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A + A → ∅ model with a bias towards nearest neighbor
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We have studied the A + A → ∅ reaction-diffusion model on a ring, with a bias ε (0 � ε � 0.5) of the random
walkers A to hop towards their nearest neighbor. Though the bias is local in space and time, we show that it alters
the universality class of the problem. The z exponent, which describes the growth of average spacings between
the walkers with time, changes from the value 2 at ε = 0 to the mean-field value of unity for any nonzero ε. We
study the problem analytically using independent interval approximation and compare the scaling results with
those obtained from simulation. The distribution P (k,t) (per site) of the spacing between two walkers is given
by t−2/zf (k/t1/z) and is obtained both analytically and numerically. We also obtain the result that εt becomes
the new time scale for ε �= 0.
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I. INTRODUCTION

Diffusion-controlled annihilation problems have received
lots of attention over the years [1–16]. These are nonequilib-
rium systems of diffusing particles, which undergo reactions
such as pairwise annihilation. Depending on the problem, these
particles may represent molecules, biological entities, opinions
in societies, or market commodities and such systems are
widely used to describe the pattern-formation phenomena in
wide varieties of biological, chemical, and physical systems.
In the lattice version of the simple single species problem,
each lattice site is filled with a particle at time t = 0. At
each time step, the particles are allowed to jump to a nearest
neighbor site. In general no preferred direction for the jump is
assigned. Particles react only when a certain number k of them
meet: kA → lA with l < k. Annihilating random walkers with
k = 2 and l = 0 mimics the dynamics of voter models and the
Glauber-Ising model in one dimension. Such systems have
been studied in one dimension [6–13] as well as in higher
dimensions [17–20]. The steady state of the process is rather
simple. Depending on the initial condition, whether one starts
with an even or an odd number of particles, the steady state
will contain no particles or one particle, respectively. The
focus in all these analyses is how the system approaches the
steady state. In particular, one wants to know how the number
of particles decay with time and how the distribution of the
intervals between the particles evolves with time.

The dynamics of the system is governed by two processes:
reaction (annihilation) and diffusion. If the reaction time much
exceeds the diffusion time, the process is reaction limited.
In this regime, the kinematics is dominated by the diffusion
and it is well described by the mean-field equations. On the
other hand, in the diffusion-limited regime, where the diffusion
time is much larger than the reaction time, the process is
dominated by the fluctuations caused by the reaction and, at
low dimensions, kinetics is no longer described by mean-field
rate equations. For the A + A → ∅ model (k = 2 and l = 0),
the critical dimension dc is 2. For dimension d > dc, the
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mean-field behavior is valid, which indicates that the density
of the particles decays with time as 1/t for a random initial
configuration of the particles. In the mean-field picture, the
time scale is set by the reaction rate, which at high dimensions
is given by the average steady-state flux of the particles towards
any particle in the system.

At low dimensions, for d � 2, the problem of the recurrence
of random walks appears. From the point of diffusion, the
collision rate is effectively infinite. The rate equation gives the
asymptotic behavior of the density of particles Np(t) decaying
as ∼1/t1/z for d < dc, with z = 2. The average domain size
or interval (i.e., the distance between neighboring walkers in
one dimension) Ds scales as t1/z and this is the only length
scale which characterizes the reactant distribution. The scaling
is robust as long as the particle motions are uncorrelated
and diffusive with well-defined mean and fluctuation. At
d = dc, the mean-field result is retrieved with logarithmic
corrections. The value of dc and the behavior of Np(t) have
been conjectured by scaling arguments [17], exact results in
one dimension [7,8,12,21], probabilistic approaches [5,6], and
renormalization group calculations [18,20,22,23].

Here, we present the study of the time evolution of a set of
randomly distributed random walkers on a ring, having the in-
teraction A + A → ∅, evolving with the following dynamical
rule: at each time step each walker moves towards its nearer
neighbor with a probability 1/2 + ε. ε = 0 would give the
usual unbiased random walkers while for ε = 1/2 the walkers
will always move towards their nearer neighbors, making the
system quasideterministic. When the two neighbors are at
the same distance the particle moves either way with equal
probability. The ring geometry is taken to impose the periodic
boundary condition. We call this model the anisotropic walker
model (AWM) hereafter. The AWM is motivated by the social
phenomenon of opinion formation and, for ε = 1/2, coincides
with the binary opinion dynamics/spin model (BS model)
proposed in Ref. [24].

The BS model was proposed to mimic opinion formation
in a society where the opinions are binary. Here an agent’s
opinion is decided by the size of the neighboring domains (in
a domain all opinions are of the same type) which may be
interpreted as social pressure. In the BS model, surprisingly, it
was found that z � 1. That means ε alters the universality class
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of the problem. The generalization of the model with ε > 0
implies that an agent in the BS model follows the opinion of
the larger domain with a probability (larger than 0.5) which
makes the system fully stochastic.

Simulations of the AWM with rather small sizes indi-
cated [25] that any ε in the range 0 < ε � 1/2 alters the
value of the exponent z compared to the case ε = 0 [26].
Here, we study the AWM to understand the effect of ε on
the long time behavior of the A + A → ∅ model. We study,
particularly, the distribution P (k,t) of the interval sizes (the
distance between the neighboring walkers equivalent to the
domains in the opinion formation model) k per site at time t and
its evolution with time. This distribution is of importance as it
helps analyzing the dynamic process and has been calculated in
many dynamical models in one dimension. Often the mapping
with Glauber spin picture is utilized to evaluate this function.
The present model, however, is not equivalent to a Glauber-like
model and thus one may expect the results to be different in
general.

We obtain the scaling solution of P (k,t) for late times; it is
of interest to check whether nonzero values of ε can alter the
known form for ε = 0. We have employed the independent
interval approximation (IIA) (described below) to study the
evolution analytically and have complemented the findings
with Monte Carlo simulation results.

II. IIA ANALYSIS

The IIA was originally proposed in Ref. [27] and has been
applied to several studies of the diffusion-limited processes.
The IIA implies that the intervals or gaps between the nearest
neighboring particles are independent of each other. The
IIA has been successfully applied to the case of diffusion-
limited annihilation A + A → ∅ (which maps to the Glauber
spin model) to obtain the interparticle interval distribution
function [28]. In simple diffusion problems, the idea of the IIA
has been used to predict the persistence exponents in excellent
agreement with the simulation results [29,30].

The assumption that the intervals or domains are uncorre-
lated was later developed self-consistently for several models
in Ref. [31]. In particular, the IIA analysis describes the
dynamics of the model for ε = 0 extremely well [28,31,32],
qualitatively. The quantitative accuracy increases if one uses
the exact expression of the equal-time two-spin correlation
function along with the IIA [28]. We show here that the
analysis can be extended to the nonzero ε case also. The IIA
analysis gives the scaling form for P (k,t) with the scaling
exponent z = 1 and also gives the exponential decaying form
of the scaling function. The IIA results are well supported by
numerical simulation results. Our results show that εt becomes
the new time scale for nonzero ε. As a result, at low ε, it takes
a longer time to reach the asymptotic scaling limit.

Within the IIA, the master equation that describes the rate
of change of P (k,t) (written P (k) for brevity) with time can
be broken into ε-independent and ε-dependent terms and is
given by

dP (k)

dt
= I1(k) + 2εI2(k), (1)

where

I1(k) = P (k + 1) + P (k − 1) − 2P (k) + P (1)

N2

×
[

k − 2∑
m=1

P (m)P (k − m − 1) − N [(P (k) + P (k − 1)]

]

(2)

and

I2(k) = P (k + 1)

N

[ ∑
m>k+1

P (m) −
∑

m<k+1

P (m)

]

+ P (k − 1)

N

[ ∑
m<k−1

P (m) −
∑

m>k−1

P (m) − P (1)

]

× (1 − δk,2) − P (k)P (1)

N2

∑
m>1

P (m) + P (1)

N2

×
[

k−2∑
m>1

P (m)P (k − m − 1) − P (1)P (k − m − 1)

]

−P (1)

[
1 − P (1)

N

]
δk,2,

(3)

where N = ∑
k P (k,t) is the density of the intervals (number

of intervals per lattice site) at time t and is equal to the density
of the particles A at time t . Naturally,

∑
k kP (k) = 1, which

comes from the conservation of the total length of all the
intervals. The details of the derivation of Eq. (1) are given in
the Appendix.

The ε = 0 case, which corresponds to I1(k) in Eq. (1), has
been studied before using the IIA [31]. P (k,t) is found to have
the expected scaling form:

P (k,t) = t−2/zf

(
k

t1/z

)
, (4)

with the scaling exponent z = 2. The scaling function f (x) ∼
exp(−αx) at large x. The average length k of the intervals
at time t : 〈k(t)〉 = ∫

kI1(k)dk/
∫

I1(k)dk ∝ t1/z. The scaling
behavior given by Eq. (4) matches that obtained from the exact
analysis of the model [32] except for the value of α. It should
be noted that

∑
k I1(k) = N ,

∑
k kI1(k) = 1 (normalization

condition), and
∑

k
dI1(k,t)

dt
= dN

dt
= −2P (1). The last result

implies that any change in N is brought out by the annihilation
of two A particles which were at a unit distance apart and
coalescence of the intervals separated by these two particles.

For nonzero ε, the term I2(k) appears in the rate equation.
It should be noted that

∑
k I2(k) = 0,

∑
k kI2(k) = 0 and∑

k
dI2(k)

dt
= −εP (1)[1 + P (1)

N
]. We solve Eq. (1) numerically

starting with intervals of sizes 1,2, . . . ,n with distribution
P (k,0) = η1δk,1 + η2δk,2 + · · · + ηnδk,n, where η1,η2, . . . ,ηn

are random numbers between 0 and 1 and η1 + 2η2 + · · · +
nηn = 1. We find that the final result is insensitive to the
choices of η’s or the number of different types of intervals
to start with or different configurations of the starting interval
distribution. Most of our analytical results are obtained with
initial intervals of size n � 3 and averaged typically over ten
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FIG. 1. (Color online) The scalings of the interval size distribu-
tions P (k,t) obtained from the IIA for ε = 0.1 and 0.5 are shown at
different times t .

different initial configurations. On the other hand, we find that
the results depend crucially on the discrete time step involved
in Euler’s method and the observation time. In most of our
results, time is incremented by δt = 0.01 at each step. We have
studied systems of sizes L = 1000 and 2000. We find that this
gives us a good idea of the validity of the scaling and the
exponential decay of the scaling function at large arguments
at the expense of a reasonable computer time. It may also
be added that the value of L enters the numerical calculation
indirectly as the rate equation is in terms of probabilities and
L determines only the upper bound of the size of the domains.
We check that z approaches the values 2 and 1 at ε = 0 and
0.5, respectively, as δt is lowered for L = 2000 and there is
no appreciable finite size effect.

For nonzero ε, the solution of Eq. (1) obtained numerically
shows that P (k,t) retains the same scaling form as in Eq. (4).
One can obtain a collapse by suitably scaling the variables
using trial values of z for each ε. Figure 1 shows the scaling for
two specific values of ε at four different times. The dependence
of z on ε is shown in Fig. 2. For ε < 0.1, z shows a relatively
sharp increase to ∼2.0 as ε → 0.0. However, above ε = 0.1,
the variation is not systematic, which suggests that the value is
actually a constant. The values of z in this region differ from 1
by not more than 10%. The data collapse using using Eq. (4)
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FIG. 2. (Color online) Values of z (along with error bars) ob-
tained using the IIA are plotted against ε.

which we have used to extract the value of z is insensitive to
this small fluctuation in the value. In principle, one can think
of a functional dependence of z on ε but other results (such
as the scaling behavior in Eq. (5) appearing later in the paper)
indicate that the variation of z for ε > 0 is only an artifact of
the sudden change in z at ε = 0 and actually z is a constant in
this region. This is supported by the fact that the sharp rise of z

occurs at lower ε values as one increases the observation time
(in the scaling regime). We thus conclude that the IIA method
gives z = 1 for all ε �= 0 and 2 only when ε = 0, consistent
with earlier results obtained from simulations in Ref. [25]. We
also show below that, for ε > 0, the cumulative distribution
gives consistent results with that obtained theoretically, using
z = 1, to support our conclusion.

Using the form of P (k,t) given by Eq. (4),
one can calculate the cumulative distribution Q(k,t) =∑k

m=1 mP (m,t). Assuming an exponential behavior of the
scaling function [f (x) ∼ exp(−αx)], one gets Q(k,t) = 1 −
exp(−αk/t1/z)(1 + αk/t1/z). In Fig. 3 we plot the cumulative
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FIG. 3. (Color online) The cumulative distribution Q(k,t) =∫
0
knP (n)dn from the IIA for nonzero ε. The straight line has

slope = 2.0.
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distribution Q(k,t) as obtained from IIA calculations for
different values of ε and times t . The distribution exhibits
the scaling Q(k,t) ∼ h( k

t
), which is consistent with the value

z = 1. The scaling function appearing in the cumulative
distribution behaves like h(x) ∼ xδ for small x and goes to
unity at large x. The value of δ is close to 2, which agrees with
the theoretical estimate when k/t1/z is small. We note another
interesting feature; the curves for different values of ε collapse
when the data are plotted against k/(εt), such that the behavior
of Q(k,t) may be written as

Q(k,t) ∼ h

(
k

εt

)
. (5)

We get back to this behavior later in Sec. IV.

III. SIMULATION RESULTS

We verify the scaling results by Monte Carlo simulation.
We start (at t = 0) with a one-dimensional chain of size L with
half of the lattice sites occupied randomly by the particles A.
L is varied between 104 and 105 and the periodic boundary
condition is used. In a single update, we choose a site randomly
and if there is a particle its position is updated. L such
updates constitute one Monte Carlo step and the dynamics
is asynchronous. The distances (in terms of lattice units) of the
neighboring particles are obtained and the particle is shifted
one lattice site left or right with probability (1/2 + ε) towards
the nearer neighbor and (1/2 − ε) along the other direction.
If the new site is occupied, then both the particles occupying
that site and the one which has hopped over to it are removed
from the system. As ε is made larger, the rate of annihilation
becomes high and as a result very few walkers remain at
large times. This poses a difficulty in obtaining good statistics
of the data for the distribution P (k,t). One has to carefully
identify the scaling regime which is almost nonexistent for
small systems. Hence, for this analysis, L = 5 × 105 was
used for which the scaling regime can be obtained only for
small values of time t . For small ε values, a system size of
L = 10 000 suffices. The data are averaged typically over 1000
different random initial configurations of the positions of the
particles. For ε = 0, P (k,t) follows Eq. (4) as in the IIA with
z = 2.0.

Before discussing P (k,t) for nonzero ε, we check that for
the large system sizes considered, the fraction of surviving
walkers shows the scaling Np ∝ t−1 (see Fig. 4) and there is
no need to consider any correction to scaling (for any value of
ε) reported earlier [25] for comparatively smaller sizes. The
results for P (k,t) are plotted in Fig. 5. We report results for ε �
0.1 which show agreement with the scaling behavior as given
in Eq. (4) (shown in Fig. 5). The value of z shows deviation
from unity only for the smallest value of ε. We also estimate
the cumulative function Q(k,t) which again shows a collapse
when plotted against x = k/εt for x > 1 (see Fig. 6). However,
although Q(x) ∝ xδ as obtained in the IIA, the exponent δ has
a lower value of ∼1.8. We also make a further analysis: if
Eq. (5) is obeyed with h(x) ∝ xδ , log[Q(x))/Q(x/b)] must be
equal to δ log b where b is a scaling factor. Estimating δ in this
way, we find δ ≈ 1.78 (see the inset of Fig. 6). This plot has
been done for small values of x where the power-law behavior
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FIG. 4. (Color online) Np versus t from simulations for different
values of ε.

is expected to be valid; for large values of the argument, Q(x)
approaches unity as it is a cumulative probability.

IV. DISCUSSIONS AND CONCLUDING REMARKS

In this paper, we have used two approaches to study the
AWM. The results of the IIA approach and the simulations
agree quite well but the values of α (associated with the
scaling function f ) differ notably (e.g., α for ε = 0.5 is
approximately 0.45 from the IIA while simulations give a
value of ∼0.26). This, however, is not surprising as, even for
ε = 0, α ≈ 0.55 [31] is quite different from the exact result
(0.368 468) [32].

Another difference which appears is the disagreement of
the value of δ (associated with the scaling function h) in the
two methods. The theoretical value δ = 2 is derived assuming
the scaling function f occurring in Eq. (4) has an exponential
decay which is true for large values of the argument of f

in both cases. The discrepancy in the value of δ thus suggests
that for small values of the argument there may be a significant
difference in the form of the scaling function in the IIA and the
simulation results. However, this region where the difference
is speculated to occur is rather narrow to make a systematic
study.

The result that k/εt appears as the scaling variable, obtained
in both the approaches, immediately suggests that α in Eq. (4)
varies as 1/ε. We note the values of αε to check whether
this is true and find good agreement for the IIA values for
ε � 0.3 and very good agreement for the values obtained
in simulation for ε > 0.1. αε ∼ 0.13 for ε > 0.1 (from the
simulation results), while it apparently decreases for lower
values of ε. However, as we have noted earlier, the results for
very small ε show the effect of the ε = 0 point which belongs
to a different universality class. Since the α value obtained
from the simulation happens to be more reliable, we conclude
that indeed α ∝ 1/ε for all values of ε > 0.

To summarize, we have considered the A + A → ∅
reaction-diffusion model on a ring, with a bias ε (0 � ε � 0.5)
of the random walkers A to hop towards their nearest neighbor.
The interval size distribution P (k,t) is evaluated using the
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FIG. 5. (Color online) The scalings of the interval size distribu-
tions P (k,t) from simulation for ε = 0.1 and 0.5 at times t = 30,
50, and 100 are shown. The scaling holds good for 1/z = 0.91 and
1/z = 1.0, respectively.
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FIG. 6. (Color online) The cumulative distribution Q(k) =∫
0
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0.5; t = 30 is plotted against k/εt . The straight line has slope =
1.8. The inset shows the log-log plot of the ratio of two values of Q

at x and x/b against b where b is a scaling factor.

IIA method and compared to results obtained from numerical
simulations. Both the methods show that for ε �= 0, the
exponent z = 1 in contrast to z = 2 for ε = 0.0. The raw data
may not give the value of z for ε �= 0 very accurately in the
IIA, but the cumulative distribution function Q(k,t) shows that
the scaling variable is indeed k/t for ε �= 0. The exponential
form of the scaling function f ∼ exp(−αx) for all ε values
is also obtained by the IIA calculation and in simulation. The
value of α however does not match between the IIA calculation
and simulation for any ε. Simulation shows that α ∼ 1/ε for
ε > 0.1. We guess that this is true for all ε. Finally, we note that
εt enters the scaling argument, implying a 1/ε dependence of
the time scale in the system.

As is mentioned in the Introduction, the diffusion and
pairwise annihilation model has been studied a lot in the past
in the context of modeling chemical reactions [33]. Systems
of reacting particles are typical of complex irreversible
nonequilibrium systems. It is crucial to ask what determines the
universality class of the diffusing-annihilating particle system
which is probably the simplest interacting particle system.
Our study directly focuses on that. We show that our AWM yet
again gives rise to a critical dynamics as the system approaches
the steady state. We show that the exponent describing the
dynamics changes from the value 2 to 1 as soon as the bias ε

is introduced.
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APPENDIX: DERIVATION OF EQ. (1)

We consider the probability P (k,t + �t). It has contribu-
tions from several phenomena. Whenever we consider the
movement of a domain wall, we have to compare the sizes
of the two domains neighboring it. If the sizes are equal, the
probability of a move to either side is simply 1/2.

The probability that a domain remains the same in size
is (1 − 2�t)P (k). A domain of size k + 1 may reduce to a
domain of size k if either of its two edges moves so as to
shrink its size by 1. This probability will depend on the size
of the adjacent domain, say m. If m > k + 1 such a move
will happen with probability (1/2 + ε) and with probability
(1/2 − ε) otherwise.

A domain of size k − 1 can also grow to a domain of size
k. Once again, one has to take care of the size of the adjacent
domain, m. It is convenient to consider the two cases k > 2
and k = 2 separately here. k = 1 will obviously not have any
contribution from this process. For k > 2, moves will depend
on whether 1 < m < k − 1, in which case the probability is
(1/2 + ε) while for m > k − 1 the probability is (1/2 − ε).
One has to ensure that m > 1 in the first case, because for
m = 1 a domain annihilation will take place. For k = 2, one
has a domain of length unity growing to a domain of length 2
and this will be possible only for m �= 1 and with probability
(1/2 − ε).
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A loss term will occur for the case when an adjacent domain
of size 1 gets annihilated and this occurs with probability
(1/2 + ε) when another domain of size m > 1 is its neighbor.
If m = 1, this occurs with probability 1/2. A gain term will

also be there when two domains get annihilated and a domain
of size k results in the process. Using the shortened notation
ε+ = 1 + 2ε, ε− = 1 − 2ε, k+ = k + 1, and k− = k − 1, and
taking care of all these terms, one gets

P (k,t + �t) = (1 − 2�t)P (k) + �t
P (k + 1,t)∑

k P (k,t)

⎡
⎣ε+

∑
m>k+

P (m) + ε−
∑
m<k+

P (m) + P (k+)

⎤
⎦

+�t
P (k−)∑

k P (k)

⎡
⎣ε+

∑
1<m<k−

P (m) + ε−
∑
m>k−

P (m) + P (k−)

⎤
⎦(1 − δk,2)

+�tP (1)

[
1 − P (1)/

∑
k

P (k)

]
ε−δk,2 − �t

P (k)P (1)[∑
k P (k)

]2

[
ε+

∑
m>1

P (m) + P (1)

]

+�t
P (1)[∑
k P (k)

]2

[
P (1)P (k − 2) + ε+

k−2∑
m>1

P (m)P (k− − m)

]
.

(A1)

For ε = 0, the second and third terms can be rewritten as a single term and without using the Kronecker δ’s.
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