ground state is degenerate.

increases monotonically and tends to 1/6 as α → ∞. This is
consistent with the ground state described above where loops
of four edges and trains of two edges alternate so there is one
loop for every six edges.

We observe that the different models, corresponding to
different physical situations, give rise to strong quantitative
differences in the density of monomers in trains and to
qualitative differences in the mean number of trains. These
might be experimentally accessible by NMR techniques, such
as solvent relaxation NMR [44].

B. Visits of different types

In this section we examine the statistics of various kinds of
visits to the surface. For the HS model we are interested in the
fraction of vertices that are on an a stripe and the fraction that
are on a b stripe. In the n → ∞ limit we call these two limiting
fractions ρHS

1 and ρHS
2 , respectively. In a similar way we define
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ρCH
1 , ρCH

2 , ρCS
1 , and ρCS

2 . The α dependences of the various ρ1

quantities are shown in Figs. 4(c), 4(g), and 4(k) and we show
those of the ρ2 quantities in Figs. 4(d), 4(h), and 4(l).

For β = 0 and β = α/2 both ρCH
1 and ρCS

1 approach 1/2 as
α → ∞. For the copolymer on a homogeneous surface (the
CH model) this suggests that all the vertices are on the surface,
while for a copolymer on a striped surface (the CS model) all
the A vertices are on a stripes. For the CS model this could be
achieved by simply following an a stripe or by crossing from
one stripe to the next at each step, or by some combination of
these two strategies. The behavior is different at β = 0, where
ρCS

2 → 1/4 so that the walk maximizes entropy by having only
half of the B vertices on b stripes, and at β = α/2, where there
is an energetic advantage to having B vertices on b stripes and
ρCS

2 → 1/2 (so all B vertices are on b stripes).
For the homopolymer on a striped surface (the HS model)

ρHS
1 → 1 and ρHS

2 → 0 for β = 0 and for β = α/2. The walk
follows an a stripe since this is the strategy that optimizes the
energy.

When β = α, the HS and CH models become homopoly-
mers adsorbing on a homogeneous surface. The walk lies
entirely in the surface in the α → ∞ limit and ρ1 and ρ2

approach 1/2 for both models. For the CS model, ρCS
1 and

ρCS
2 → 1/2, but now it is energetically advantageous for A

monomers to be on a stripes and B monomers to be on b

stripes so the walk crosses from stripe to stripe at each step.
When β = −α, for the HS model, ρHS

1 → 1 and ρHS
2 → 0

so again the walk follows an a stripe for energetic reasons.
There is no energetic advantage in visiting a b stripe. For the
CS model, ρCS

1 → 1/2 and ρCS
2 → 0. Again the walk follows

an a stripe to avoid the energetic penalty of having a B vertex
on a b stripe. For the CH model it is impossible to avoid entirely
having B vertices in the surface if A vertices are to be on the
surface. The optimum strategy seems to be a configuration of
alternating loops with four edges and trains with two edges as
discussed above, so ρCH

1 → 1/3 and ρCH
2 → 1/6. For every

six edges in this repeating structure there are two A vertices
and one B vertex in the surface. See Fig. 5.

Again there are strong qualitative and quantitative differ-
ences in the behavior of the different models, especially along
the ray β = −α where we have frustration. These quantities
should be experimentally accessible by NMR techniques (e.g.,
different chemical shifts [45]) or by infrared spectroscopy
where stretching frequencies will be affected differently
depending on which and where monomers adsorb [45].

C. Spans in the x1 and x2 directions

We have also calculated the mean spans in the x1 and x2

directions. Since the walks are directed in these two directions,
the limits Si = limn→∞〈xi(n)/n〉, i = 1,2, are positive. For
the CH model where the surface is homogeneous S1 = S2, but
for the HS and CS models the presence of the stripe destroys
the symmetry and S1 and S2 are not necessarily equal. The
difference between S1 and S2 reflects the conformation of the
adsorbed polymer and in particular gives information about
the average conformation with respect to the stripe direction.

Detailed results as a function of α are given in Fig. 6 for
the HS and CH models. We were unable to compute the
corresponding quantities for the CS model. For values of α

FIG. 6. (Color online) Plots of the average span in the (a), (c),
and (e) x1 and (b), (d), and (f) x2 directions along various rays in
the (α,β) plane for the HS (dotted lines) and CH (solid lines) models
for the rays (a) and (b) β = 0, (c) and (d) β = α/2, and (e) and (f)
β = −α.

less than the critical value for adsorption the values of S1 and
S2 are constant and equal for all the cases because the walk is
in the desorbed phase. In this phase, the dominant singularity
is given by z = z1(s1,s2) as shown in (6), irrespective of the
inhomogeneity. Using this expression for the singularity in the
definition of S1 and S2 above, we find that when α is less than
the critical value

S1 = S2 = 17 + √
17

68
= 0.310 63 . . . . (20)

In this phase the presence of the impenetrable plane x3 = 0
means that the walk is entropically repelled from this plane.
The details of the surface are essentially irrelevant since the
number of visits to the surface is o(n) and this leads to S1 =
S2 < 1/3.
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When α is larger than the critical value the behavior depends
on both the model and on the ray in the (α,β) plane. For
the HS model S1 increases monotonically to 1 though the
details of the rate of change depend on the ray; S2 decreases
monotonically to zero for β = −α but for β = 0 and for β =
α/2, S2 first increases as the walk is pulled into the surface
and then decreases as the walk starts to follow the a stripes.
For the CH model the values of S1 and S2 are identical since
the surface is homogeneous. For β = 0 and for β = α/2 the
values increase monotonically to 1/2, while for β = −α they
increase slightly to 1/3.

The large-α behavior reflects the ground states and we first
consider the HS model. In each case, for β = 0, α/2, and −α

the walk follows an a stripe in the ground state and S1 = 1
while S2 = 0.

For the CH model, when β = 0 and α/2 the walk is entirely
adsorbed in the ground state and, since there is no surface
inhomogeneity, we have S1 = 1/2 and S2 = 1/2. When β =
−α the ground state is as sketched in Fig. 5 with only 2/3
of the edges parallel to the surface. Since there is no surface
inhomogeneity, half of these edges are in the x1 direction and
half in the x2 direction, so S1 = S2 = 1/3.

The ground state of the CS model depends strongly on
the ray being followed in the (α,β) plane. When β = 0 there
is no advantage or disadvantage to having B vertices on b

stripes, but all A vertices should be on a stripes. The walk can
follow a stripes or cross from one a stripe to another in two
steps, or any combination. Hence S1 = S2 = 1/2. Moreover,
the ground state will be degenerate with entropy (kB/2) ln 2.
When β = α/2 it is energetically favorable to have A vertices
on a stripes and b vertices on B stripes so the walk will cross
from stripe to stripe at each step, so S1 = 0 and S2 = 1. When

β = −α, B vertices will avoid B stripes and the walk will
follow an a stripe so S1 = 1 and S2 = 0.

IV. DISCUSSION

We have considered partially directed walk models, in
three dimensions, of three kinds of inhomogeneous polymer
adsorption: a homopolymer adsorbing on a striped surface, an
alternating copolymer adsorbing on a homogeneous surface,
and an alternating copolymer adsorbing on a striped surface.
In each case we have obtained complete solutions in the
infinite-n limit. We have computed detailed statistics about
the fraction of monomers in trains, the mean number of
trains, and the densities of various types of vertex-surface
contacts. These quantities give useful information about the
way in which the polymer lies on the surface, especially at
low temperatures when the polymer is strongly adsorbed,
and could be experimentally accessible by NMR methods.
Such measurements are a useful alternative to atomic force
microscopy in probing the conformations of the adsorbed
polymer.

The conformations are very dependent on both the nature
of the inhomogeneity and the relative values of the energy
parameters. By making one energy term attractive and the
other repulsive we observe a kind of frustration and this can
play a role in the recognition process where one monomer
sequence is much more readily adsorbed than another on a
particular surface.
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available at http://www.labri.fr/perso/bousquet/publis.html
[44] C. L. Cooper, T. Cosgrove, J. S. van Duijneveldt, M. Murray,

and S. W. Prescott, Soft Matter 9, 7211 (2013).
[45] G. J. Fleer, M. A. Cohen-Stuart, J. M. H. M. Scheutjens, T.

Cosgrove, and B. Vincent, Polymers at Interfaces (Chapman
and Hall, London, 1993).

012111-8

http://dx.doi.org/10.1021/la981112v
http://dx.doi.org/10.1021/la981112v
http://dx.doi.org/10.1021/la981112v
http://dx.doi.org/10.1021/la981112v
http://dx.doi.org/10.1016/S0079-6700(03)00046-7
http://dx.doi.org/10.1016/S0079-6700(03)00046-7
http://dx.doi.org/10.1016/S0079-6700(03)00046-7
http://dx.doi.org/10.1016/S0079-6700(03)00046-7
http://dx.doi.org/10.1088/0305-4470/32/3/004
http://dx.doi.org/10.1088/0305-4470/32/3/004
http://dx.doi.org/10.1088/0305-4470/32/3/004
http://dx.doi.org/10.1088/0305-4470/32/3/004
http://dx.doi.org/10.1088/1742-5468/2005/05/P05008
http://dx.doi.org/10.1088/1742-5468/2005/05/P05008
http://dx.doi.org/10.1063/1.3110604
http://dx.doi.org/10.1063/1.3110604
http://dx.doi.org/10.1063/1.3110604
http://dx.doi.org/10.1063/1.3110604
http://dx.doi.org/10.1063/1.4895729
http://dx.doi.org/10.1063/1.4895729
http://dx.doi.org/10.1063/1.4895729
http://dx.doi.org/10.1063/1.4895729
http://dx.doi.org/10.1088/1742-5468/2010/09/P09018
http://dx.doi.org/10.1088/1742-5468/2010/09/P09018
http://dx.doi.org/10.1088/1751-8113/43/48/485005
http://dx.doi.org/10.1088/1751-8113/43/48/485005
http://dx.doi.org/10.1088/1751-8113/43/48/485005
http://dx.doi.org/10.1088/1751-8113/43/48/485005
http://dx.doi.org/10.1088/1751-8113/45/18/185003
http://dx.doi.org/10.1088/1751-8113/45/18/185003
http://dx.doi.org/10.1088/1751-8113/45/18/185003
http://dx.doi.org/10.1088/1751-8113/45/18/185003
http://dx.doi.org/10.1088/1751-8113/45/43/435002
http://dx.doi.org/10.1088/1751-8113/45/43/435002
http://dx.doi.org/10.1088/1751-8113/45/43/435002
http://dx.doi.org/10.1088/1751-8113/45/43/435002
http://dx.doi.org/10.1088/1751-8113/46/5/055001
http://dx.doi.org/10.1088/1751-8113/46/5/055001
http://dx.doi.org/10.1088/1751-8113/46/5/055001
http://dx.doi.org/10.1088/1751-8113/46/5/055001
http://dx.doi.org/10.1103/PhysRevE.88.052105
http://dx.doi.org/10.1103/PhysRevE.88.052105
http://dx.doi.org/10.1103/PhysRevE.88.052105
http://dx.doi.org/10.1103/PhysRevE.88.052105
http://dx.doi.org/10.1063/1.1696332
http://dx.doi.org/10.1063/1.1696332
http://dx.doi.org/10.1063/1.1696332
http://dx.doi.org/10.1063/1.1696332
http://dx.doi.org/10.1063/1.1697266
http://dx.doi.org/10.1063/1.1697266
http://dx.doi.org/10.1063/1.1697266
http://dx.doi.org/10.1063/1.1697266
http://www.labri.fr/perso/bousquet/publis.html
http://dx.doi.org/10.1039/c3sm51067k
http://dx.doi.org/10.1039/c3sm51067k
http://dx.doi.org/10.1039/c3sm51067k
http://dx.doi.org/10.1039/c3sm51067k



